1
|
Baig MH, Ahmad K, Moon JS, Park SY, Ho Lim J, Chun HJ, Qadri AF, Hwang YC, Jan AT, Ahmad SS, Ali S, Shaikh S, Lee EJ, Choi I. Myostatin and its Regulation: A Comprehensive Review of Myostatin Inhibiting Strategies. Front Physiol 2022; 13:876078. [PMID: 35812316 PMCID: PMC9259834 DOI: 10.3389/fphys.2022.876078] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 06/06/2022] [Indexed: 12/12/2022] Open
Abstract
Myostatin (MSTN) is a well-reported negative regulator of muscle growth and a member of the transforming growth factor (TGF) family. MSTN has important functions in skeletal muscle (SM), and its crucial involvement in several disorders has made it an important therapeutic target. Several strategies based on the use of natural compounds to inhibitory peptides are being used to inhibit the activity of MSTN. This review delivers an overview of the current state of knowledge about SM and myogenesis with particular emphasis on the structural characteristics and regulatory functions of MSTN during myogenesis and its involvements in various muscle related disorders. In addition, we review the diverse approaches used to inhibit the activity of MSTN, especially in silico approaches to the screening of natural compounds and the design of novel short peptides derived from proteins that typically interact with MSTN.
Collapse
Affiliation(s)
- Mohammad Hassan Baig
- Department of Family Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Khurshid Ahmad
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, South Korea
| | - Jun Sung Moon
- Department of Internal Medicine, College of Medicine, Yeungnam University, Daegu, South Korea
| | - So-Young Park
- Department of Physiology, College of Medicine, Yeungnam University, Daegu, South Korea
| | - Jeong Ho Lim
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, South Korea
| | - Hee Jin Chun
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, South Korea
| | - Afsha Fatima Qadri
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea
| | - Ye Chan Hwang
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea
| | - Arif Tasleem Jan
- School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, India
| | - Syed Sayeed Ahmad
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea
| | - Shahid Ali
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea
| | - Sibhghatulla Shaikh
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea
| | - Eun Ju Lee
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, South Korea
- *Correspondence: Eun Ju Lee, ; Inho Choi,
| | - Inho Choi
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, South Korea
- *Correspondence: Eun Ju Lee, ; Inho Choi,
| |
Collapse
|
2
|
Mai C, Wen C, Xu Z, Xu G, Chen S, Zheng J, Sun C, Yang N. Genetic basis of negative heterosis for growth traits in chickens revealed by genome-wide gene expression pattern analysis. J Anim Sci Biotechnol 2021; 12:52. [PMID: 33865443 PMCID: PMC8053289 DOI: 10.1186/s40104-021-00574-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 02/21/2021] [Indexed: 11/18/2022] Open
Abstract
Background Heterosis is an important biological phenomenon that has been extensively utilized in agricultural breeding. However, negative heterosis is also pervasively observed in nature, which can cause unfavorable impacts on production performance. Compared with systematic studies of positive heterosis, the phenomenon of negative heterosis has been largely ignored in genetic studies and breeding programs, and the genetic mechanism of this phenomenon has not been thoroughly elucidated to date. Here, we used chickens, the most common agricultural animals worldwide, to determine the genetic and molecular mechanisms of negative heterosis. Results We performed reciprocal crossing experiments with two distinct chicken lines and found that the body weight presented widely negative heterosis in the early growth of chickens. Negative heterosis of carcass traits was more common than positive heterosis, especially breast muscle mass, which was over − 40% in reciprocal progenies. Genome-wide gene expression pattern analyses of breast muscle tissues revealed that nonadditivity, including dominance and overdominace, was the major gene inheritance pattern. Nonadditive genes, including a substantial number of genes encoding ATPase and NADH dehydrogenase, accounted for more than 68% of differentially expressed genes in reciprocal crosses (4257 of 5587 and 3617 of 5243, respectively). Moreover, nonadditive genes were significantly associated with the biological process of oxidative phosphorylation, which is the major metabolic pathway for energy release and animal growth and development. The detection of ATP content and ATPase activity for purebred and crossbred progenies further confirmed that chickens with lower muscle yield had lower ATP concentrations but higher hydrolysis activity, which supported the important role of oxidative phosphorylation in negative heterosis for growth traits in chickens. Conclusions These findings revealed that nonadditive genes and their related oxidative phosphorylation were the major genetic and molecular factors in the negative heterosis of growth in chickens, which would be beneficial to future breeding strategies. Supplementary Information The online version contains supplementary material available at 10.1186/s40104-021-00574-2.
Collapse
Affiliation(s)
- Chunning Mai
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100193, China
| | - Chaoliang Wen
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100193, China
| | - Zhiyuan Xu
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100193, China
| | - Guiyun Xu
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100193, China
| | - Sirui Chen
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100193, China
| | - Jiangxia Zheng
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100193, China
| | - Congjiao Sun
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100193, China.
| | - Ning Yang
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
3
|
Understanding Calcium-Dependent Conformational Changes in S100A1 Protein: A Combination of Molecular Dynamics and Gene Expression Study in Skeletal Muscle. Cells 2020; 9:cells9010181. [PMID: 31936886 PMCID: PMC7016722 DOI: 10.3390/cells9010181] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 01/08/2020] [Accepted: 01/08/2020] [Indexed: 12/12/2022] Open
Abstract
The S100A1 protein, involved in various physiological activities through the binding of calcium ions (Ca2+), participates in several protein-protein interaction (PPI) events after Ca2+-dependent activation. The present work investigates Ca2+-dependent conformational changes in the helix-EF hand-helix using the molecular dynamics (MD) simulation approach that facilitates the understanding of Ca2+-dependent structural and dynamic distinctions between the apo and holo forms of the protein. Furthermore, the process of ion binding by inserting Ca2+ into the bulk of the apo structure was simulated by molecular dynamics. Expectations of the simulation were demonstrated using cluster analysis and a variety of structural metrics, such as interhelical angle estimation, solvent accessible surface area, hydrogen bond analysis, and contact analysis. Ca2+ triggered a rise in the interhelical angles of S100A1 on the binding site and solvent accessible surface area. Significant configurational regulations were observed in the holo protein. The findings would contribute to understanding the molecular basis of the association of Ca2+ with the S100A1 protein, which may be an appropriate study to understand the Ca2+-mediated conformational changes in the protein target. In addition, we investigated the expression profile of S100A1 in myoblast differentiation and muscle regeneration. These data showed that S100A1 is expressed in skeletal muscles. However, the expression decreases with time during the process of myoblast differentiation.
Collapse
|
4
|
de Las Heras-Saldana S, Chung KY, Lee SH, Gondro C. Gene expression of Hanwoo satellite cell differentiation in longissimus dorsi and semimembranosus. BMC Genomics 2019; 20:156. [PMID: 30808286 PMCID: PMC6390542 DOI: 10.1186/s12864-019-5530-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 02/13/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Korean Hanwoo cattle are known for their high meat quality, especially their high intramuscular fat compared to most other cattle breeds. Different muscles have very different meat quality traits and a study of the myogenic process in satellite cells can help us better understand the genes and pathways that regulate this process and how muscles differentiate. RESULTS Cell cultures of Longissimus dorsi muscle differentiated from myoblast into multinucleated myotubes faster than semimembranosus. Time-series RNA-seq identified a total of 13 differentially expressed genes between the two muscles during their development. These genes seem to be involved in determining muscle lineage development and appear to modulate the expression of myogenic regulatory factors (mainly MYOD and MYF5) during differentiation of satellite cells into multinucleate myotubes. Gene ontology enriched terms were consistent with the morphological changes observed in the histology. Most of the over-represented terms and genes expressed during myoblast differentiation were similar regardless of muscle type which indicates a highly conserved myogenic process albeit the rates of differentiation being different. There were more differences in the enriched GO terms during the end of proliferation compared to myoblast differentiation. CONCLUSIONS The use of satellite cells from newborn Hanwoo calves appears to be a good model to study embryonic myogenesis in muscle. Our findings provide evidence that the differential expression of HOXB2, HOXB4, HOXB9, HOXC8, FOXD1, IGFN1, ZIC2, ZIC4, HOXA11, HOXC11, PITX1, SIM2 and TBX4 genes could be involved in the differentiation of Longissimus dorsi and Semimembranosus muscles. These genes seem to modulate the muscle fate of the satellite cells during myogenesis through a differential expression profile that also controls the expression of some myogenic regulatory factors (MYOD and MYF5). The number of differentially expressed genes across time was unsurprisingly large. In relation to the baseline day 0, there were 631, 155, 175, 519 and 586 DE genes in LD, while in SM we found 204, 0, 615, 761 and 1154 DE genes at days 1, 2, 4, 7 and 14 respectively.
Collapse
Affiliation(s)
| | - Ki Yong Chung
- Hanwoo Research Institute, National Institute of Animal Science, RDA, Pyeongchang, South Korea
| | - Seung Hwan Lee
- Division of Animal and Dairy Science, Chungnam National University, Deajeon, South Korea.
| | - Cedric Gondro
- Department of Animal Science, Michigan State University, 474 S Shaw Lane, East Lansing, MI, 48824, USA.
| |
Collapse
|
5
|
Lee EJ, Jan AT, Baig MH, Ahmad K, Malik A, Rabbani G, Kim T, Lee IK, Lee YH, Park SY, Choi I. Fibromodulin and regulation of the intricate balance between myoblast differentiation to myocytes or adipocyte-like cells. FASEB J 2018; 32:768-781. [PMID: 28974563 DOI: 10.1096/fj.201700665r] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Interactions between myoblasts and the surrounding microenvironment led us to explore the role of fibromodulin (FMOD), an extracellular matrix protein, in the maintenance of myoblast stemness and function. Microarray analysis of FMODkd myoblasts and in silico studies were used to identify the top most differentially expressed genes in FMODkd, and helped establish that FMOD-based regulations of integral membrane protein 2a and clusterin are essential components of the myogenic program. Studies in knockout, obese, and diabetic mouse models helped characterize the operation of a novel FMOD-based regulatory circuit that controls myoblast switching from a myogenic to a lipid accumulation fate. FMOD regulation of myoblasts is an essential part of the myogenic program, and it offers opportunities for the development of therapeutics for the treatment of different muscle diseases.-Lee, E. J., Jan, A. T., Baig, M. H., Ahmad, K., Malik, A., Rabbani, G., Kim, T., Lee, I.-K., Lee, Y. H., Park, S.-Y., Choi, I. Fibromodulin and regulation of the intricate balance between myoblast differentiation to myocytes or adipocyte-like cells.
Collapse
Affiliation(s)
- Eun Ju Lee
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea
| | - Arif Tasleem Jan
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea
| | - Mohammad Hassan Baig
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea
| | - Khurshid Ahmad
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea
| | - Adeel Malik
- Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon, South Korea
| | - Gulam Rabbani
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea
| | - Taeyeon Kim
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea
| | - In-Kyu Lee
- Department of Internal Medicine, School of Medicine, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Yong Ho Lee
- Department of Biomedical Science, Catholic University of Daegu, Gyeongsan, South Korea; and
| | - So-Young Park
- Department of Physiology, College of Medicine, Yeungnam University, Daegu, South Korea
| | - Inho Choi
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea
| |
Collapse
|
6
|
Methylglyoxal and Advanced Glycation End products: Insight of the regulatory machinery affecting the myogenic program and of its modulation by natural compounds. Sci Rep 2017; 7:5916. [PMID: 28725008 PMCID: PMC5517486 DOI: 10.1038/s41598-017-06067-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 06/07/2017] [Indexed: 12/13/2022] Open
Abstract
Methylglyoxal (MG) is a reactive dicarbonyl intermediate and a precursor of advanced glycation end products (AGEs). The authors investigated the role played by AGEs in muscle myopathy and the amelioration of its effects by curcumin and gingerol. In addition to producing phenotypical changes, MG increased oxidative stress and reduced myotube formation in C2C12 cells. RAGE (receptor for AGEs) expression was up-regulated and MYOD and myogenin (MYOG) expressions were concomitantly down-regulated in MG-treated cells. Interestingly, AGE levels were higher in plasma (~32 fold) and muscle (~26 fold) of diabetic mice than in control mice. RAGE knock-down (RAGEkd) reduced the expressions of MYOD and MYOG and myotube formation in C2C12 cells. In silico studies of interactions between curcumin or gingerol and myostatin (MSTN; an inhibitor of myogenesis) and their observed affinities for activin receptor type IIB (ACVRIIB) suggested curcumin and gingerol reduce the interaction between MSTN and ACVRIIB. The findings of this study suggest enhanced AGE production and subsequent RAGE-AGE interaction obstruct the muscle development program, and that curcumin and gingerol attenuate the effect of AGEs on myoblasts.
Collapse
|
7
|
Jan AT, Lee EJ, Ahmad S, Choi I. Meeting the meat: delineating the molecular machinery of muscle development. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2016; 58:18. [PMID: 27168943 PMCID: PMC4862161 DOI: 10.1186/s40781-016-0100-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 04/07/2016] [Indexed: 02/07/2023]
Abstract
Muscle, studied mostly with respect to meat production, represents one of the largest protein reservoirs of the body. As gene expression profiling holds credibility to deal with the increasing demand of food from animal sources, excessive loss due to myopathies and other muscular dystrophies was found detrimental as it aggravates diseases that result in increased morbidity and mortality. Holding key point towards improving the developmental program of muscle in meat producing animals, elucidating the underlying mechanisms of the associated pathways in livestock animals is believed to open up new avenues towards enhancing the lean tissue deposition. To this end, identification of vital candidate genes having no known function in myogenesis, is believed to increase the current understanding of the physiological processes going on in the skeletal muscle tissue. Taking consequences of gene expression changes into account, knowledge of the pathways associated with their activation and as such up-regulation seems critical for the overall muscle homeostasis. Having important implications on livestock production, a thorough understanding of postnatal muscle development seems a timely step to fulfil the growing need of ever increasing populations of the world.
Collapse
Affiliation(s)
- Arif Tasleem Jan
- School of Biotechnology, Yeungnam University, Gyeongsan, 712-749 Republic of Korea
| | - Eun Ju Lee
- School of Biotechnology, Yeungnam University, Gyeongsan, 712-749 Republic of Korea
| | - Sarafraz Ahmad
- School of Biotechnology, Yeungnam University, Gyeongsan, 712-749 Republic of Korea
| | - Inho Choi
- School of Biotechnology, Yeungnam University, Gyeongsan, 712-749 Republic of Korea
| |
Collapse
|
8
|
Lee EJ, Jan AT, Baig MH, Ashraf JM, Nahm SS, Kim YW, Park SY, Choi I. Fibromodulin: a master regulator of myostatin controlling progression of satellite cells through a myogenic program. FASEB J 2016; 30:2708-19. [PMID: 27069062 DOI: 10.1096/fj.201500133r] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Accepted: 04/05/2016] [Indexed: 12/19/2022]
Abstract
Differentiation of muscle satellite cells (MSCs) involves interaction of the proteins present in the extracellular matrix (ECM) with MSCs to regulate their activity, and therefore phenotype. Herein, we report fibromodulin (FMOD), a member of the proteoglycan family participating in the assembly of ECM, as a novel regulator of myostatin (MSTN) during myoblast differentiation. In addition to having a pronounced effect on the expression of myogenic marker genes [myogenin (MYOG) and myosin light chain 2 (MYL2)], FMOD was found to maintain the transcriptional activity of MSTN Moreover, coimmunoprecipitation and in silico studies performed to investigate the interaction of FMOD helped confirm that it antagonizes MSTN function by distorting its folding and preventing its binding to activin receptor type IIB. Furthermore, in vivo studies revealed that FMOD plays an active role in healing by increasing satellite cell recruitment to sites of injury. Together, these findings disclose a hitherto unrecognized regulatory role for FMOD in MSCs and highlight new mechanisms whereby FMOD circumvents the inhibitory effects of MSTN and triggers myoblast differentiation. These findings offer a basis for the design of novel MSTN inhibitors that promote muscle regeneration after injury or for the development of pharmaceutical agents for the treatment of different muscle atrophies.-Lee, E. J., Jan, A. T., Baig, M. H., Ashraf, J. M., Nahm, S.-S., Kim, Y.-W., Park, S.-Y., Choi, I. Fibromodulin: a master regulator of myostatin controlling progression of satellite cells through a myogenic program.
Collapse
Affiliation(s)
- Eun Ju Lee
- School of Biotechnology, Yeungnam University, Gyeongsan, South Korea
| | - Arif Tasleem Jan
- School of Biotechnology, Yeungnam University, Gyeongsan, South Korea
| | | | | | - Sang-Soep Nahm
- College of Veterinary Medicine, Konkuk University, Seoul, South Korea; and
| | - Yong-Woon Kim
- Department of Physiology, College of Medicine, Yeungnam University, South Korea
| | - So-Young Park
- Department of Physiology, College of Medicine, Yeungnam University, South Korea
| | - Inho Choi
- School of Biotechnology, Yeungnam University, Gyeongsan, South Korea;
| |
Collapse
|
9
|
Network Analysis for the Identification of Differentially Expressed Hub Genes Using Myogenin Knock-down Muscle Satellite Cells. PLoS One 2015. [PMID: 26200109 PMCID: PMC4511796 DOI: 10.1371/journal.pone.0133597] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Muscle, a multinucleate syncytium formed by the fusion of mononuclear myoblasts, arises from quiescent progenitors (satellite cells) via activation of muscle-specific transcription factors (MyoD, Myf5, myogenin: MYOG, and MRF4). Subsequent to a decline in Pax7, induction in the expression of MYOG is a hallmark of myoblasts that have entered the differentiation phase following cell cycle withdrawal. It is evident that MYOG function cannot be compensated by any other myogenic regulatory factors (MRFs). Despite a plethora of information available regarding MYOG, the mechanism by which MYOG regulates muscle cell differentiation has not yet been identified. Using an RNA-Seq approach, analysis of MYOG knock-down muscle satellite cells (MSCs) have shown that genes associated with cell cycle and division, DNA replication, and phosphate metabolism are differentially expressed. By constructing an interaction network of differentially expressed genes (DEGs) using GeneMANIA, cadherin-associated protein (CTNNA2) was identified as the main hub gene in the network with highest node degree. Four functional clusters (modules or communities) were identified in the network and the functional enrichment analysis revealed that genes included in these clusters significantly contribute to skeletal muscle development. To confirm this finding, in vitro studies revealed increased expression of CTNNA2 in MSCs on day 12 compared to day 10. Expression of CTNNA2 was decreased in MYOG knock-down cells. However, knocking down CTNNA2, which leads to increased expression of extracellular matrix (ECM) genes (type I collagen α1 and type I collagen α2) along with myostatin (MSTN), was not found significantly affecting the expression of MYOG in C2C12 cells. We therefore propose that MYOG exerts its regulatory effects by acting upstream of CTNNA2, which in turn regulates the differentiation of C2C12 cells via interaction with ECM genes. Taken together, these findings highlight a new mechanism by which MYOG interacts with CTNNA2 in order to promote myoblast differentiation.
Collapse
|
10
|
Costa ADF, Franco OL. Insights into RNA transcriptome profiling of cardiac tissue in obesity and hypertension conditions. J Cell Physiol 2015; 230:959-68. [PMID: 25393239 DOI: 10.1002/jcp.24807] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 09/05/2014] [Indexed: 12/20/2022]
Abstract
Several epidemiologic studies suggest that obesity and hypertension are associated with cardiac transcriptome modifications that could be further associated with inflammatory processes and cardiac hypertrophy. In this field, transcriptome studies have demonstrated their importance to elucidate physiologic mechanisms, pathways or genes involved in many biologic processes. Over the past decade, RNA microarray and RNA-seq analysis has become an essential component to examine metabolic pathways in terms of mRNA expression in cardiology. In this review, cardiac muscle gene expression in response to effects of obesity and hypertension will be focused, providing a broad view on cardiac transcriptome and physiologic and biochemical mechanisms involved in gene expression changes produced by these events, emphasizing the use of new technologies for gene expression analyses.
Collapse
Affiliation(s)
- Alzenira de Fátima Costa
- Universidade Católica de Brasília, Pós-Graduação em Ciências Genômicas e Biotecnologia Centro de Análises Proteômicas e Bioquímicas, Brasília, Brazil
| | | |
Collapse
|
11
|
Genome-wide DNA methylation profiles and their relationships with mRNA and the microRNA transcriptome in bovine muscle tissue (Bos taurine). Sci Rep 2014; 4:6546. [PMID: 25306978 PMCID: PMC4194443 DOI: 10.1038/srep06546] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 09/15/2014] [Indexed: 12/21/2022] Open
Abstract
DNA methylation is a key epigenetic modification in mammals and plays important roles in muscle development. We sampled longissimus dorsi muscle (LDM) from a well-known elite native breed of Chinese Qinchuan cattle living within the same environment but displaying distinct skeletal muscle at the fetal and adult stages. We generated and provided a genome-wide landscape of DNA methylomes and their relationship with mRNA and miRNA for fetal and adult muscle studies. Integration analysis revealed a total of 77 and 1,054 negatively correlated genes with methylation in the promoter and gene body regions, respectively, in both the fetal and adult bovine libraries. Furthermore, we identified expression patterns of high-read genes that exhibit a negative correlation between methylation and expression from nine different tissues at multiple developmental stages of bovine muscle-related tissue or organs. In addition, we validated the MeDIP-Seq results by bisulfite sequencing PCR (BSP) in some of the differentially methylated promoters. Together, these results provide valuable data for future biomedical research and genomic and epigenomic studies of bovine skeletal muscle that may help uncover the molecular basis underlying economically valuable traits in cattle. This comprehensive map also provides a solid basis for exploring the epigenetic mechanisms of muscle growth and development.
Collapse
|
12
|
Expression of Transthyretin during bovine myogenic satellite cell differentiation. In Vitro Cell Dev Biol Anim 2014; 50:756-65. [PMID: 24903999 DOI: 10.1007/s11626-014-9757-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 04/07/2014] [Indexed: 12/21/2022]
Abstract
Adult myogenesis responsible for the maintenance and repair of muscle tissue is mainly under the control of myogenic regulatory factors (MRFs) and a few other genes. Transthyretin gene (TTR), codes for a carrier protein for thyroxin (T4) and retinol binding protein bound with retinol in blood plasma, plays a critical role during the early stages of myogenesis. Herein, we investigated the relationship of TTR with other muscle-specific genes and report their expression in muscle satellite cells (MSCs), and increased messenger RNA (mRNA) and protein expression of TTR during MSCs differentiation. Silencing of TTR resulted in decreased myotube formation and decreased expression of myosin light chain (MYL2), myosin heavy chain 3 (MYH3), matrix gla protein (MGP), and voltage-dependent L type calcium channel (Cav1.1) genes. Increased mRNA expression observed in TTR and other myogenic genes with the addition of T4 decreased significantly following TTR knockdown, indicating the critical role of TTR in T4 transportation. Similarly, decreased expression of MGP and Cav1.1 following TTR knockdown signifies the dual role of TTR in controlling muscle myogenesis via regulation of T4 and calcium channel. Our computational and experimental evidences indicate that TTR has a relationship with MRFs and may act on calcium channel and related genes.
Collapse
|
13
|
Lee EJ, Malik A, Pokharel S, Ahmad S, Mir BA, Cho KH, Kim J, Kong JC, Lee DM, Chung KY, Kim SH, Choi I. Identification of genes differentially expressed in myogenin knock-down bovine muscle satellite cells during differentiation through RNA sequencing analysis. PLoS One 2014; 9:e92447. [PMID: 24647404 PMCID: PMC3960249 DOI: 10.1371/journal.pone.0092447] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 02/21/2014] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The expression of myogenic regulatory factors (MRFs) consisting of MyoD, Myf5, myogenin (MyoG) and MRF4 characterizes various phases of skeletal muscle development including myoblast proliferation, cell-cycle exit, cell fusion and the maturation of myotubes to form myofibers. Although it is well known that the function of MyoG cannot be compensated for other MRFs, the molecular mechanism by which MyoG controls muscle cell differentiation is still unclear. Therefore, in this study, RNA-Seq technology was applied to profile changes in gene expression in response to MyoG knock-down (MyoGkd) in primary bovine muscle satellite cells (MSCs). RESULTS About 61-64% of the reads of over 42 million total reads were mapped to more than 13,000 genes in the reference bovine genome. RNA-Seq analysis identified 8,469 unique genes that were differentially expressed in MyoGkd. Among these genes, 230 were up-regulated and 224 were down-regulated by at least four-fold. DAVID Functional Annotation Cluster (FAC) and pathway analysis of all up- and down-regulated genes identified overrepresentation for cell cycle and division, DNA replication, mitosis, organelle lumen, nucleoplasm and cytosol, phosphate metabolic process, phosphoprotein phosphatase activity, cytoskeleton and cell morphogenesis, signifying the functional implication of these processes and pathways during skeletal muscle development. The RNA-Seq data was validated by real time RT-PCR analysis for eight out of ten genes as well as five marker genes investigated. CONCLUSIONS This study is the first RNA-Seq based gene expression analysis of MyoGkd undertaken in primary bovine MSCs. Computational analysis of the differentially expressed genes has identified the significance of genes such as SAP30-like (SAP30L), Protein lyl-1 (LYL1), various matrix metalloproteinases, and several glycogenes in myogenesis. The results of the present study widen our knowledge of the molecular basis of skeletal muscle development and reveal the vital regulatory role of MyoG in retaining muscle cell differentiation.
Collapse
Affiliation(s)
- Eun Ju Lee
- School of Biotechnology, Yeungnam University, Gyeongsan, Republic of Korea
- Bovine Genome Resources Bank, Yeungnam University, Gyeongsan, Republic of Korea
| | - Adeel Malik
- School of Biotechnology, Yeungnam University, Gyeongsan, Republic of Korea
| | - Smritee Pokharel
- School of Biotechnology, Yeungnam University, Gyeongsan, Republic of Korea
| | - Sarafraz Ahmad
- School of Biotechnology, Yeungnam University, Gyeongsan, Republic of Korea
| | - Bilal Ahmad Mir
- School of Biotechnology, Yeungnam University, Gyeongsan, Republic of Korea
| | - Kyung Hyun Cho
- School of Biotechnology, Yeungnam University, Gyeongsan, Republic of Korea
| | - Jihoe Kim
- School of Biotechnology, Yeungnam University, Gyeongsan, Republic of Korea
| | - Joon Chan Kong
- Biomedical Manufacturing Technology Center, Korea Institute of Industrial Technology, Yeongcheon-si, Republic of Korea
| | - Dong-Mok Lee
- Biomedical Manufacturing Technology Center, Korea Institute of Industrial Technology, Yeongcheon-si, Republic of Korea
| | - Ki Yong Chung
- Hanwoo Experiment Station, National Institute of Animal Science, RDA, Pyeongchang, Republic of Korea
| | - Sang Hoon Kim
- Department of Biology, Kyung Hee University, Seoul, Republic of Korea
| | - Inho Choi
- School of Biotechnology, Yeungnam University, Gyeongsan, Republic of Korea
- Bovine Genome Resources Bank, Yeungnam University, Gyeongsan, Republic of Korea
- * E-mail:
| |
Collapse
|