1
|
Haight PJ, Lammers S, Kistenfeger Q, Leipold C, Suarez AA, Tozbikian GH, Esnakula A, Cosgrove C, Bixel KL. Cold ischemia time and formalin fixation time in endometrial cancer: Should breast cancer guidelines for preanalytical variables be applied to hysterectomy specimens? Gynecol Oncol 2024; 191:194-200. [PMID: 39442372 DOI: 10.1016/j.ygyno.2024.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/09/2024] [Accepted: 10/11/2024] [Indexed: 10/25/2024]
Abstract
OBJECTIVES The American Society of Clinical Oncology (ASCO)/College of American Pathologists (CAP) recommend cold ischemia time (cIT) be <60 min, and formalin fixation time (FFT) 6-72 h, to optimize immunohistochemistry (IHC) based on breast cancer data. We assessed whether cIT and FFT impact IHC in endometrial cancer (EC), and determined which factors affect cIT and FFT. METHODS Surgical EC cases from 2019 to 2023 were reviewed. cIT was calculated by subtracting time of tissue devascularization intra-operatively from time the specimen was placed in formalin. Demographics, clinicopathologic and peri-operative factors, and IHC for estrogen receptor (ER), progesterone receptor (PR), human epidermal growth factor receptor 2 (HER2), and mismatch repair (MMR) proteins were compared between patients with cIT <60 min versus ≥60 min (prolonged), and compliant FFT (6-72 h) versus non-compliant FFT (<6 or > 72 h). Categorical variables were compared using χ2 tests. RESULTS 941 patients were included in the analysis. Median cIT was 33 min. Prolonged cIT occurred in 95 (10 %) cases. African American/Black race (p < 0.001), advanced stage (p < 0.001), mini-laparotomy (p < 0.001), performance of surgical procedures beyond standard EC staging (p < 0.001), longer surgical length (p < 0.001), and increased uterine weight (p < 0.001) were independently associated with prolonged cIT. There were no significant differences in ER, PR, HER2, or MMR protein expression based on cIT or FFT. CONCLUSION Prolonged cIT was not associated with differences in biomarker expression via IHC at time of surgical staging for EC. Despite variability in cIT, which is largely due to non-modifiable factors, tumor molecular features remain consistent and can reliably be utilized for prognostic and therapeutic decision-making.
Collapse
Affiliation(s)
- Paulina J Haight
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, The Ohio State University Wexner Medical Center, The James Cancer Hospital and Solove Research Institute, Columbus, OH, USA.
| | - Sydney Lammers
- Department of Obstetrics and Gynecology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Quinn Kistenfeger
- Department of Obstetrics and Gynecology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Chelsea Leipold
- Department of Obstetrics and Gynecology, Wayne State University College of Medicine, Detroit, MI, USA
| | - Adrian A Suarez
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Gary H Tozbikian
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Ashwini Esnakula
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Casey Cosgrove
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, The Ohio State University Wexner Medical Center, The James Cancer Hospital and Solove Research Institute, Columbus, OH, USA
| | - Kristin L Bixel
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, The Ohio State University Wexner Medical Center, The James Cancer Hospital and Solove Research Institute, Columbus, OH, USA
| |
Collapse
|
2
|
Hasan AK, Babaei E, Al-Khafaji ASK. Hesperetin effect on MLH1 and MSH2 expression on breast cancer cells BT-549. J Adv Pharm Technol Res 2023; 14:241-247. [PMID: 37692022 PMCID: PMC10483912 DOI: 10.4103/japtr.japtr_277_23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/09/2023] [Accepted: 06/09/2023] [Indexed: 09/12/2023] Open
Abstract
Due to its genetic and phenotypic heterogeneity, breast cancer is very difficult to eliminate. The harmful consequences of conventional therapies like radiation and chemotherapy have prompted the search for organic-based alternatives. Hesperetin (HSP), a flavonoid, has been discovered to possess the ability to hinder the proliferation of cell associated with breast cancer by acting as an epigenetic agent and modifying gene expression. In this investigation, breast cancer cells (BT-549) and normal cells (MCF-10a) were subjected to the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) test and three different doses (200, 400, and 600 μM/mL) of HSP for real-time polymerase chain reaction and flow cytometry to examine its cytotoxic and anti-malignant potential. HSP was shown to be cytotoxic to both normal and breast cancer cells, but had a more pronounced effect on the cancer cell lines. After 48 h of treatment, the half-maximal inhibitory concentration (IC50) for BT-549 was 279.2 μM/mL, whereas the IC50 for MCF-10a was 855.4 μM/mL. At high HSP concentrations, upregulation of the MLH1 and MSH2 genes was observed in both cell lines. The influence of HSP on MLH1 gene expression was concentration dependent. Moreover, HSP had a concentration-dependent effect on MSH2 gene expression in the BT-549 cell line but not in the MCF-10a cell line. Cell death and early apoptosis were shown to be concentration dependent upon the application of HSP, as determined by flow cytometric analysis. HSP's capacity to cause apoptosis and its stronger impact on the malignant cell line when analyzed with the normal cell line imply that it might be useful as an effective therapeutic approach for combating breast cancer.
Collapse
Affiliation(s)
- Assim Khattab Hasan
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Esmaeil Babaei
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | | |
Collapse
|
3
|
Cancer: A pathologist's journey from morphology to molecular. Med J Armed Forces India 2022; 78:255-263. [DOI: 10.1016/j.mjafi.2022.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
4
|
Campbell MR, Ruiz-Saenz A, Zhang Y, Peterson E, Steri V, Oeffinger J, Sampang M, Jura N, Moasser MM. Extensive conformational and physical plasticity protects HER2-HER3 tumorigenic signaling. Cell Rep 2022; 38:110285. [PMID: 35108526 PMCID: PMC8865943 DOI: 10.1016/j.celrep.2021.110285] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 08/30/2021] [Accepted: 12/28/2021] [Indexed: 12/13/2022] Open
Abstract
Surface-targeting biotherapeutic agents have been successful in treating HER2-amplified cancers through immunostimulation or chemodelivery but have failed to produce effective inhibitors of constitutive HER2-HER3 signaling. We report an extensive structure-function analysis of this tumor driver, revealing complete uncoupling of intracellular signaling and tumorigenic function from regulation or constraints from their extracellular domains (ECDs). The canonical HER3 ECD conformational changes and exposure of the dimerization interface are nonessential, and the entire ECDs of HER2 and HER3 are redundant for tumorigenic signaling. Restricting the proximation of partner ECDs with bulk and steric clash through extremely disruptive receptor engineering leaves tumorigenic signaling unperturbed. This is likely due to considerable conformational flexibilities across the span of these receptor molecules and substantial undulations in the plane of the plasma membrane, none of which had been foreseen as impediments to targeting strategies. The massive overexpression of HER2 functionally and physically uncouples intracellular signaling from extracellular constraints.
Collapse
Affiliation(s)
- Marcia R Campbell
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Ana Ruiz-Saenz
- Departments of Cell Biology & Medical Oncology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Yuntian Zhang
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Elliott Peterson
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Veronica Steri
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Julie Oeffinger
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Maryjo Sampang
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Natalia Jura
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Mark M Moasser
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
5
|
Garberis I, Andre F, Lacroix-Triki M. L’intelligence artificielle pourrait-elle intervenir dans l’aide au diagnostic des cancers du sein ? – L’exemple de HER2. Bull Cancer 2022; 108:11S35-11S45. [PMID: 34969514 DOI: 10.1016/s0007-4551(21)00635-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
HER2 is an important prognostic and predictive biomarker in breast cancer. Its detection makes it possible to define which patients will benefit from a targeted treatment. While assessment of HER2 status by immunohistochemistry in positive vs negative categories is well implemented and reproducible, the introduction of a new "HER2-low" category could raise some concerns about its scoring and reproducibility. We herein described the current HER2 testing methods and the application of innovative machine learning techniques to improve these determinations, as well as the main challenges and opportunities related to the implementation of digital pathology in the up-and-coming AI era.
Collapse
Affiliation(s)
- Ingrid Garberis
- Inserm UMR 981, Gustave Roussy Cancer Campus, Villejuif, France; Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France.
| | - Fabrice Andre
- Inserm UMR 981, Gustave Roussy Cancer Campus, Villejuif, France; Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France; Département d'oncologie médicale, Gustave-Roussy, Villejuif, France
| | - Magali Lacroix-Triki
- Inserm UMR 981, Gustave Roussy Cancer Campus, Villejuif, France; Département d'anatomie et cytologie pathologiques, Gustave-Roussy, Villejuif, France
| |
Collapse
|
6
|
Angerilli V, Galuppini F, Pagni F, Fusco N, Malapelle U, Fassan M. The Role of the Pathologist in the Next-Generation Era of Tumor Molecular Characterization. Diagnostics (Basel) 2021; 11:339. [PMID: 33670699 PMCID: PMC7922586 DOI: 10.3390/diagnostics11020339] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/16/2021] [Accepted: 02/17/2021] [Indexed: 12/14/2022] Open
Abstract
Current pathology practice is being shaped by the increasing complexity of modern medicine, in particular of precision oncology, and major technological advances. In the "next-generation technologies era", the pathologist has become the person responsible for the integration and interpretation of morphologic and molecular information and for the delivery of critical answers to diagnostic, prognostic and predictive queries, acquiring a prominent position in the molecular tumor boards.
Collapse
Affiliation(s)
- Valentina Angerilli
- Department of Medicine (DIMED), Surgical Pathology Unit, University of Padua, 35121 Padua, Italy; (V.A.); (F.G.)
| | - Francesca Galuppini
- Department of Medicine (DIMED), Surgical Pathology Unit, University of Padua, 35121 Padua, Italy; (V.A.); (F.G.)
| | - Fabio Pagni
- Department of Medicine and Surgery, Pathology, San Gerardo Hospital, University of Milano-Bicocca, 20900 Monza, Italy;
| | - Nicola Fusco
- Division of Pathology, IEO, European Institute of Oncology IRCCS, 20122 Milan, Italy;
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy
| | - Umberto Malapelle
- Department of Public Health, University of Naples Federico II, 80138 Naples, Italy;
| | - Matteo Fassan
- Department of Medicine (DIMED), Surgical Pathology Unit, University of Padua, 35121 Padua, Italy; (V.A.); (F.G.)
| |
Collapse
|
7
|
Peckys DB, Hirsch D, Gaiser T, de Jonge N. Visualisation of HER2 homodimers in single cells from HER2 overexpressing primary formalin fixed paraffin embedded tumour tissue. Mol Med 2019; 25:42. [PMID: 31455202 PMCID: PMC6712713 DOI: 10.1186/s10020-019-0108-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 07/31/2019] [Indexed: 12/11/2022] Open
Abstract
Background HER2 is considered as one of the most important, predictive biomarkers in oncology. The diagnosis of HER2 positive cancer types such as breast- and gastric cancer is usually based on immunohistochemical HER2 staining of tumour tissue. However, the current immunohistochemical methods do not provide localized information about HER2’s functional state. In order to generate signals leading to cell growth and proliferation, the receptor spontaneously forms homodimers, a process that can differ between individual cancer cells. Materials and methods HER2 overexpressing tumour cells were dissociated from formalin-fixed paraffin-embedded (FFPE) patient’s biopsy sections, subjected to a heat-induced antigen retrieval procedure, and immobilized on microchips. HER2 was specifically labelled via a two-step protocol involving the incubation with an Affibody-biotin compound followed by the binding of a streptavidin coated quantum dot (QD) nanoparticle. Cells with membrane bound HER2 were identified using fluorescence microscopy, coated with graphene to preserve their hydrated state, and subsequently examined by scanning transmission electron microscopy (STEM) to obtain the locations at the single molecule level. Label position data was statistically analysed via the pair correlation function, yielding information about the presence of HER2 homodimers. Results Tumour cells from two biopsies, scored HER2 3+, and a HER2 negative control sample were examined. The specific labelling protocol was first tested for a sectioned tissue sample of HER2-overexpressing tumour. Subsequently, a protocol was optimized to study HER2 homodimerization in single cells dissociated from the tissue section. Electron microscopy data showed membrane bound HER2 in average densities of 201–689 proteins/μm2. An automated, statistical analysis of well over 200,000 of measured protein positions revealed the presence of HER2 homodimers in 33 and 55% of the analysed images for patient 1 and 2, respectively. Conclusions We introduced an electron microscopy method capable of measuring the positions of individually labelled HER2 proteins in patient tumour cells from which information about the functional status of the receptor was derived. This method could take HER2 testing a step further by examining HER2 homodimerization directly out of tumour tissue and may become important for adjusting a personalized antibody-based drug therapy. Electronic supplementary material The online version of this article (10.1186/s10020-019-0108-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Diana B Peckys
- Department of Biophysics, Saarland University, Homburg, Germany
| | - Daniela Hirsch
- Institute for Pathology, University Medical Center Mannheim, Ruprecht-Karls University of Heidelberg, Mannheim, Germany
| | - Timo Gaiser
- Institute for Pathology, University Medical Center Mannheim, Ruprecht-Karls University of Heidelberg, Mannheim, Germany
| | - Niels de Jonge
- INM - Leibniz Institute for New Materials, Campus D2-2, 66123, Saarbrücken, Germany. .,Department of Physics, Saarland University, Saarbrücken, Germany.
| |
Collapse
|
8
|
Fassan M. Molecular Diagnostics in Pathology: Time for a Next-Generation Pathologist? Arch Pathol Lab Med 2018; 142:313-320. [DOI: 10.5858/arpa.2017-0269-ra] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
Abstract
Context.—Comprehensive molecular investigations of mainstream carcinogenic processes have led to the use of effective molecular targeted agents in most cases of solid tumors in clinical settings.Objective.—To update readers regarding the evolving role of the pathologist in the therapeutic decision-making process and the introduction of next-generation technologies into pathology practice.Data Sources.—Current literature on the topic, primarily sourced from the PubMed (National Center for Biotechnology Information, Bethesda, Maryland) database, were reviewed.Conclusions.—Adequate evaluation of cytologic-based and tissue-based predictive diagnostic biomarkers largely depends on both proper pathologic characterization and customized processing of biospecimens. Moreover, increased requests for molecular testing have paralleled the recent, sharp decrease in tumor material to be analyzed—material that currently comprises cytology specimens or, at minimum, small biopsies in most cases of metastatic/advanced disease. Traditional diagnostic pathology has been completely revolutionized by the introduction of next-generation technologies, which provide multigene, targeted mutational profiling, even in the most complex of clinical cases. Combining traditional and molecular knowledge, pathologists integrate the morphological, clinical, and molecular dimensions of a disease, leading to a proper diagnosis and, therefore, the most-appropriate tailored therapy.
Collapse
Affiliation(s)
- Matteo Fassan
- From the Department of Medicine, Surgical Pathology and Cytopathology Unit, University of Padua, Padua, Italy
| |
Collapse
|
9
|
Clinical utility of RT-PCR in assessing HER 2 gene expression versus traditional IHC and FISH in breast cancer patients. Breast Cancer 2018; 25:416-430. [PMID: 29427123 DOI: 10.1007/s12282-018-0840-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 01/25/2018] [Indexed: 02/08/2023]
Abstract
BACKGROUND IHC and FISH are used for categorizing HER 2 status in breast cancer at the protein and DNA level, respectively. HER 2 expression at the RNA level is quantitative, cheaper, easier to standardize and free from interobserver variation. METHODS 115 consecutive patients were tested by IHC, FISH and RT-PCR (test cohort). Assuming FISH result to be the response variable, ROC curves for RT-PCR ratio were analyzed to label HER 2 negative, equivocal and positive cases as RT-PCR score 1, 2 and 3, respectively. Inter-relationships between RT-PCR, IHC and FISH were defined. 'Clinical benefit' of a test was defined as proportion of patients labeled unequivocally as HER 2 positive or negative. Population for 1 year was simulated constraint to previous reports of HER 2 positivity and IHC category distribution by a meta-analysis of previous studies that evaluated concordance between IHC and FISH to determine HER 2 status (simulation cohort). Four diagnostic pathways in the simulation cohort were defined-(1) initial IHC, followed by FISH (conventional pathway); (2) initial RT-PCR, followed by FISH; (3) initial IHC, followed by RT-PCR and then by FISH; (4) initial RT-PCR, followed by IHC and then by FISH. The clinical benefit of IHC and RT-PCR in the four pathways was analyzed and sensitivity analysis for incremental cost-effectiveness ratio and cost-benefit comapring RT-PCR against IHC, both as first-line tests and among those with IHC score 2 as a reflex second-line test was performed by the Monte Carlo technique. FINDINGS 115 patients comprised the study population. While none with IHC score of 0 or 1 was FISH positive for HER 2, all cases with IHC score of 3 were FISH positive. 43 cases were assigned IHC score of 2. Thus, 72 patients benefited from the initial IHC testing [clinical benefit 62.6%], with the overall concordance between IHC and FISH being 100% for those with IHC score of 0, 1 and 3 (conclusive IHC categories). For RT-PCR with 100% concordance, 15.7% (115-97 = 18) patients would have benefited from RT-PCR testing if it was used as a first-line test. If RT-PCR would have been used as a second-line test among those with IHC score 2 (n = 43), then only 6 patients would have been assigned a conclusive RT-PCR category (category 1 or 3) translating to a clinical benefit of 14% (6/43) as a second-line test. As a second-line test it had 51% probability to prove more cost-effective than the conventional pathway, provided the cost of RT-PCR was 0.4 times the cost of IHC. Also in a three-step pathway, RT-PCR upfront would have 56% probability of higher cost-benefit provided the cost of RT-PCR was 0.1 times the cost of IHC. CONCLUSION RT-PCR results were found to be suboptimal to IHC in terms of discriminative ability and clinical benefit; thus, it is unlikely to replace IHC as a first-line test in the near future.
Collapse
|
10
|
Chandrika BB, Steephan M, Kumar TRS, Sabu A, Haridas M. Hesperetin and Naringenin sensitize HER2 positive cancer cells to death by serving as HER2 Tyrosine Kinase inhibitors. Life Sci 2016; 160:47-56. [PMID: 27449398 DOI: 10.1016/j.lfs.2016.07.007] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 07/08/2016] [Accepted: 07/18/2016] [Indexed: 11/24/2022]
Abstract
AIM Aberrant human epidermal growth factor receptor-2 (HER2) expression and constitutive mutant activation of its tyrosine kinase domain account for tumor aggression and therapy resistance in many types of cancers with major share in breast cancer cases. HER2 specific treatment modalities still face challenges owing to the side effects and acquired resistance of available therapeutics. Recently, the anti-proliferative and pro-apoptotic potential of phytochemicals, especially of flavonoids have become increasingly appreciated as powerful chemo preventive agents. Consequently, the major goal of our study is to identify flavonoids capable of inhibiting HER2 Tyrosine Kinase (HER2-TK) activity and validate their anti-tumor activity against HER2 positive tumors. MAIN METHODS Molecular docking studies for identifying flavonoids binding at HER2 kinase domain, ADP-Glo™ Kinase Assay for determining kinase activity, MTT assay to measure growth inhibition, various apoptotic assays and cell cycle analysis by FACS were performed. KEY FINDINGS Among the flavonoids screened, Naringenin (NG) and Hesperetin (HP) possessed high glide scores from molecular docking studies of enzyme-inhibitor mode. The interaction analysis revealed their ability to establish stable and strong interaction at the ATP binding site of HER2-TK. These compounds also inhibited in vitro HER2-TK activity suggesting their role as HER2 inhibitors. The study also unraveled the anti-proliferative, pro-apoptotic and anti-cancerous activity of these flavonoids against HER2 positive breast cancer cell line. SIGNIFICANCE The study identified two citrus fruit flavonoids, NG and HP as HER2-TK inhibitors and this is the first report on their potential to target preferentially and sensitize HER2 positive cancer cells to cell death.
Collapse
Affiliation(s)
- Bhavya Balan Chandrika
- Inter University Centre for Bioscience and Department of Biotechnology & Microbiology, Kannur University Thalassery Campus, Kannur 670 661, Kerala, India.
| | - Mathew Steephan
- Govt Brennen College, Kannur University, Kannur 670 661, Kerala, India
| | | | - A Sabu
- Inter University Centre for Bioscience and Department of Biotechnology & Microbiology, Kannur University Thalassery Campus, Kannur 670 661, Kerala, India
| | - M Haridas
- Inter University Centre for Bioscience and Department of Biotechnology & Microbiology, Kannur University Thalassery Campus, Kannur 670 661, Kerala, India.
| |
Collapse
|
11
|
Huang F, Ma Z, Pollan S, Yuan X, Swartwood S, Gertych A, Rodriguez M, Mallick J, Bhele S, Guindi M, Dhall D, Walts AE, Bose S, de Peralta Venturina M, Marchevsky AM, Luthringer DJ, Feller SM, Berman B, Freeman MR, Alvord WG, Vande Woude G, Amin MB, Knudsen BS. Quantitative imaging for development of companion diagnostics to drugs targeting HGF/MET. JOURNAL OF PATHOLOGY CLINICAL RESEARCH 2016; 2:210-222. [PMID: 27785366 PMCID: PMC5068192 DOI: 10.1002/cjp2.49] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 04/07/2016] [Indexed: 02/06/2023]
Abstract
The limited clinical success of anti-HGF/MET drugs can be attributed to the lack of predictive biomarkers that adequately select patients for treatment. We demonstrate here that quantitative digital imaging of formalin fixed paraffin embedded tissues stained by immunohistochemistry can be used to measure signals from weakly staining antibodies and provides new opportunities to develop assays for detection of MET receptor activity. To establish a biomarker panel of MET activation, we employed seven antibodies measuring protein expression in the HGF/MET pathway in 20 cases and up to 80 cores from 18 human cancer types. The antibodies bind to epitopes in the extra (EC)- and intracellular (IC) domains of MET (MET4EC, SP44_METIC, D1C2_METIC), to MET-pY1234/pY1235, a marker of MET kinase activation, as well as to HGF, pSFK or pMAPK. Expression of HGF was determined in tumour cells (T_HGF) as well as in stroma surrounding cancer (St_HGF). Remarkably, MET4EC correlated more strongly with pMET (r = 0.47) than SP44_METIC (r = 0.21) or D1C2_METIC (r = 0.08) across 18 cancer types. In addition, correlation coefficients of pMET and T_HGF (r = 0.38) and pMET and pSFK (r = 0.56) were high. Prediction models of MET activation reveal cancer-type specific differences in performance of MET4EC, SP44_METIC and anti-HGF antibodies. Thus, we conclude that assays to predict the response to HGF/MET inhibitors require a cancer-type specific antibody selection and should be developed in those cancer types in which they are employed clinically.
Collapse
Affiliation(s)
- Fangjin Huang
- Department of Biomedical Sciences Cedars-Sinai Medical Center Los Angeles California 90048 USA
| | - Zhaoxuan Ma
- Department of Biomedical Sciences Cedars-Sinai Medical Center Los Angeles California 90048 USA
| | - Sara Pollan
- Department of Biomedical Sciences Cedars-Sinai Medical Center Los Angeles California 90048 USA
| | - Xiaopu Yuan
- Department of Biomedical Sciences Cedars-Sinai Medical Center Los Angeles California 90048 USA
| | - Steven Swartwood
- Department of Biomedical Sciences Cedars-Sinai Medical Center Los Angeles California 90048 USA
| | - Arkadiusz Gertych
- Departments of Surgery Cedars-Sinai Medical Center Los Angeles California 90048 USA
| | - Maria Rodriguez
- Department of Biomedical Sciences Cedars-Sinai Medical Center Los Angeles California 90048 USA
| | - Jayati Mallick
- Department of Pathology and Laboratory Medicine Cedars-Sinai Medical Center Los Angeles California 90048 USA
| | - Sanica Bhele
- Department of Pathology and Laboratory Medicine Cedars-Sinai Medical Center Los Angeles California 90048 USA
| | - Maha Guindi
- Department of Pathology and Laboratory Medicine Cedars-Sinai Medical Center Los Angeles California 90048 USA
| | - Deepti Dhall
- Department of Pathology and Laboratory Medicine Cedars-Sinai Medical Center Los Angeles California 90048 USA
| | - Ann E Walts
- Department of Pathology and Laboratory Medicine Cedars-Sinai Medical Center Los Angeles California 90048 USA
| | - Shikha Bose
- Department of Pathology and Laboratory Medicine Cedars-Sinai Medical Center Los Angeles California 90048 USA
| | - Mariza de Peralta Venturina
- Department of Pathology and Laboratory Medicine Cedars-Sinai Medical Center Los Angeles California 90048 USA
| | - Alberto M Marchevsky
- Department of Pathology and Laboratory Medicine Cedars-Sinai Medical Center Los Angeles California 90048 USA
| | - Daniel J Luthringer
- Department of Pathology and Laboratory Medicine Cedars-Sinai Medical Center Los Angeles California 90048 USA
| | - Stephan M Feller
- Institute of Molecular Medicine, Martin-Luther-University 06120 Halle Germany
| | - Benjamin Berman
- Department of Biomedical Sciences Cedars-Sinai Medical Center Los Angeles California 90048 USA
| | - Michael R Freeman
- Department of Biomedical SciencesCedars-Sinai Medical CenterLos AngelesCalifornia90048USA; Departments of SurgeryCedars-Sinai Medical CenterLos AngelesCalifornia90048USA; Cancer Biology Program, Departments of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical CenterLos AngelesCalifornia90048USA
| | - W Gregory Alvord
- Data Management Services, Inc., National Cancer Institute at Frederick Frederick Maryland 21702 USA
| | - George Vande Woude
- Laboratory of Molecular Oncology Center for Cancer and Cell Biology, Van Andel Research Institute Grand Rapids Michigan 49503 USA
| | - Mahul B Amin
- Department of Pathology and Laboratory Medicine Cedars-Sinai Medical Center Los Angeles California 90048 USA
| | - Beatrice S Knudsen
- Department of Biomedical SciencesCedars-Sinai Medical CenterLos AngelesCalifornia90048USA; Department of Pathology and Laboratory MedicineCedars-Sinai Medical CenterLos AngelesCalifornia90048USA
| |
Collapse
|
12
|
van Agthoven T, Dorssers LCJ, Lehmann U, Kreipe H, Looijenga LHJ, Christgen M. Breast Cancer Anti-Estrogen Resistance 4 (BCAR4) Drives Proliferation of IPH-926 lobular Carcinoma Cells. PLoS One 2015; 10:e0136845. [PMID: 26317614 PMCID: PMC4552740 DOI: 10.1371/journal.pone.0136845] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 08/10/2015] [Indexed: 12/14/2022] Open
Abstract
Background Most breast cancers depend on estrogenic growth stimulation. Functional genetic screenings in in vitro cell models have identified genes, which override growth suppression induced by anti-estrogenic drugs like tamoxifen. Using that approach, we have previously identified Breast Cancer Anti-Estrogen Resistance 4 (BCAR4) as a mediator of cell proliferation and tamoxifen-resistance. Here, we show high level of expression and function of BCAR4 in human breast cancer. Methods BCAR4 mRNA expression was evaluated by (q)RT-PCR in a panel of human normal tissues, primary breast cancers and cell lines. A new antibody raised against C78-I97 of the putative BCAR4 protein and used for western blot and immunoprecipitation assays. Furthermore, siRNA-mediated gene silencing was implemented to study the function of BCAR4 and its downstream targets ERBB2/3. Results Except for placenta, all human normal tissues tested were BCAR4-negative. In primary breast cancers, BCAR4 expression was comparatively rare (10%), but associated with enhanced proliferation. Relative high BCAR4 mRNA expression was identified in IPH-926, a cell line derived from an endocrine-resistant lobular breast cancer. Moderate BCAR4 expression was evident in MDA-MB-134 and MDA-MB-453 breast cancer cells. BCAR4 protein was detected in breast cancer cells with ectopic (ZR-75-1-BCAR4) and endogenous (IPH-926, MDA-MB-453) BCAR4 mRNA expression. Knockdown of BCAR4 inhibited cell proliferation. A similar effect was observed upon knockdown of ERBB2/3 and exposure to lapatinib, implying that BCAR4 acts in an ERBB2/3-dependent manner. Conclusion BCAR4 encodes a functional protein, which drives proliferation of endocrine-resistant breast cancer cells. Lapatinib, a clinically approved EGFR/ERBB2 inhibitor, counteracts BCAR4-driven tumor cell growth, a clinical relevant observation.
Collapse
MESH Headings
- Adult
- Aged
- Breast Neoplasms/genetics
- Breast Neoplasms/metabolism
- Breast Neoplasms/pathology
- Carcinoma, Lobular/genetics
- Carcinoma, Lobular/metabolism
- Carcinoma, Lobular/pathology
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Female
- Humans
- Lapatinib
- Middle Aged
- Protein Kinase Inhibitors/pharmacology
- Quinazolines/pharmacology
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- Receptor, ErbB-2/genetics
- Receptor, ErbB-2/metabolism
- Receptor, ErbB-3/genetics
- Receptor, ErbB-3/metabolism
Collapse
Affiliation(s)
- Ton van Agthoven
- Department of Pathology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
- * E-mail:
| | | | - Ulrich Lehmann
- Institute of Pathology, Hannover Medical School, Hannover, Germany
| | - Hans Kreipe
- Institute of Pathology, Hannover Medical School, Hannover, Germany
| | | | | |
Collapse
|
13
|
Gündisch S, Annaratone L, Beese C, Drecol E, Marchiò C, Quaglino E, Sapino A, Becker KF, Bussolati G. Critical roles of specimen type and temperature before and during fixation in the detection of phosphoproteins in breast cancer tissues. J Transl Med 2015; 95:561-71. [PMID: 25730369 PMCID: PMC4421866 DOI: 10.1038/labinvest.2015.37] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 12/09/2014] [Accepted: 12/31/2014] [Indexed: 12/21/2022] Open
Abstract
The most efficient approach for therapy selection to inhibit the deregulated kinases in cancer tissues is to measure their phosphorylation status prior to the treatment. The aim of our study was to evaluate the influence of pre-analytical parameters (cold ischemia time, temperature before and during tissue fixation, and sample type) on the levels of proteins and phosphoproteins in breast cancer tissues, focusing on the PI3 kinase/AKT pathway. The BALB-neuT mouse breast cancer model expressing HER2 and pAKT proteins and human biopsy and resection specimens were analyzed. By using quantitative reverse phase protein arrays (RPPA), 9 proteins and 16 phosphoproteins relevant to breast cancer biology were assessed. Cold temperatures before and during fixation resulted in a marked improvement in the preservation of the reactivity of biological markers (eg, ER, HER2) in general and, specifically, pHER2 and pAKT. Some phosphoproteins, eg, pHER2 and pAKT, were more sensitive to prolonged cold ischemia times than others (eg, pS6RP and pSTAT5). By comparing the phosphoprotein levels in core needle biopsies with those in resection specimens, we found a marked decrease in many phosphoproteins in the latter. Cold conditions can improve the preservation of proteins and phosphoproteins in breast cancer tissues. Biopsies ≤ 1 mm in size are the preferred sample type for assessing the activity of deregulated kinases for personalized cancer treatments because the phosphoprotein levels are better preserved compared with resection specimens. Each potential new (phospho)protein biomarker should be tested for its sensitivity to pre-analytical processing prior to the development of a diagnostic assay.
Collapse
Affiliation(s)
- Sibylle Gündisch
- Institute of Pathology, Technische Universität München, Trogerstrasse, Munich, Germany
| | - Laura Annaratone
- Department of Medical Sciences, University of Turin, Via Santena, Turin, Italy
| | - Christian Beese
- Institute of Pathology, Technische Universität München, Trogerstrasse, Munich, Germany
| | - Enken Drecol
- Institute of Pathology, Technische Universität München, Trogerstrasse, Munich, Germany
| | - Caterina Marchiò
- Department of Medical Sciences, University of Turin, Via Santena, Turin, Italy,Pathology Service, Azienda Ospedaliera Città della Salute e della Scienza di Torino, Via Santena, Turin, Italy
| | - Elena Quaglino
- Department of Molecular Biotechnologies and Health Sciences, University of Turin, Via Nizza, Turin, Italy
| | - Anna Sapino
- Department of Medical Sciences, University of Turin, Via Santena, Turin, Italy,Pathology Service, Azienda Ospedaliera Città della Salute e della Scienza di Torino, Via Santena, Turin, Italy
| | - Karl-Friedrich Becker
- Institute of Pathology, Technische Universität München, Trogerstrasse, Munich, Germany,Technische Universität München, Institute of Pathology, Trogerstrasse18, Munich, D-81675, Germany. E-mail:
| | - Gianni Bussolati
- Department of Medical Sciences, University of Turin, Via Santena, Turin, Italy,Department of Medical Sciences, University of Turin, Via Santena 7, Turin 10126, Italy. E-mail:
| |
Collapse
|
14
|
Stålhammar G, Farrajota P, Olsson A, Silva C, Hartman J, Elmberger G. Gene protein detection platform--a comparison of a new human epidermal growth factor receptor 2 assay with conventional immunohistochemistry and fluorescence in situ hybridization platforms. Ann Diagn Pathol 2015; 19:203-10. [PMID: 25921313 DOI: 10.1016/j.anndiagpath.2015.04.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Revised: 03/31/2015] [Accepted: 04/02/2015] [Indexed: 02/06/2023]
Abstract
Human epidermal growth factor receptor 2 (HER2) immunohistochemistry (IHC) and fluorescence in situ hybridization (FISH) are widely used semiquantitative assays for selecting breast cancer patients for HER2 antibody therapy. However, both techniques have been shown to have disadvantages. Our aim was to test a recent automated technique of combined IHC and brightfield dual in situ hybridization-gene protein detection platform (GPDP)-in breast cancer HER2 protein, gene, and chromosome 17 centromere status evaluations, comparing the results in accordance to the American Society of Clinical Oncology/College of American Pathologists recommendations for HER2 testing in breast cancer from both 2007 and 2013. The GPDP technique performance was evaluated on 52 consecutive whole slide invasive breast cancer cases with HER2 IHC 2/3+ scoring results. Applying in turns the American Society of Clinical Oncology/College of American Pathologists recommendations for HER2 testing in breast cancer from 2007 and 2013 to both FISH and GPDP DISH assays, the HER2 gene amplification results showed 100% concordance among amplified/nonamplified cases, but there was a shift in 4 cases toward positive from equivocal results and toward equivocal from negative results. This might be related to the emphasis on the average HER2 copy number in the 2013 criteria. HER2 expression by IVD market IHC kit (Pathway®) has a strong correlation with GPDP HER2 protein, including a full concordance for all cases scored as 3+ and a reduction from 2+ to 1+ in 7 cases corresponding to nonamplified cases. Gene protein detection platform HER2 protein "solo" could have spared the need for 7 FISH studies. In addition, the platform offered advantages on interpretation reassurance including selecting areas for counting gene signals paralleled with protein IHC expression, on heterogeneity detection, interpretation time, technical time, and tissue expense.
Collapse
Affiliation(s)
- Gustav Stålhammar
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden; St Erik Eye Hospital, Stockholm, Sweden.
| | - Pedro Farrajota
- Department of Clinical Pathology and Cytology, Karolinska University Hospital, Stockholm, Sweden
| | - Ann Olsson
- Department of Clinical Pathology and Cytology, Karolinska University Hospital, Stockholm, Sweden
| | | | - Johan Hartman
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden; Department of Clinical Pathology and Cytology, Karolinska University Hospital, Stockholm, Sweden
| | | |
Collapse
|
15
|
Theiss AP, Chafin D, Bauer DR, Grogan TM, Baird GS. Immunohistochemistry of colorectal cancer biomarker phosphorylation requires controlled tissue fixation. PLoS One 2014; 9:e113608. [PMID: 25409462 PMCID: PMC4237459 DOI: 10.1371/journal.pone.0113608] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 10/28/2014] [Indexed: 12/31/2022] Open
Abstract
Phosphorylated signaling molecules are biomarkers of cancer pathophysiology and resistance to therapy, but because phosphoprotein analytes are often labile, poorly controlled clinical laboratory practices could prevent translation of research findings in this area from the bench to the bedside. We therefore compared multiple biomarker and phosphoprotein immunohistochemistry (IHC) results in 23 clinical colorectal carcinoma samples after either a novel, rapid tissue fixation protocol or a standard tissue fixation protocol employed by clinical laboratories, and we also investigated the effect of a defined post-operative "cold" ischemia period on these IHC results. We found that a one-hour cold ischemia interval, allowed by ASCO/CAP guidelines for certain cancer biomarker assays, is highly deleterious to certain phosphoprotein analytes, specifically the phosphorylated epidermal growth factor receptor (pEGFR), but shorter ischemic intervals (less than 17 minutes) facilitate preservation of phosphoproteins. Second, we found that a rapid 4-hour, two temperature, formalin fixation yielded superior staining in several cases with select markers (pEGFR, pBAD, pAKT) compared to a standard overnight room temperature fixation protocol, despite taking less time. These findings indicate that the future research and clinical utilities of phosphoprotein IHC for assessing colorectal carcinoma pathophysiology absolutely depend upon attention to preanalytical factors and rigorously controlled tissue fixation protocols.
Collapse
Affiliation(s)
- Abbey P. Theiss
- Ventana Medical Systems Inc., Tucson, Arizona, United States of America
| | - David Chafin
- Ventana Medical Systems Inc., Tucson, Arizona, United States of America
| | - Daniel R. Bauer
- Ventana Medical Systems Inc., Tucson, Arizona, United States of America
| | - Thomas M. Grogan
- Ventana Medical Systems Inc., Tucson, Arizona, United States of America
| | - Geoffrey S. Baird
- Department of Laboratory Medicine, University of Washington, Seattle, Washington, United States of America
- Department of Pathology, University of Washington, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
16
|
Salto-Tellez M, James JA, Hamilton PW. Molecular pathology - the value of an integrative approach. Mol Oncol 2014; 8:1163-8. [PMID: 25160635 PMCID: PMC5528577 DOI: 10.1016/j.molonc.2014.07.021] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 07/26/2014] [Accepted: 07/27/2014] [Indexed: 01/25/2023] Open
Abstract
Molecular Pathology (MP) is at the heart of modern diagnostics and translational research, but the controversy on how MP is best developed has not abated. The lack of a proper model or trained pathologists to support the diagnostic and research missions makes MP a rare commodity overall. Here we analyse the scientific and technology areas, in research and diagnostics, which are encompassed by MP of solid tumours; we highlight the broad overlap of technologies and analytical capabilities in tissue research and diagnostics; and we describe an integrated model that rationalizes technical know-how and pathology talent for both. The model is based on a single, accredited laboratory providing a single standard of high-quality for biomarker discovery, biomarker validation and molecular diagnostics.
Collapse
Affiliation(s)
- Manuel Salto-Tellez
- Northern Ireland Molecular Pathology Laboratory, Centre for Cancer Research and Cell Biology, Queen's University, Belfast, Northern Ireland, UK; Tissue Pathology, Belfast Health and Social Care Trust, Belfast, Northern Ireland, UK.
| | - Jacqueline A James
- Northern Ireland Molecular Pathology Laboratory, Centre for Cancer Research and Cell Biology, Queen's University, Belfast, Northern Ireland, UK; Tissue Pathology, Belfast Health and Social Care Trust, Belfast, Northern Ireland, UK
| | - Peter W Hamilton
- Northern Ireland Molecular Pathology Laboratory, Centre for Cancer Research and Cell Biology, Queen's University, Belfast, Northern Ireland, UK
| |
Collapse
|