1
|
Ringenbach S, Yoza R, Jones PA, Du M, Klugh KL, Peterson LW, Colabroy KL. Discovery and characterization of l-DOPA 2,3-dioxygenase from Streptomyces hygroscopicus jingganensis. Arch Biochem Biophys 2024; 755:109967. [PMID: 38556098 DOI: 10.1016/j.abb.2024.109967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 04/02/2024]
Abstract
The largest natural reservoir of untapped carbon can be found in the cell-wall strengthening, plant woody-tissue polymer, lignin - a polymer of catechols or 1,2-dihydroxybenzene monomers. The catecholic carbon of lignin could be valorized into feedstocks and natural products by way of catabolic and biosynthetic transformations, including the oxygen-dependent cleavage reaction of extradiol dioxygenase (EDX) enzymes. The EDX l-DOPA 2,3-dioxygenase was first discovered as part of a biosynthetic gene cluster to the natural product antibiotic, lincomycin, and also contributes to the biosyntheses of anthramycin, sibiromycin, tomaymycin, porothramycin and hormaomycin. Using these l-DOPA 2,3-dioxygenases as a starting point, we searched sequence space in order to identify new sources of dioxygenase driven natural product diversity. A "vicinal-oxygen-chelate (VOC) family protein" from Streptomyces hygroscopicus jingganensis was identified using bioinformatic methods and biochemically investigated for dioxygenase activity against a suite of natural and synthetic catechols. Steady-state oxygen consumption assays were used to screen and identify substrates, and a steady-state kinetic model of oxygen consumption was developed to evaluate activity of the S. hygroscopicus jingganensis VOC-family-protein with respect to activity of l-DOPA 2,3-dioxygenases from Streptomyces lincolnensis and Streptomyces sclerotialus. Lastly, these data were integrated with steady-state kinetic methods to observe the formation of the EDX cleavage product with UV-visible spectroscopy. The genomic context and enzymatic activity of the S. hygroscopicus jingganensis VOC family protein are consistent with a l-DOPA 2,3-dioxygenase contained within a cryptic biosynthetic pathway.
Collapse
Affiliation(s)
- Sara Ringenbach
- Department of Chemistry, Muhlenberg College, 2400 Chew St, Allentown, PA, 18104, USA
| | - Riri Yoza
- Department of Chemistry, Muhlenberg College, 2400 Chew St, Allentown, PA, 18104, USA
| | - Paige A Jones
- Department of Chemistry, Muhlenberg College, 2400 Chew St, Allentown, PA, 18104, USA
| | - Muxue Du
- Department of Chemistry, Muhlenberg College, 2400 Chew St, Allentown, PA, 18104, USA
| | - Kameron L Klugh
- Department of Chemistry, Rhodes College, 2000 North Parkway, Memphis, TN, 38112, USA
| | - Larryn W Peterson
- Department of Chemistry, Rhodes College, 2000 North Parkway, Memphis, TN, 38112, USA
| | - Keri L Colabroy
- Department of Chemistry, Muhlenberg College, 2400 Chew St, Allentown, PA, 18104, USA.
| |
Collapse
|
2
|
Xu Y, Yi J, Kai Y, Li B, Liu M, Zhou Q, Wang J, Liu R, Wu H. New targets of TetR-type regulator SLCG_2919 for controlling lincomycin biosynthesis in Streptomyces lincolnensis. J Basic Microbiol 2024; 64:119-127. [PMID: 37562983 DOI: 10.1002/jobm.202300203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/03/2023] [Accepted: 08/01/2023] [Indexed: 08/12/2023]
Abstract
The transcription factor (TF)-mediated regulatory network controlling lincomycin production in Streptomyces lincolnensis is yet to be fully elucidated despite several types of associated TFs having been reported. SLCG_2919, a tetracycline repressor (TetR)-type regulator, was the first TF to be characterized outside the lincomycin biosynthetic cluster to directly suppress the lincomycin biosynthesis in S. lincolnensis. In this study, improved genomic systematic evolution of ligands by exponential enrichment (gSELEX), an in vitro technique, was adopted to capture additional SLCG_2919-targeted sequences harboring the promoter regions of SLCG_6675, SLCG_4123-4124, SLCG_6579, and SLCG_0139-0140. The four DNA fragments were confirmed by electrophoretic mobility shift assays (EMSAs). Reverse-transcription quantitative polymerase chain reaction (RT-qPCR) showed that the corresponding target genes SLCG_6675 (anthranilate synthase), SLCG_0139 (LysR family transcriptional regulator), SLCG_0140 (beta-lactamase), SLCG_6579 (cytochrome P450), SLCG_4123 (bifunctional DNA primase/polymerase), and SLCG_4124 (magnesium or magnesium-dependent protein phosphatase) in ΔSLCGL_2919 were differentially increased by 3.3-, 4.2-, 3.2-, 2.5-, 4.6-, and 2.2-fold relative to those in the parental strain S. lincolnensis LCGL. Furthermore, the individual inactivation of these target genes in LCGL reduced the lincomycin yield to varying degrees. This investigation expands on the known DNA targets of SLCG_2919 to control lincomycin production and lays the foundation for improving industrial lincomycin yields via genetic engineering of this regulatory network.
Collapse
Affiliation(s)
- Yurong Xu
- Department of Chemical and Pharmaceutical Engineering, Hefei Normal University, Hefei, China
- School of Life Sciences, Institute of Physical Science and Information Technology, Anhui University, Hefei, China
| | - Jing Yi
- School of Life Sciences, Institute of Physical Science and Information Technology, Anhui University, Hefei, China
| | - Yuanzhong Kai
- School of Life Sciences, Institute of Physical Science and Information Technology, Anhui University, Hefei, China
| | - Binglin Li
- School of Life Sciences, Institute of Physical Science and Information Technology, Anhui University, Hefei, China
| | - Meng Liu
- School of Life Sciences, Institute of Physical Science and Information Technology, Anhui University, Hefei, China
| | - Qihua Zhou
- Department of Chemical and Pharmaceutical Engineering, Hefei Normal University, Hefei, China
| | - Jingru Wang
- Department of Chemical and Pharmaceutical Engineering, Hefei Normal University, Hefei, China
| | - Ruihua Liu
- Xinyu Pharmaceutical Co. Ltd., Suzhou, China
| | - Hang Wu
- School of Life Sciences, Institute of Physical Science and Information Technology, Anhui University, Hefei, China
| |
Collapse
|
3
|
Kang Y, Wu W, Zhang F, Chen L, Wang R, Ye J, Wu H, Zhang H. AdpA lin regulates lincomycin and melanin biosynthesis by modulating precursors flux in Streptomyces lincolnensis. J Basic Microbiol 2023; 63:622-631. [DOI: doi.org/10.1002/jobm.202200692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 01/21/2023] [Indexed: 10/09/2023]
Abstract
AbstractLincomycin is one of the most important antibiotics. However, transcriptional regulation network of secondary metabolism in Streptomyces lincolnensis, the lincomycin producer, remained obscure. AdpA from S. lincolnensis (namely AdpAlin) has been proved to activate lincomycin biosynthesis. Here we found that both lincomycin and melanin took l‐tyrosine as precursor, and AdpAlin activated melanin biosynthesis as well. Three tyrosinases, MelC2, MelD2, and MelE, and one tyrosine peroxygenase, LmbB2, participated in lincomycin and melanin biosynthesis in different ways. For melanin biosynthesis, MelC2 was the only key enzyme required. For lincomycin biosynthesis, MelD2 and LmbB2 were positive factors and were suggested to convert l‐tyrosine to l‐dihydroxyphenylalanine (l‐DOPA). Otherwise, MelC2 and MelE were negative factors for lincomycin biosynthesis and they were supposed to oxidize l‐DOPA to generate melanin and certain unknown metabolite, respectively. Based on in silico analysis combined with electrophoretic mobility shift assays (EMSAs), we proved that AdpAlin directly interacted with promoters of melC, melD, and melE by binding to putative AdpA‐binding sites in vitro. Moreover, in vivo experiments revealed that AdpAlin positively regulated the transcription of melC and melE, but negatively regulated melD. In conclusion, AdpAlin was the switch of secondary metabolism in S. lincolnensis, and it modulated precursor flux of lincomycin and melanin biosynthesis by directly activating melC, melE, and lmbB1/lmbB2 or repressing melD.
Collapse
Affiliation(s)
- Yajing Kang
- State Key Laboratory of Bioreactor Engineering East China University of Science and Technology Shanghai China
| | - Wei Wu
- State Key Laboratory of Bioreactor Engineering East China University of Science and Technology Shanghai China
| | - Feixue Zhang
- State Key Laboratory of Bioreactor Engineering East China University of Science and Technology Shanghai China
| | - Lei Chen
- State Key Laboratory of Bioreactor Engineering East China University of Science and Technology Shanghai China
| | - Ruida Wang
- State Key Laboratory of Bioreactor Engineering East China University of Science and Technology Shanghai China
- Department of Applied Biology East China University of Science and Technology Shanghai China
| | - Jiang Ye
- State Key Laboratory of Bioreactor Engineering East China University of Science and Technology Shanghai China
- Department of Applied Biology East China University of Science and Technology Shanghai China
| | - Haizhen Wu
- State Key Laboratory of Bioreactor Engineering East China University of Science and Technology Shanghai China
- Department of Applied Biology East China University of Science and Technology Shanghai China
| | - Huizhan Zhang
- State Key Laboratory of Bioreactor Engineering East China University of Science and Technology Shanghai China
- Department of Applied Biology East China University of Science and Technology Shanghai China
| |
Collapse
|
4
|
Kang Y, Wu W, Zhang F, Chen L, Wang R, Ye J, Wu H, Zhang H. AdpA lin regulates lincomycin and melanin biosynthesis by modulating precursors flux in Streptomyces lincolnensis. J Basic Microbiol 2023. [PMID: 36734183 DOI: 10.1002/jobm.202200692] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/09/2023] [Accepted: 01/21/2023] [Indexed: 02/04/2023]
Abstract
Lincomycin is one of the most important antibiotics. However, transcriptional regulation network of secondary metabolism in Streptomyces lincolnensis, the lincomycin producer, remained obscure. AdpA from S. lincolnensis (namely AdpAlin ) has been proved to activate lincomycin biosynthesis. Here we found that both lincomycin and melanin took l-tyrosine as precursor, and AdpAlin activated melanin biosynthesis as well. Three tyrosinases, MelC2, MelD2, and MelE, and one tyrosine peroxygenase, LmbB2, participated in lincomycin and melanin biosynthesis in different ways. For melanin biosynthesis, MelC2 was the only key enzyme required. For lincomycin biosynthesis, MelD2 and LmbB2 were positive factors and were suggested to convert l-tyrosine to l-dihydroxyphenylalanine (l-DOPA). Otherwise, MelC2 and MelE were negative factors for lincomycin biosynthesis and they were supposed to oxidize l-DOPA to generate melanin and certain unknown metabolite, respectively. Based on in silico analysis combined with electrophoretic mobility shift assays (EMSAs), we proved that AdpAlin directly interacted with promoters of melC, melD, and melE by binding to putative AdpA-binding sites in vitro. Moreover, in vivo experiments revealed that AdpAlin positively regulated the transcription of melC and melE, but negatively regulated melD. In conclusion, AdpAlin was the switch of secondary metabolism in S. lincolnensis, and it modulated precursor flux of lincomycin and melanin biosynthesis by directly activating melC, melE, and lmbB1/lmbB2 or repressing melD.
Collapse
Affiliation(s)
- Yajing Kang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Wei Wu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Feixue Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Lei Chen
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Ruida Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China.,Department of Applied Biology, East China University of Science and Technology, Shanghai, China
| | - Jiang Ye
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China.,Department of Applied Biology, East China University of Science and Technology, Shanghai, China
| | - Haizhen Wu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China.,Department of Applied Biology, East China University of Science and Technology, Shanghai, China
| | - Huizhan Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China.,Department of Applied Biology, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
5
|
Wang Y, Davis I, Shin I, Xu H, Liu A. Molecular Rationale for Partitioning between C-H and C-F Bond Activation in Heme-Dependent Tyrosine Hydroxylase. J Am Chem Soc 2021; 143:4680-4693. [PMID: 33734681 DOI: 10.1021/jacs.1c00175] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The heme-dependent l-tyrosine hydroxylases (TyrHs) in natural product biosynthesis constitute a new enzyme family in contrast to the nonheme iron enzymes for DOPA production. A representative TyrH exhibits dual reactivity of C-H and C-F bond cleavage when challenged with 3-fluoro-l-tyrosine (3-F-Tyr) as a substrate. However, little is known about how the enzyme mediates two distinct reactions. Herein, a new TyrH from the thermophilic bacterium Streptomyces sclerotialus (SsTyrH) was functionally and structurally characterized. A de novo crystal structure of the enzyme-substrate complex at 1.89-Å resolution provides the first comprehensive structural study of this hydroxylase. The binding conformation of l-tyrosine indicates that C-H bond hydroxylation is initiated by electron transfer. Mutagenesis studies confirmed that an active site histidine, His88, participates in catalysis. We also obtained a 1.68-Å resolution crystal structure in complex with the monofluorinated substrate, 3-F-Tyr, which shows one binding conformation but two orientations of the fluorine atom with a ratio of 7:3, revealing that the primary factor of product distribution is the substrate orientation. During in crystallo reaction, a ferric-hydroperoxo intermediate (compound 0, Fe3+-OOH) was observed with 3-F-Tyr as a substrate based on characteristic spectroscopic features. We determined the crystal structure of this compound 0-type intermediate and refined it to 1.58-Å resolution. Collectively, this study provided the first molecular details of the heme-dependent TyrH and determined the primary factor that dictates the partitioning between the dual reactivities of C-H and C-F bond activation.
Collapse
Affiliation(s)
- Yifan Wang
- Department of Chemistry, The University of Texas at San Antonio, One UTSA Circle, Texas 78249, United States
| | - Ian Davis
- Department of Chemistry, The University of Texas at San Antonio, One UTSA Circle, Texas 78249, United States
| | - Inchul Shin
- Department of Chemistry, The University of Texas at San Antonio, One UTSA Circle, Texas 78249, United States
| | - Hui Xu
- Department of Chemistry, The University of Texas at San Antonio, One UTSA Circle, Texas 78249, United States
| | - Aimin Liu
- Department of Chemistry, The University of Texas at San Antonio, One UTSA Circle, Texas 78249, United States
| |
Collapse
|
6
|
Studies of lincosamide formation complete the biosynthetic pathway for lincomycin A. Proc Natl Acad Sci U S A 2020; 117:24794-24801. [PMID: 32958639 DOI: 10.1073/pnas.2009306117] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The structure of lincomycin A consists of the unusual eight-carbon thiosugar core methyllincosamide (MTL) decorated with a pendent N-methylprolinyl moiety. Previous studies on MTL biosynthesis have suggested GDP-ᴅ-erythro-α-ᴅ-gluco-octose and GDP-ᴅ-α-ᴅ-lincosamide as key intermediates in the pathway. However, the enzyme-catalyzed reactions resulting in the conversion of GDP-ᴅ-erythro-α-ᴅ-gluco-octose to GDP-ᴅ-α-ᴅ-lincosamide have not yet been elucidated. Herein, a biosynthetic subpathway involving the activities of four enzymes-LmbM, LmbL, CcbZ, and CcbS (the LmbZ and LmbS equivalents in the closely related celesticetin pathway)-is reported. These enzymes catalyze the previously unknown biosynthetic steps including 6-epimerization, 6,8-dehydration, 4-epimerization, and 6-transamination that convert GDP-ᴅ-erythro-α-ᴅ-gluco-octose to GDP-ᴅ-α-ᴅ-lincosamide. Identification of these reactions completes the description of the entire lincomycin biosynthetic pathway. This work is significant since it not only resolves the missing link in octose core assembly of a thiosugar-containing natural product but also showcases the sophistication in catalytic logic of enzymes involved in carbohydrate transformations.
Collapse
|
7
|
Abstract
Fluorochemicals are a widely distributed class of compounds and have been utilized across a wide range of industries for decades. Given the environmental toxicity and adverse health threats of some fluorochemicals, the development of new methods for their decomposition is significant to public health. However, the carbon-fluorine (C-F) bond is among the most chemically robust bonds; consequently, the degradation of fluorinated hydrocarbons is exceptionally difficult. Here, metalloenzymes that catalyze the cleavage of this chemically challenging bond are reviewed. These enzymes include histidine-ligated heme-dependent dehaloperoxidase and tyrosine hydroxylase, thiolate-ligated heme-dependent cytochrome P450, and four nonheme oxygenases, namely, tetrahydrobiopterin-dependent aromatic amino acid hydroxylase, 2-oxoglutarate-dependent hydroxylase, Rieske dioxygenase, and thiol dioxygenase. While much of the literature regarding the aforementioned enzymes highlights their ability to catalyze C-H bond activation and functionalization, in many cases, the C-F bond cleavage has been shown to occur on fluorinated substrates. A copper-dependent laccase-mediated system representing an unnatural radical defluorination approach is also described. Detailed discussions on the structure-function relationships and catalytic mechanisms provide insights into biocatalytic defluorination, which may inspire drug design considerations and environmental remediation of halogenated contaminants.
Collapse
Affiliation(s)
- Yifan Wang
- Department of Chemistry, University of Texas at San Antonio, 1 UTSA Circle, San Antonio, TX 78249, USA.
| | | |
Collapse
|
8
|
Yang J, Ye R, Zhang H, Liu Y. Amplification of lmbB1 gene in Streptomyces lincolnensis improves quantity and quality of lincomycin A fermentation. Prep Biochem Biotechnol 2020; 50:529-537. [PMID: 31916478 DOI: 10.1080/10826068.2019.1710714] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
As a lincosamide antibiotic, lincomycin is still important for treating diseases caused by Gram-positive bacteria. Manufacturing of lincomycin needs efforts to, e.g. maximize desirable species and minimizing unwanted fermentation byproducts. Analysis of the lincomycin biosynthetic gene cluster of Streptomyces lincolnensis, lmbB1, was shown to catalyze the conversion of L-dopa but not of L-tyrosine and then further generated the precursor of lincomycin A. Based on the principle of directed breeding, a strain termed as S. lincolnensis 24-2, was obtained in this work. By overexpressing the lmbB1 gene, this strain produces efficacious lincomycin A and suppresses melanin generation, whereas contains unwanted lincomycin B. The good fermentation performance of the mutant-lmbB1 (M-lmbB1) was also confirmed in a 15 L-scale bioreactor, which increased the lincomycin A production by 37.6% compared with control of 6435 u/mL and reduced the accumulation of melanin by 29.9% and lincomycin B by 73.4%. This work demonstrated that the amplification of lmbB1 gene mutation and metabolic engineering could promote lincomycin biosynthesis and might be helpful for reducing the production of other industrially unnecessary byproduct.
Collapse
Affiliation(s)
- Jing Yang
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Ruifang Ye
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | | | - Yan Liu
- Topfond Pharmaceutical Co., Ltd, Henan, China
| |
Collapse
|
9
|
Abstract
Natural nonproteinogenic amino acids vastly outnumber the well-known 22 proteinogenic amino acids. Such amino acids are generated in specialized metabolic pathways. In these pathways, diverse biosynthetic transformations, ranging from isomerizations to the stereospecific functionalization of C-H bonds, are employed to generate structural diversity. The resulting nonproteinogenic amino acids can be integrated into more complex natural products. Here we review recently discovered biosynthetic routes to freestanding nonproteinogenic α-amino acids, with an emphasis on work reported between 2013 and mid-2019.
Collapse
Affiliation(s)
- Jason B Hedges
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Katherine S Ryan
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| |
Collapse
|
10
|
Kang Y, Wang Y, Hou B, Wang R, Ye J, Zhu X, Wu H, Zhang H. AdpAlin, a Pleiotropic Transcriptional Regulator, Is Involved in the Cascade Regulation of Lincomycin Biosynthesis in Streptomyces lincolnensis. Front Microbiol 2019; 10. [DOI: doi.org/10.3389/fmicb.2019.02428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2023] Open
|
11
|
Kang Y, Wang Y, Hou B, Wang R, Ye J, Zhu X, Wu H, Zhang H. AdpA lin, a Pleiotropic Transcriptional Regulator, Is Involved in the Cascade Regulation of Lincomycin Biosynthesis in Streptomyces lincolnensis. Front Microbiol 2019; 10:2428. [PMID: 31708899 PMCID: PMC6819324 DOI: 10.3389/fmicb.2019.02428] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 10/08/2019] [Indexed: 11/13/2022] Open
Abstract
Lincomycin is one of the most important antibiotics in clinical practice. To further understand the regulatory mechanism on lincomycin biosynthesis, we investigated a pleiotropic transcriptional regulator AdpAlin in the lincomycin producer Streptomyces lincolnensis NRRL 2936. Deletion of adpA lin (which generated ΔadpA lin ) interrupted lincomycin biosynthesis and impaired the morphological differentiation. We also found that putative AdpA binding sites were unusually scattered in the promoters of all the 8 putative operons in the lincomycin biosynthetic gene cluster (BGC). In ΔadpA lin , transcript levels of structural genes in 8 putative operons were decreased with varying degrees, and electrophoretic mobility shift assays (EMSAs) confirmed that AdpAlin activated the overall putative operons via directly binding to their promoter regions. Thus, we speculated that the entire lincomycin biosynthesis is under the control of AdpAlin. Besides, AdpAlin participated in lincomycin biosynthesis by binding to the promoter of lmbU which encoded a cluster sited regulator (CSR) LmbU of lincomycin biosynthesis. Results of qRT-PCR and catechol dioxygenase activity assay showed that AdpAlin activated the transcription of lmbU. In addition, AdpAlin activated the transcription of the bldA by binding to its promoter, suggesting that AdpAlin indirectly participated in lincomycin biosynthesis and morphological differentiation. Uncommon but understandable, AdpAlin auto-activated its own transcription via binding to its own promoter region. In conclusion, we provided a molecular mechanism around the effect of AdpAlin on lincomycin biosynthesis in S. lincolnensis, and revealed a cascade regulation of lincomycin biosynthesis by AdpAlin, LmbU, and BldA.
Collapse
Affiliation(s)
- Yajing Kang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Yingying Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Bingbing Hou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China.,Department of Applied Biology, East China University of Science and Technology, Shanghai, China
| | - Ruida Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Jiang Ye
- Department of Applied Biology, East China University of Science and Technology, Shanghai, China
| | - Xiaoyu Zhu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Haizhen Wu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China.,Department of Applied Biology, East China University of Science and Technology, Shanghai, China
| | - Huizhan Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China.,Department of Applied Biology, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
12
|
Wang Y, Davis I, Shin I, Wherritt DJ, Griffith WP, Dornevil K, Colabroy KL, Liu A. Biocatalytic Carbon-Hydrogen and Carbon-Fluorine Bond Cleavage through Hydroxylation Promoted by a Histidyl-Ligated Heme Enzyme. ACS Catal 2019; 9:4764-4776. [PMID: 31355048 DOI: 10.1021/acscatal.9b00231] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
LmbB2 is a peroxygenase-like enzyme that hydroxylates L-tyrosine to L-3,4-dihydroxyphenylalanine (DOPA) in the presence of hydrogen peroxide. However, its heme cofactor is ligated by a proximal histidine, not cysteine. We show that LmbB2 can oxidize L-tyrosine analogs with ring-deactivated substituents such as 3-nitro-, fluoro-, chloro-, iodo-L-tyrosine. We also found that the 4-hydroxyl group of the substrate is essential for reacting with the heme-based oxidant and activating the aromatic C-H bond. The most interesting observation of this study was obtained with 3-fluoro-L-tyrosine as a substrate and mechanistic probe. The LmbB2-mediated catalytic reaction yielded two hydroxylated products with comparable populations, i.e., oxidative C-H bond cleavage at C5 to generate 3-fluoro-5-hydroxyl-L-tyrosine and oxygenation at C3 concomitant with a carbon-fluorine bond cleavage to yield DOPA and fluoride. An iron protein-mediated hydroxylation on both C-H and C-F bonds with multiple turnovers is unprecedented. Thus, this finding reveals a significant potential of biocatalysis in C-H/C-X bond (X = halogen) cleavage. Further 18O-labeling results suggest that the source of oxygen for hydroxylation is a peroxide, and that a commonly expected oxidation by a high-valent iron intermediate followed by hydrolysis is not supported for the C-F bond cleavage. Instead, the C-F bond cleavage is proposed to be initiated by a nucleophilic aromatic substitution mediated by the iron-hydroperoxo species. Based on the experimental results, two mechanisms are proposed to explain how LmbB2 hydroxylates the substrate and cleaves C-H/C-F bond. This study broadens the understanding of heme enzyme catalysis and sheds light on enzymatic applications in medicinal and environmental fields.
Collapse
Affiliation(s)
- Yifan Wang
- Department of Chemistry, University of Texas, San Antonio, Texas 78249, United States
| | - Ian Davis
- Department of Chemistry, University of Texas, San Antonio, Texas 78249, United States
| | - Inchul Shin
- Department of Chemistry, University of Texas, San Antonio, Texas 78249, United States
| | - Daniel J. Wherritt
- Department of Chemistry, University of Texas, San Antonio, Texas 78249, United States
| | - Wendell P. Griffith
- Department of Chemistry, University of Texas, San Antonio, Texas 78249, United States
| | - Kednerlin Dornevil
- Department of Chemistry, University of Texas, San Antonio, Texas 78249, United States
| | - Keri L. Colabroy
- Department of Chemistry, Muhlenberg College, Allentown, Pennsylvania 18104, United States
| | - Aimin Liu
- Department of Chemistry, University of Texas, San Antonio, Texas 78249, United States
| |
Collapse
|
13
|
Zhang D, Tang Z, Liu W. Biosynthesis of Lincosamide Antibiotics: Reactions Associated with Degradation and Detoxification Pathways Play a Constructive Role. Acc Chem Res 2018; 51:1496-1506. [PMID: 29792672 DOI: 10.1021/acs.accounts.8b00135] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Natural products typically are small molecules produced by living organisms. These products possess a wide variety of biological activities and thus have historically played a critical role in medicinal chemistry and chemical biology either as chemotherapeutic agents or as useful tools. Natural products are not synthesized for use by human beings; rather, living organisms produce them in response to various biochemical processes and environmental concerns, both internal and external. These processes/concerns are often dynamic and thus motivate the diversification, optimization, and selection of small molecules in line with changes in biological function. Consequently, the interactions between living organisms and their environments serve as an engine that drives coevolution of natural products and their biological functions and ultimately programs the constant theme of small-molecule development in nature based on biosynthesis generality and specificity. Following this theme, we herein review the biosynthesis of lincosamide antibiotics and dissect the process through which nature creates an unusual eight-carbon aminosugar (lincosamide) and then functionalizes this common high-carbon chain-containing sugar core with diverse l-proline derivatives and sulfur appendages to form individual members, including the clinically useful anti-infective agent lincomycin A and its naturally occurring analogues celesticetin and Bu-2545. The biosynthesis of lincosamide antibiotics is unique in that it results from an intersection of anabolic and catabolic chemistry. Many reactions that are usually involved in degradation and detoxification play a constructive role in biosynthetic processes. Formation of the trans-4-propyl-l-proline residue in lincomycin A biosynthesis requires an oxidation-associated degradation-like pathway composed of heme peroxidase-catalyzed ortho-hydroxylation and non-heme 2,3-dioxygenase-catalyzed extradiol cleavage for l-tyrosine processing prior to the building-up process. Mycothiol (MSH) and ergothioneine (EGT), two small-molecule thiols that are known for their redox-relevant roles in protection against various endogenous and exogenous stresses, function through two unusual S-glycosylations to mediate an eight-carbon aminosugar transfer, activation, and modification during the molecular assembly and tailoring processes in lincosamide antibiotic biosynthesis. Related intermediates include an MSH S-conjugate, mercapturic acid, and a thiomethyl product, which are reminiscent of intermediates found in thiol-mediated detoxification metabolism. In these biosynthetic pathways, "old" protein folds can result in "new" enzymatic activity, such as the DinB-2 fold protein for thiol exchange between EGT and MSH, the γ-glutamyltranspeptidase homologue for C-C bond cleavage, and the pyridoxal-5'-phosphate-dependent enzyme for diverse S-functionalization, generating interest in how nature develops remarkably diverse biochemical functions using a limited range of protein scaffolds. These findings highlight what we can learn from natural product biosynthesis, the recognition of its generality and specificity, and the natural theme of the development of bioactive small molecules, which enables the diversification process to advance and expand small-molecule functions.
Collapse
Affiliation(s)
- Daozhong Zhang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence on Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Zhijun Tang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence on Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Wen Liu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence on Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
- Huzhou Center of Bio-Synthetic Innovation, 1366 Hongfeng Road, Huzhou 313000, China
| |
Collapse
|
14
|
Janata J, Kamenik Z, Gazak R, Kadlcik S, Najmanova L. Biosynthesis and incorporation of an alkylproline-derivative (APD) precursor into complex natural products. Nat Prod Rep 2018. [DOI: 10.1039/c7np00047b] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This review covers the biosynthetic and evolutionary aspects of lincosamide antibiotics, antitumour pyrrolobenzodiazepines (PBDs) and the quorum-sensing molecule hormaomycin.
Collapse
Affiliation(s)
- J. Janata
- Institute of Microbiology
- Czech Academy of Sciences
- BIOCEV
- Vestec
- Czech Republic
| | - Z. Kamenik
- Institute of Microbiology
- Czech Academy of Sciences
- BIOCEV
- Vestec
- Czech Republic
| | - R. Gazak
- Institute of Microbiology
- Czech Academy of Sciences
- BIOCEV
- Vestec
- Czech Republic
| | - S. Kadlcik
- Institute of Microbiology
- Czech Academy of Sciences
- BIOCEV
- Vestec
- Czech Republic
| | - L. Najmanova
- Institute of Microbiology
- Czech Academy of Sciences
- BIOCEV
- Vestec
- Czech Republic
| |
Collapse
|
15
|
Zhong G, Zhao Q, Zhang Q, Liu W. 4-alkyl-L-(Dehydro)proline biosynthesis in actinobacteria involves N-terminal nucleophile-hydrolase activity of γ-glutamyltranspeptidase homolog for C-C bond cleavage. Nat Commun 2017; 8:16109. [PMID: 28706296 PMCID: PMC5519988 DOI: 10.1038/ncomms16109] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Accepted: 05/30/2017] [Indexed: 12/22/2022] Open
Abstract
γ-Glutamyltranspeptidases (γ-GTs), ubiquitous in glutathione metabolism for γ-glutamyl transfer/hydrolysis, are N-terminal nucleophile (Ntn)-hydrolase fold proteins that share an autoproteolytic process for self-activation. γ-GT homologues are widely present in Gram-positive actinobacteria where their Ntn-hydrolase activities, however, are not involved in glutathione metabolism. Herein, we demonstrate that the formation of 4-Alkyl-L-(dehydro)proline (ALDP) residues, the non-proteinogenic α-amino acids that serve as vital components of many bioactive metabolites found in actinobacteria, involves unprecedented Ntn-hydrolase activity of γ-GT homologue for C–C bond cleavage. The related enzymes share a key Thr residue, which acts as an internal nucleophile for protein hydrolysis and then as a newly released N-terminal nucleophile for carboxylate side-chain processing likely through the generation of an oxalyl-Thr enzyme intermediate. These findings provide mechanistic insights into the biosynthesis of various ALDP residues/associated natural products, highlight the versatile functions of Ntn-hydrolase fold proteins, and particularly generate interest in thus far less-appreciated γ-GT homologues in actinobacteria. γ-Glutamyltranspeptidases in gram-positive bacteria are not involved in glutathione metabolism, as their counterparts in eukaryotes and gram-negative bacteria. Here, the authors show that in Actinobacteria they catalyse the unusual cleavage of a C–C bond for the biosynthesis of non-proteinogenic amino acids.
Collapse
Affiliation(s)
- Guannan Zhong
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Qunfei Zhao
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.,State Key Laboratory of Microbial Metabolism, School of Life Science &Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Qinglin Zhang
- Huzhou Center of Bio-Synthetic Innovation, 1366 Hongfeng Road, Huzhou 313000, China
| | - Wen Liu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.,State Key Laboratory of Microbial Metabolism, School of Life Science &Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.,Huzhou Center of Bio-Synthetic Innovation, 1366 Hongfeng Road, Huzhou 313000, China
| |
Collapse
|
16
|
Dunbar KL, Scharf DH, Litomska A, Hertweck C. Enzymatic Carbon-Sulfur Bond Formation in Natural Product Biosynthesis. Chem Rev 2017; 117:5521-5577. [PMID: 28418240 DOI: 10.1021/acs.chemrev.6b00697] [Citation(s) in RCA: 356] [Impact Index Per Article: 50.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Sulfur plays a critical role for the development and maintenance of life on earth, which is reflected by the wealth of primary metabolites, macromolecules, and cofactors bearing this element. Whereas a large body of knowledge has existed for sulfur trafficking in primary metabolism, the secondary metabolism involving sulfur has long been neglected. Yet, diverse sulfur functionalities have a major impact on the biological activities of natural products. Recent research at the genetic, biochemical, and chemical levels has unearthed a broad range of enzymes, sulfur shuttles, and chemical mechanisms for generating carbon-sulfur bonds. This Review will give the first systematic overview on enzymes catalyzing the formation of organosulfur natural products.
Collapse
Affiliation(s)
- Kyle L Dunbar
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (HKI) , Beutenbergstrasse 11a, 07745 Jena, Germany
| | - Daniel H Scharf
- Life Sciences Institute, University of Michigan , 210 Washtenaw Avenue, Ann Arbor, Michigan 48109-2216, United States
| | - Agnieszka Litomska
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (HKI) , Beutenbergstrasse 11a, 07745 Jena, Germany
| | - Christian Hertweck
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (HKI) , Beutenbergstrasse 11a, 07745 Jena, Germany.,Friedrich Schiller University , 07743 Jena, Germany
| |
Collapse
|
17
|
Kadlcik S, Kamenik Z, Vasek D, Nedved M, Janata J. Elucidation of salicylate attachment in celesticetin biosynthesis opens the door to create a library of more efficient hybrid lincosamide antibiotics. Chem Sci 2017; 8:3349-3355. [PMID: 28507704 PMCID: PMC5416915 DOI: 10.1039/c6sc04235j] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 02/27/2017] [Indexed: 11/21/2022] Open
Abstract
Combinatorial biosynthesis for more efficient antibiotics: 150 novel lincosamides prepared by combining lincomycin and celesticetin biosynthetic pathways.
Lincosamides, which are produced by streptomycetes, compose a small but clinically important class of antibiotics. The recent elucidation of the condensation and post-condensation biosynthetic steps of the lincosamides lincomycin and celesticetin revealed several unexpected reaction mechanisms. Here, we prepared recombinant proteins involved in the celesticetin biosynthetic pathway and used them for in vitro assays that were monitored by LC-MS. Our results elucidate the last biosynthetic step of celesticetin: the attachment of salicylic acid is catalyzed by the Ccb2 acyl-CoA ligase and the Ccb1 acyltransferase. Ccb1 belongs to the WS/DGAT protein family and, in contrast to the characterized members of the family, has unusual substrate specificity. To the best of our knowledge, Ccb1 is the first protein in this family that transfers a benzoyl derivative-CoA conjugate and is the first WS/DGAT protein involved in the biosynthesis of secondary metabolites. Furthermore, we exploited the relaxed substrate specificities of Ccb1 and Ccb2, as well as three additional upstream post-condensation biosynthetic proteins in the celesticetin pathway, and combined the lincomycin and the celesticetin biosynthetic pathways in vitro. In this way, we prepared a library of 150 novel hybrid lincosamides, including two unnatural chimeras of lincomycin and celesticetin, which were shown to have antibacterial properties more pronounced than clinically used lincomycin. These achievements may be considered a case study in applying knowledge about biosynthetic machinery to assemble a large number of compounds from originally a small group of natural products without the need for chemical synthesis.
Collapse
Affiliation(s)
- S Kadlcik
- Institute of Microbiology , Czech Academy of Sciences , BIOCEV , Prumyslova 595 , 252 50 Vestec , Czech Republic .
| | - Z Kamenik
- Institute of Microbiology , Czech Academy of Sciences , BIOCEV , Prumyslova 595 , 252 50 Vestec , Czech Republic .
| | - D Vasek
- Institute of Microbiology , Czech Academy of Sciences , BIOCEV , Prumyslova 595 , 252 50 Vestec , Czech Republic .
| | - M Nedved
- Institute of Microbiology , Czech Academy of Sciences , BIOCEV , Prumyslova 595 , 252 50 Vestec , Czech Republic .
| | - J Janata
- Institute of Microbiology , Czech Academy of Sciences , BIOCEV , Prumyslova 595 , 252 50 Vestec , Czech Republic .
| |
Collapse
|
18
|
Spížek J, Řezanka T. Lincosamides: Chemical structure, biosynthesis, mechanism of action, resistance, and applications. Biochem Pharmacol 2016; 133:20-28. [PMID: 27940264 DOI: 10.1016/j.bcp.2016.12.001] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 12/05/2016] [Indexed: 10/20/2022]
Abstract
Lincomycin and its derivatives are antibiotics exhibiting biological activity against bacteria, especially Gram-positive ones, and also protozoans. Lincomycin and its semi-synthetic chlorinated derivative clindamycin are widely used in clinical practice. Both antibiotics are bacteriostatic, inhibiting protein synthesis in sensitive bacteria; however, at higher concentrations, they may be bactericidal. Clindamycin is usually much more active than lincomycin in the treatment of bacterial infections, in particular those caused by anaerobic species; it can also be used for the treatment of important protozoal diseases, e.g. malaria, most effectively in combination with other antibiotic or non-antibiotic antimicrobials (primaquine, fosfidomycin, benzoyl peroxide). Chemical structures of lincosamide antibiotics and the biosynthesis of lincomycin and its genetic control have been summarized and described. Resistance to lincomycin and clindamycin may be caused by methylation of 23S ribosomal RNA, modification of the antibiotics by specific enzymes or active efflux from the bacterial cell.
Collapse
Affiliation(s)
- Jaroslav Spížek
- Institute of Microbiology, Academy of Sciences of the Czech Republic, 142 20 Prague 4, Czech Republic
| | - Tomáš Řezanka
- Institute of Microbiology, Academy of Sciences of the Czech Republic, 142 20 Prague 4, Czech Republic.
| |
Collapse
|
19
|
Ushimaru R, Lin CI, Sasaki E, Liu HW. Characterization of Enzymes Catalyzing Transformations of Cysteine S-Conjugated Intermediates in the Lincosamide Biosynthetic Pathway. Chembiochem 2016; 17:1606-11. [PMID: 27431934 PMCID: PMC5253346 DOI: 10.1002/cbic.201600223] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Indexed: 11/11/2022]
Abstract
Lincosamides such as lincomycin A, celesticetin, and Bu-2545, constitute an important group of antibiotics. These natural products are characterized by a thiooctose linked to a l-proline residue, but they differ with regards to modifications of the thioacetal moiety, the pyrrolidine ring, and the octose core. Here we report that the pyridoxal 5'-phosphate-dependent enzyme CcbF (celesticetin biosynthetic pathway) is a decarboxylating deaminase that converts a cysteine S-conjugated intermediate into an aldehyde. In contrast, the homologous enzyme LmbF (lincomycin biosynthetic pathway) catalyzes C-S bond cleavage of the same intermediate to afford a thioglycoside. We show that Ccb4 and LmbG (downstream methyltransferases) convert the aldehyde and thiol intermediates into a variety of methylated lincosamide compounds including Bu-2545. The substrates used in these studies are the β-anomers of the natural substrates. The findings not only provide insight into how the biosynthetic pathway of lincosamide antibiotics can bifurcate to generate different lincosamides, but also reveal the promiscuity of the enzymes involved.
Collapse
Affiliation(s)
- Richiro Ushimaru
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, Department of Chemistry, University of Texas at Austin, 1 University Station A1935, Austin, TX, 78712, USA
| | - Chia-I Lin
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, Department of Chemistry, University of Texas at Austin, 1 University Station A1935, Austin, TX, 78712, USA
| | - Eita Sasaki
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, Department of Chemistry, University of Texas at Austin, 1 University Station A1935, Austin, TX, 78712, USA
| | - Hung-Wen Liu
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, Department of Chemistry, University of Texas at Austin, 1 University Station A1935, Austin, TX, 78712, USA.
| |
Collapse
|
20
|
Tearing down to build up: Metalloenzymes in the biosynthesis lincomycin, hormaomycin and the pyrrolo [1,4]benzodiazepines. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1864:724-737. [DOI: 10.1016/j.bbapap.2016.03.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 02/24/2016] [Accepted: 03/02/2016] [Indexed: 11/21/2022]
|
21
|
Jiraskova P, Gazak R, Kamenik Z, Steiningerova L, Najmanova L, Kadlcik S, Novotna J, Kuzma M, Janata J. New Concept of the Biosynthesis of 4-Alkyl-L-Proline Precursors of Lincomycin, Hormaomycin, and Pyrrolobenzodiazepines: Could a γ-Glutamyltransferase Cleave the C-C Bond? Front Microbiol 2016; 7:276. [PMID: 27014201 PMCID: PMC4780272 DOI: 10.3389/fmicb.2016.00276] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 02/19/2016] [Indexed: 11/18/2022] Open
Abstract
Structurally different and functionally diverse natural compounds – antitumour agents pyrrolo[1,4]benzodiazepines, bacterial hormone hormaomycin, and lincosamide antibiotic lincomycin – share a common building unit, 4-alkyl-L-proline derivative (APD). APDs arise from L-tyrosine through a special biosynthetic pathway. Its generally accepted scheme, however, did not comply with current state of knowledge. Based on gene inactivation experiments and in vitro functional tests with recombinant enzymes, we designed a new APD biosynthetic scheme for the model of lincomycin biosynthesis. In the new scheme at least one characteristic in each of five final biosynthetic steps has been changed: the order of reactions, assignment of enzymes and/or reaction mechanisms. First, we demonstrate that LmbW methylates a different substrate than previously assumed. Second, we propose a unique reaction mechanism for the next step, in which a putative γ-glutamyltransferase LmbA indirectly cleaves off the oxalyl residue by transient attachment of glutamate to LmbW product. This unprecedented mechanism would represent the first example of the C–C bond cleavage catalyzed by a γ-glutamyltransferase, i.e., an enzyme that appears unsuitable for such activity. Finally, the inactivation experiments show that LmbX is an isomerase indicating that it transforms its substrate into a compound suitable for reduction by LmbY, thereby facilitating its subsequent complete conversion to APD 4-propyl-L-proline. Elucidation of the APD biosynthesis has long time resisted mainly due to the apparent absence of relevant C–C bond cleaving enzymatic activity. Our proposal aims to unblock this situation not only for lincomycin biosynthesis, but generally for all above mentioned groups of bioactive natural products with biotechnological potential.
Collapse
Affiliation(s)
- Petra Jiraskova
- Institute of Microbiology - Academy of Sciences of the Czech Republic Prague, Czech Republic
| | - Radek Gazak
- Institute of Microbiology - Academy of Sciences of the Czech Republic Prague, Czech Republic
| | - Zdenek Kamenik
- Institute of Microbiology - Academy of Sciences of the Czech Republic Prague, Czech Republic
| | - Lucie Steiningerova
- Institute of Microbiology - Academy of Sciences of the Czech Republic Prague, Czech Republic
| | - Lucie Najmanova
- Institute of Microbiology - Academy of Sciences of the Czech Republic Prague, Czech Republic
| | - Stanislav Kadlcik
- Institute of Microbiology - Academy of Sciences of the Czech Republic Prague, Czech Republic
| | - Jitka Novotna
- Institute of Microbiology - Academy of Sciences of the Czech Republic Prague, Czech Republic
| | - Marek Kuzma
- Institute of Microbiology - Academy of Sciences of the Czech Republic Prague, Czech Republic
| | - Jiri Janata
- Institute of Microbiology - Academy of Sciences of the Czech Republic Prague, Czech Republic
| |
Collapse
|
22
|
Locatelli FM, Goo KS, Ulanova D. Effects of trace metal ions on secondary metabolism and the morphological development of streptomycetes. Metallomics 2016; 8:469-80. [DOI: 10.1039/c5mt00324e] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
23
|
Kamenik Z, Kadlcik S, Radojevic B, Jiraskova P, Kuzma M, Gazak R, Najmanova L, Kopecky J, Janata J. Deacetylation of mycothiol-derived 'waste product' triggers the last biosynthetic steps of lincosamide antibiotics. Chem Sci 2015; 7:430-435. [PMID: 28791100 PMCID: PMC5518657 DOI: 10.1039/c5sc03327f] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 09/30/2015] [Indexed: 11/21/2022] Open
Abstract
Two homologous pyridoxal 5′-phosphate-dependent enzymes LmbF and CcbF transform the deacetylated S-cysteinyl residue of related intermediates in the biosynthesis of lincomycin/celesticetin in different ways.
The immediate post-condensation steps in lincomycin biosynthesis are reminiscent of the mycothiol-dependent detoxification system of actinomycetes. This machinery provides the last proven lincomycin intermediate, a mercapturic acid derivative, which formally represents the ‘waste product’ of the detoxification process. We identified and purified new lincomycin intermediates from the culture broth of deletion mutant strains of Streptomyces lincolnensis and tested these compounds as substrates for proteins putatively involved in lincomycin biosynthesis. The results, based on LC-MS, in-source collision-induced dissociation mass spectrometry and NMR analysis, revealed the final steps of lincomycin biosynthesis, i.e. conversion of the mercapturic acid derivative to lincomycin. Most importantly, we show that deacetylation of the N′-acetyl-S-cysteine residue of the mercapturic acid derivative is required to ‘escape’ the detoxification-like system and proceed towards completion of the biosynthetic pathway. Additionally, our results, supported by l-cysteine-13C3, 15N incorporation experiments, give evidence that a different type of reaction catalysed by the homologous pair of pyridoxal-5′-phosphate-dependent enzymes, LmbF and CcbF, forms the branch point in the biosynthesis of lincomycin and celesticetin, two related lincosamides.
Collapse
Affiliation(s)
- Zdenek Kamenik
- Institute of Microbiology ASCR , Videnska 1083 , Prague 4 , Czech Republic .
| | - Stanislav Kadlcik
- Institute of Microbiology ASCR , Videnska 1083 , Prague 4 , Czech Republic .
| | - Bojana Radojevic
- Institute of Microbiology ASCR , Videnska 1083 , Prague 4 , Czech Republic .
| | - Petra Jiraskova
- Institute of Microbiology ASCR , Videnska 1083 , Prague 4 , Czech Republic .
| | - Marek Kuzma
- Institute of Microbiology ASCR , Videnska 1083 , Prague 4 , Czech Republic .
| | - Radek Gazak
- Institute of Microbiology ASCR , Videnska 1083 , Prague 4 , Czech Republic .
| | - Lucie Najmanova
- Institute of Microbiology ASCR , Videnska 1083 , Prague 4 , Czech Republic .
| | - Jan Kopecky
- Crop Research Institute , Drnovska 507 , Prague 6 , Czech Republic
| | - Jiri Janata
- Institute of Microbiology ASCR , Videnska 1083 , Prague 4 , Czech Republic .
| |
Collapse
|
24
|
Pang AP, Du L, Lin CY, Qiao J, Zhao GR. Co-overexpression of lmbW
and metK
led to increased lincomycin A production and decreased byproduct lincomycin B content in an industrial strain of Streptomyces lincolnensis. J Appl Microbiol 2015; 119:1064-74. [DOI: 10.1111/jam.12919] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 07/18/2015] [Accepted: 07/19/2015] [Indexed: 11/27/2022]
Affiliation(s)
- A.-P. Pang
- Key Laboratory of Systems Bioengineering; Ministry of Education; Tianjin China
- Department of Pharmaceutical Engineering; School of Chemical Engineering and Technology; Tianjin University; Tianjin China
- SynBio Research Platform; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); Tianjin China
| | - L. Du
- Key Laboratory of Systems Bioengineering; Ministry of Education; Tianjin China
- Department of Pharmaceutical Engineering; School of Chemical Engineering and Technology; Tianjin University; Tianjin China
- SynBio Research Platform; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); Tianjin China
| | - C.-Y. Lin
- Key Laboratory of Systems Bioengineering; Ministry of Education; Tianjin China
- Department of Pharmaceutical Engineering; School of Chemical Engineering and Technology; Tianjin University; Tianjin China
- SynBio Research Platform; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); Tianjin China
| | - J. Qiao
- Key Laboratory of Systems Bioengineering; Ministry of Education; Tianjin China
- Department of Pharmaceutical Engineering; School of Chemical Engineering and Technology; Tianjin University; Tianjin China
- SynBio Research Platform; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); Tianjin China
| | - G.-R. Zhao
- Key Laboratory of Systems Bioengineering; Ministry of Education; Tianjin China
- Department of Pharmaceutical Engineering; School of Chemical Engineering and Technology; Tianjin University; Tianjin China
- SynBio Research Platform; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); Tianjin China
| |
Collapse
|
25
|
Janata J, Kadlcik S, Koberska M, Ulanova D, Kamenik Z, Novak P, Kopecky J, Novotna J, Radojevic B, Plhackova K, Gazak R, Najmanova L. Lincosamide synthetase--a unique condensation system combining elements of nonribosomal peptide synthetase and mycothiol metabolism. PLoS One 2015; 10:e0118850. [PMID: 25741696 PMCID: PMC4351081 DOI: 10.1371/journal.pone.0118850] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2014] [Accepted: 01/19/2015] [Indexed: 12/19/2022] Open
Abstract
In the biosynthesis of lincosamide antibiotics lincomycin and celesticetin, the amino acid and amino sugar units are linked by an amide bond. The respective condensing enzyme lincosamide synthetase (LS) is expected to be an unusual system combining nonribosomal peptide synthetase (NRPS) components with so far unknown amino sugar related activities. The biosynthetic gene cluster of celesticetin was sequenced and compared to the lincomycin one revealing putative LS coding ORFs shared in both clusters. Based on a bioassay and production profiles of S. lincolnensis strains with individually deleted putative LS coding genes, the proteins LmbC, D, E, F and V were assigned to LS function. Moreover, the newly recognized N-terminal domain of LmbN (LmbN-CP) was also assigned to LS as a NRPS carrier protein (CP). Surprisingly, the homologous CP coding sequence in celesticetin cluster is part of ccbZ gene adjacent to ccbN, the counterpart of lmbN, suggesting the gene rearrangement, evident also from still active internal translation start in lmbN, and indicating the direction of lincosamide biosynthesis evolution. The in vitro test with LmbN-CP, LmbC and the newly identified S. lincolnensis phosphopantetheinyl transferase Slp, confirmed the cooperation of the previously characterized NRPS A-domain LmbC with a holo-LmbN-CP in activation of a 4-propyl-L-proline precursor of lincomycin. This result completed the functional characterization of LS subunits resembling NRPS initiation module. Two of the four remaining putative LS subunits, LmbE/CcbE and LmbV/CcbV, exhibit low but significant homology to enzymes from the metabolism of mycothiol, the NRPS-independent system processing the amino sugar and amino acid units. The functions of particular LS subunits as well as cooperation of both NRPS-based and NRPS-independent LS blocks are discussed. The described condensing enzyme represents a unique hybrid system with overall composition quite dissimilar to any other known enzyme system.
Collapse
Affiliation(s)
- Jiri Janata
- Institute of Microbiology, Academy of Sciences of the Czech Republic, v.v.i., Prague, Czech Republic
- * E-mail:
| | - Stanislav Kadlcik
- Institute of Microbiology, Academy of Sciences of the Czech Republic, v.v.i., Prague, Czech Republic
| | - Marketa Koberska
- Institute of Microbiology, Academy of Sciences of the Czech Republic, v.v.i., Prague, Czech Republic
| | - Dana Ulanova
- Institute of Microbiology, Academy of Sciences of the Czech Republic, v.v.i., Prague, Czech Republic
- Oceanography Section, Science Research Center, Kochi University, IMT-MEXT, Kohasu, Oko-cho, Nankoku, Kochi, 783–8505, Japan
| | - Zdenek Kamenik
- Institute of Microbiology, Academy of Sciences of the Czech Republic, v.v.i., Prague, Czech Republic
| | - Petr Novak
- Institute of Microbiology, Academy of Sciences of the Czech Republic, v.v.i., Prague, Czech Republic
| | - Jan Kopecky
- Institute of Microbiology, Academy of Sciences of the Czech Republic, v.v.i., Prague, Czech Republic
| | - Jitka Novotna
- Institute of Microbiology, Academy of Sciences of the Czech Republic, v.v.i., Prague, Czech Republic
| | - Bojana Radojevic
- Institute of Microbiology, Academy of Sciences of the Czech Republic, v.v.i., Prague, Czech Republic
| | - Kamila Plhackova
- Institute of Microbiology, Academy of Sciences of the Czech Republic, v.v.i., Prague, Czech Republic
| | - Radek Gazak
- Institute of Microbiology, Academy of Sciences of the Czech Republic, v.v.i., Prague, Czech Republic
| | - Lucie Najmanova
- Institute of Microbiology, Academy of Sciences of the Czech Republic, v.v.i., Prague, Czech Republic
| |
Collapse
|
26
|
Saha S, Li W, Gerratana B, Rokita SE. Identification of the dioxygenase-generated intermediate formed during biosynthesis of the dihydropyrrole moiety common to anthramycin and sibiromycin. Bioorg Med Chem 2015; 23:449-54. [PMID: 25564379 PMCID: PMC4302019 DOI: 10.1016/j.bmc.2014.12.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 12/06/2014] [Accepted: 12/14/2014] [Indexed: 11/30/2022]
Abstract
A description of pyrrolo[1,4]benzodiazepine (PBD) biosynthesis is a prerequisite for engineering production of analogs with enhanced antitumor activity. Predicted dioxygenases Orf12 and SibV associated with dihydropyrrole biosynthesis in PBDs anthramycin and sibiromycin, respectively, were expressed and purified for activity studies. UV-visible spectroscopy revealed that these enzymes catalyze the regiospecific 2,3-extradiol dioxygenation of l-3,4-dihydroxyphenylalanine (l-DOPA) to form l-2,3-secodopa (λmax=368 nm). (1)H NMR spectroscopy indicates that l-2,3-secodopa cyclizes into the α-keto acid tautomer of l-4-(2-oxo-3-butenoic-acid)-4,5-dihydropyrrole-2-carboxylic acid (λmax=414 nm). Thus, the dioxygenases are key for establishing the scaffold of the dihydropyrrole moiety. Kinetic studies suggest the dioxygenase product is relatively labile and is likely consumed rapidly by subsequent biosynthetic steps. The enzymatic product and dimeric state of these dioxygenases are conserved in dioxygenases involved in dihydropyrrole and pyrrolidine biosynthesis within both PBD and non-PBD pathways.
Collapse
Affiliation(s)
- Shalini Saha
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA.
| | - Wei Li
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
| | - Barbara Gerratana
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
| | - Steven E Rokita
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA.
| |
Collapse
|