1
|
Mankovich AG, Maciel K, Kavanaugh M, Kistler E, Muckle E, Weingart CL. Phage-antibiotic synergy reduces Burkholderia cenocepacia population. BMC Microbiol 2023; 23:2. [PMID: 36600213 PMCID: PMC9814465 DOI: 10.1186/s12866-022-02738-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 12/14/2022] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Burkholderia cenocepacia is an opportunistic pathogen that can cause acute and chronic infections in patients with weakened immune systems and in patients with cystic fibrosis. B. cenocepacia is resistant to many antibiotics making treatment challenging. Consequently, there is a critical need for alternative strategies to treat B. cenocepacia infections such as using bacteriophages and/or bacteriophages with subinhibitory doses of antibiotic called phage-antibiotic synergy. RESULTS We isolated a bacteriophage, KP1, from raw sewage that infects B. cenocepacia. Its morphological characteristics indicate it belongs in the family Siphoviridae, it has a 52 Kb ds DNA genome, and it has a narrow host range. We determined it rescued infections in Lemna minor (duckweed) and moderately reduced bacterial populations in our artificial sputum medium model. CONCLUSION These results suggest that KP1 phage alone in the duckweed model or in combination with antibiotics in the ASMDM model improves the efficacy of reducing B. cenocepacia populations.
Collapse
Affiliation(s)
- Anna G. Mankovich
- grid.35403.310000 0004 1936 9991Department of Cell and Developmental Biology, University of Illinois Urbana-Champaign, Urbana, IL USA
| | | | - Madison Kavanaugh
- grid.239553.b0000 0000 9753 0008Department of Pediatrics, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA USA
| | - Erin Kistler
- grid.255014.70000 0001 2185 2366Department of Biology, Denison University, 100 West College Street, 43023 Granville, OH USA
| | - Emily Muckle
- grid.255014.70000 0001 2185 2366Department of Biology, Denison University, 100 West College Street, 43023 Granville, OH USA
| | - Christine L. Weingart
- grid.255014.70000 0001 2185 2366Department of Biology, Denison University, 100 West College Street, 43023 Granville, OH USA
| |
Collapse
|
2
|
Acosta K, Xu J, Gilbert S, Denison E, Brinkman T, Lebeis S, Lam E. Duckweed hosts a taxonomically similar bacterial assemblage as the terrestrial leaf microbiome. PLoS One 2020; 15:e0228560. [PMID: 32027711 PMCID: PMC7004381 DOI: 10.1371/journal.pone.0228560] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 01/19/2020] [Indexed: 12/20/2022] Open
Abstract
Culture-independent characterization of microbial communities associated with popular plant model systems have increased our understanding of the plant microbiome. However, the integration of other model systems, such as duckweed, could facilitate our understanding of plant microbiota assembly and evolution. Duckweeds are floating aquatic plants with many characteristics, including small size and reduced plant architecture, that suggest their use as a facile model system for plant microbiome studies. Here, we investigated the structure and assembly of the duckweed bacterial microbiome. First, a culture-independent survey of the duckweed bacterial microbiome from different locations in New Jersey revealed similar phylogenetic profiles. These studies showed that Proteobacteria is a dominant phylum in the duckweed bacterial microbiome. To observe the assembly dynamics of the duckweed bacterial community, we inoculated quasi-gnotobiotic duckweed with wastewater effluent from a municipal wastewater treatment plant. Our results revealed that duckweed strongly shapes its bacterial microbiome and forms distinct associations with bacterial community members from the initial inoculum. Additionally, these inoculation studies showed the bacterial communities of different duckweed species were similar in taxa composition and abundance. Analysis across the different duckweed bacterial communities collected in this study identified a set of "core" bacterial taxa consistently present on duckweed irrespective of the locale and context. Furthermore, comparison of the duckweed bacterial community to that of rice and Arabidopsis revealed a conserved taxonomic structure between the duckweed microbiome and the terrestrial leaf microbiome. Our results suggest that duckweeds utilize similar bacterial community assembly principles as those found in terrestrial plants and indicate a highly conserved structuring effect of leaf tissue on the plant microbiome.
Collapse
Affiliation(s)
- Kenneth Acosta
- Department of Plant Biology, Rutgers the State University of New Jersey, New Brunswick, New Jersey, United States of America
| | - Jenny Xu
- Department of Plant Biology, Rutgers the State University of New Jersey, New Brunswick, New Jersey, United States of America
| | - Sarah Gilbert
- Department of Plant Biology, Rutgers the State University of New Jersey, New Brunswick, New Jersey, United States of America
| | - Elizabeth Denison
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, United States of America
| | - Thomas Brinkman
- Department of Plant Biology, Rutgers the State University of New Jersey, New Brunswick, New Jersey, United States of America
| | - Sarah Lebeis
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, United States of America
| | - Eric Lam
- Department of Plant Biology, Rutgers the State University of New Jersey, New Brunswick, New Jersey, United States of America
| |
Collapse
|
3
|
Duckweed (Lemna minor) and Alfalfa (Medicago sativa) as Bacterial Infection Model Systems. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2018; 1898:191-198. [PMID: 30570734 DOI: 10.1007/978-1-4939-8940-9_16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Alternative animal host models of bacterial infection have been developed which reproduce some of the disease conditions observed in higher animals. Analogously, plants are useful for modeling bacterial pathogenesis, in some cases revealing broadly conserved infection mechanisms. Similar to animals, plants have been shown to possess innate immune systems that respond to invading viruses, bacteria, and fungi. Plant infection models often yield results faster, are more convenient, and less expensive than many animal infection models. Here, we describe the use of two different plant-based infection models for the discovery of virulence genes and factors involved in bacterial pathogenesis.
Collapse
|
4
|
Nguyen B, Graham PJ, Rochman CM, Sinton D. A Platform for High-Throughput Assessments of Environmental Multistressors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2018; 5:1700677. [PMID: 29721416 PMCID: PMC5908365 DOI: 10.1002/advs.201700677] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 11/23/2017] [Indexed: 05/15/2023]
Abstract
A platform compatible with microtiter plates to parallelize environmental treatments to test the complex impacts of multiple stressors, including parameters relevant to climate change and point source pollutants is developed. This platform leverages (1) the high rate of purely diffusive gas transport in aerogels to produce well-defined centimeter-scale gas concentration gradients, (2) spatial light control, and (3) established automated liquid handling. The parallel gaseous, aqueous, and light control provided by the platform is compatible with multiparameter experiments across the life sciences. The platform is applied to measure biological effects in over 700 treatments in a five-parameter full factorial study with the microalgae Chlamydomonas reinhardtii. Further, the CO2 response of multicellular organisms, Lemna gibba and Artemia salina under surfactant and nanomaterial stress are tested with the platform.
Collapse
Affiliation(s)
- Brian Nguyen
- Department of Mechanical and Industrial Engineering and Institute for Sustainable EnergyUniversity of Toronto5 King's College RoadTorontoONM5S 3G8Canada
| | - Percival J. Graham
- Department of Mechanical and Industrial Engineering and Institute for Sustainable EnergyUniversity of Toronto5 King's College RoadTorontoONM5S 3G8Canada
| | - Chelsea M. Rochman
- Department of Ecology and Evolutionary BiologyUniversity of Toronto25 Wilcocks StTorontoONM5S 3B2Canada
| | - David Sinton
- Department of Mechanical and Industrial Engineering and Institute for Sustainable EnergyUniversity of Toronto5 King's College RoadTorontoONM5S 3G8Canada
| |
Collapse
|
5
|
Burkholderia cepacia Complex Regulation of Virulence Gene Expression: A Review. Genes (Basel) 2017; 8:genes8010043. [PMID: 28106859 PMCID: PMC5295037 DOI: 10.3390/genes8010043] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 01/11/2017] [Accepted: 01/12/2017] [Indexed: 12/31/2022] Open
Abstract
Burkholderia cepacia complex (Bcc) bacteria emerged as opportunistic pathogens in cystic fibrosis and immunocompromised patients. Their eradication is very difficult due to the high level of intrinsic resistance to clinically relevant antibiotics. Bcc bacteria have large and complex genomes, composed of two to four replicons, with variable numbers of insertion sequences. The complexity of Bcc genomes confers a high genomic plasticity to these bacteria, allowing their adaptation and survival to diverse habitats, including the human host. In this work, we review results from recent studies using omics approaches to elucidate in vivo adaptive strategies and virulence gene regulation expression of Bcc bacteria when infecting the human host or subject to conditions mimicking the stressful environment of the cystic fibrosis lung.
Collapse
|
6
|
Aubert DF, Valvano MA, Hu S. Quantification of type VI secretion system activity in macrophages infected with Burkholderia cenocepacia. Microbiology (Reading) 2015; 161:2161-73. [DOI: 10.1099/mic.0.000174] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
7
|
Burkholderia cenocepacia Lipopolysaccharide Modification and Flagellin Glycosylation Affect Virulence but Not Innate Immune Recognition in Plants. mBio 2015; 6:e00679. [PMID: 26045541 PMCID: PMC4462625 DOI: 10.1128/mbio.00679-15] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
UNLABELLED Burkholderia cenocepacia causes opportunistic infections in plants, insects, animals, and humans, suggesting that "virulence" depends on the host and its innate susceptibility to infection. We hypothesized that modifications in key bacterial molecules recognized by the innate immune system modulate host responses to B. cenocepacia. Indeed, modification of lipopolysaccharide (LPS) with 4-amino-4-deoxy-L-arabinose and flagellin glycosylation attenuates B. cenocepacia infection in Arabidopsis thaliana and Galleria mellonella insect larvae. However, B. cenocepacia LPS and flagellin triggered rapid bursts of nitric oxide and reactive oxygen species in A. thaliana leading to activation of the PR-1 defense gene. These responses were drastically reduced in plants with fls2 (flagellin FLS2 host receptor kinase), Atnoa1 (nitric oxide-associated protein 1), and dnd1-1 (reduced production of nitric oxide) null mutations. Together, our results indicate that LPS modification and flagellin glycosylation do not affect recognition by plant receptors but are required for bacteria to establish overt infection. IMPORTANCE Virulence and pathogenicity are properties ascribed to microbes, which actually require careful consideration of the host. Using the term "pathogen" to define a microbe without considering its host has recently been debated, since the microbe's capacity to establish a niche in a given host is a critical feature associated with infection. Opportunistic bacteria are a perfect example of microbes whose ability to cause disease is intimately related to the host's ability to recognize and respond to the infection. Here, we use the opportunistic bacterium Burkholderia cenocepacia and the host plant Arabidopsis thaliana to investigate the role of bacterial surface molecules, namely, lipopolysaccharide and flagellin, in contributing to infection and also in eliciting a host response. We reveal that both molecules can be modified by glycosylation, and although the modifications are critical for the bacteria to establish an infection, they do not impact the host's ability to recognize the pathogen.
Collapse
|
8
|
Aerosol phage therapy efficacy in Burkholderia cepacia complex respiratory infections. Antimicrob Agents Chemother 2014; 58:4005-13. [PMID: 24798268 DOI: 10.1128/aac.02388-13] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Phage therapy has been suggested as a potential treatment for highly antibiotic-resistant bacteria, such as the species of the Burkholderia cepacia complex (BCC). To address this hypothesis, experimental B. cenocepacia respiratory infections were established in mice using a nebulizer and a nose-only inhalation device. Following infection, the mice were treated with one of five B. cenocepacia-specific phages delivered as either an aerosol or intraperitoneal injection. The bacterial and phage titers within the lungs were assayed 2 days after treatment, and mice that received the aerosolized phage therapy demonstrated significant decreases in bacterial loads. Differences in phage activity were observed in vivo. Mice that received phage treatment by intraperitoneal injection did not demonstrate significantly reduced bacterial loads, although phage particles were isolated from their lung tissue. Based on these data, aerosol phage therapy appears to be an effective method for treating highly antibiotic-resistant bacterial respiratory infections, including those caused by BCC bacteria.
Collapse
|
9
|
Lithgow KV, Scott NE, Iwashkiw JA, Thomson ELS, Foster LJ, Feldman MF, Dennis JJ. A general protein O-glycosylation system within the Burkholderia cepacia complex is involved in motility and virulence. Mol Microbiol 2014; 92:116-37. [PMID: 24673753 DOI: 10.1111/mmi.12540] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/03/2014] [Indexed: 01/25/2023]
Abstract
Bacteria of the Burkholderia cepacia complex (Bcc) are pathogens of humans, plants, and animals. Burkholderia cenocepacia is one of the most common Bcc species infecting cystic fibrosis (CF) patients and its carriage is associated with poor prognosis. In this study, we characterized a general O-linked protein glycosylation system in B. cenocepacia K56-2. The PglLBc O-oligosaccharyltransferase (O-OTase), encoded by the cloned gene bcal0960, was shown to be capable of transferring a heptasaccharide from the Campylobacter jejuni N-glycosylation system to a Neisseria meningitides-derived acceptor protein in an Escherichia coli background, indicating that the enzyme has relaxed specificities for both the sugar donor and protein acceptor. In B cenocepacia K56-2, PglLBc is responsible for the glycosylation of 23 proteins involved in diverse cellular processes. Mass spectrometry analysis revealed that these proteins are modified with a trisaccharide HexNAc-HexNAc-Hex, which is unrelated to the O-antigen biosynthetic process. The glycosylation sites that were identified existed within regions of low complexity, rich in serine, alanine, and proline. Disruption of bcal0960 abolished glycosylation and resulted in reduced swimming motility and attenuated virulence towards both plant and insect model organisms. This study demonstrates the first example of post-translational modification in Bcc with implications for pathogenesis.
Collapse
Affiliation(s)
- Karen V Lithgow
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada, T6G 2E9
| | | | | | | | | | | | | |
Collapse
|