1
|
Salameh ZS, Aycock KN, Alinezhadbalalami N, Imran KM, McKillop IH, Allen IC, Davalos RV. Harnessing the Electrochemical Effects of Electroporation-Based Therapies to Enhance Anti-tumor Immune Responses. Ann Biomed Eng 2024; 52:48-56. [PMID: 37989902 PMCID: PMC10781785 DOI: 10.1007/s10439-023-03403-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 10/31/2023] [Indexed: 11/23/2023]
Abstract
This study introduces a new method of targeting acidosis (low pH) within the tumor microenvironment (TME) through the use of cathodic electrochemical reactions (CER). Low pH is oncogenic by supporting immunosuppression. Electrochemical reactions create local pH effects when a current passes through an electrolytic substrate such as biological tissue. Electrolysis has been used with electroporation (destabilization of the lipid bilayer via an applied electric potential) to increase cell death areas. However, the regulated increase of pH through only the cathode electrode has been ignored as a possible method to alleviate TME acidosis, which could provide substantial immunotherapeutic benefits. Here, we show through ex vivo modeling that CERs can intentionally elevate pH to an anti-tumor level and that increased alkalinity promotes activation of naïve macrophages. This study shows the potential of CERs to improve acidity within the TME and that it has the potential to be paired with existing electric field-based cancer therapies or as a stand-alone therapy.
Collapse
Affiliation(s)
- Zaid S Salameh
- Department of Biomedical Engineering and Mechanics, Virginia Tech, 325 Stanger St, Blacksburg, VA, 24061, USA
| | - Kenneth N Aycock
- Department of Biomedical Engineering and Mechanics, Virginia Tech, 325 Stanger St, Blacksburg, VA, 24061, USA
| | - Nastaran Alinezhadbalalami
- Department of Biomedical Engineering and Mechanics, Virginia Tech, 325 Stanger St, Blacksburg, VA, 24061, USA
| | - Khan Mohammad Imran
- Department of Biomedical Sciences and Pathobiology, VA-MD College of Veterinary Medicine, Virginia Tech, 205 Duck Pond Drive, Blacksburg, VA, 24061, USA
| | - Iain H McKillop
- Department of Surgery, Atrium Health Wake Forest Baptist Medical Center, 1000 Blythe Blvd, Charlotte, NC, 28203, USA
| | - Irving C Allen
- Department of Biomedical Sciences and Pathobiology, VA-MD College of Veterinary Medicine, Virginia Tech, 205 Duck Pond Drive, Blacksburg, VA, 24061, USA
| | - Rafael V Davalos
- Department of Biomedical Engineering and Mechanics, Virginia Tech, 325 Stanger St, Blacksburg, VA, 24061, USA.
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Tech - Emory, 313 Ferst Dr, Atlanta, GA, 30308, USA.
| |
Collapse
|
2
|
Kranjc M, Polajžer T, Novickij V, Miklavčič D. Determination of the Impact of High-Intensity Pulsed Electromagnetic Fields on the Release of Damage-Associated Molecular Pattern Molecules. Int J Mol Sci 2023; 24:14607. [PMID: 37834054 PMCID: PMC10572873 DOI: 10.3390/ijms241914607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
High-Intensity Pulsed Electromagnetic Fields (HI-PEMF) treatment is an emerging noninvasive and contactless alternative to conventional electroporation, since the electric field inside the tissue is induced remotely by an externally applied pulsed magnetic field. Recently, HI-PEMF has been successfully used in the transfer of plasmid DNA and siRNA in vivo, with no or minimal infiltration of immune cells. In addition to gene electrotransfer, treatment with HI-PEMF has also shown potential for electrochemotherapy, where activation of the immune response contributes to the treatment outcome. The immune response can be triggered by immunogenic cell death that is characterized by the release of damage-associated molecular patterns (DAMPs) from damaged or/and dying cells. In this study, the release of the best-known DAMP molecules, i.e., adenosine triphosphate (ATP), calreticulin and high mobility group box 1 protein (HMBG1), after HI-PEMF treatment was investigated in vitro on three different cell lines of different tissue origin and compared with conventional electroporation treatment parameters. We have shown that HI-PEMF by itself does not cause the release of HMGB1 or calreticulin, whereas the release of ATP was detected immediately after HI-PEMF treatment. Our results indicate that HI-PEMF treatment causes no to minimal release of DAMP molecules, which results in minimal/limited activation of the immune response.
Collapse
Affiliation(s)
- Matej Kranjc
- Faculty of Electrical Engineering, University of Ljubljana, Trzaska cesta 25, 1000 Ljubljana, Slovenia; (M.K.); (T.P.)
| | - Tamara Polajžer
- Faculty of Electrical Engineering, University of Ljubljana, Trzaska cesta 25, 1000 Ljubljana, Slovenia; (M.K.); (T.P.)
| | - Vitalij Novickij
- Institute of High Magnetic Fields, Faculty of Electronics, Vilnius Gediminas Technical University, Plytinės g. 27, 10105 Vilnius, Lithuania;
- Department of Immunology, State Research Institute Centre for Innovative Medicine, Santariskiu g. 5, 08410 Vilnius, Lithuania
| | - Damijan Miklavčič
- Faculty of Electrical Engineering, University of Ljubljana, Trzaska cesta 25, 1000 Ljubljana, Slovenia; (M.K.); (T.P.)
| |
Collapse
|
3
|
Potočnik T, Maček Lebar A, Kos Š, Reberšek M, Pirc E, Serša G, Miklavčič D. Effect of Experimental Electrical and Biological Parameters on Gene Transfer by Electroporation: A Systematic Review and Meta-Analysis. Pharmaceutics 2022; 14:pharmaceutics14122700. [PMID: 36559197 PMCID: PMC9786189 DOI: 10.3390/pharmaceutics14122700] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
The exact mechanisms of nucleic acid (NA) delivery with gene electrotransfer (GET) are still unknown, which represents a limitation for its broader use. Further, not knowing the effects that different experimental electrical and biological parameters have on GET additionally hinders GET optimization, resulting in the majority of research being performed using a trial-and-error approach. To explore the current state of knowledge, we conducted a systematic literature review of GET papers in in vitro conditions and performed meta-analyses of the reported GET efficiency. For now, there is no universal GET strategy that would be appropriate for all experimental aims. Apart from the availability of the required electroporation device and electrodes, the choice of an optimal GET approach depends on parameters such as the electroporation medium; type and origin of cells; and the size, concentration, promoter, and type of the NA to be transfected. Equally important are appropriate controls and the measurement or evaluation of the output pulses to allow a fair and unbiased evaluation of the experimental results. Since many experimental electrical and biological parameters can affect GET, it is important that all used parameters are adequately reported to enable the comparison of results, as well as potentially faster and more efficient experiment planning and optimization.
Collapse
Affiliation(s)
- Tjaša Potočnik
- Faculty of Electrical Engineering, University of Ljubljana, Tržaška 25, 1000 Ljubljana, Slovenia
| | - Alenka Maček Lebar
- Faculty of Electrical Engineering, University of Ljubljana, Tržaška 25, 1000 Ljubljana, Slovenia
| | - Špela Kos
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloška cesta 2, 1000 Ljubljana, Slovenia
| | - Matej Reberšek
- Faculty of Electrical Engineering, University of Ljubljana, Tržaška 25, 1000 Ljubljana, Slovenia
| | - Eva Pirc
- Faculty of Electrical Engineering, University of Ljubljana, Tržaška 25, 1000 Ljubljana, Slovenia
| | - Gregor Serša
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloška cesta 2, 1000 Ljubljana, Slovenia
| | - Damijan Miklavčič
- Faculty of Electrical Engineering, University of Ljubljana, Tržaška 25, 1000 Ljubljana, Slovenia
- Correspondence:
| |
Collapse
|
4
|
Cindric H, Gasljevic G, Edhemovic I, Brecelj E, Zmuc J, Cemazar M, Seliskar A, Miklavcic D, Kos B. Numerical mesoscale tissue model of electrochemotherapy in liver based on histological findings. Sci Rep 2022; 12:6476. [PMID: 35444226 PMCID: PMC9021251 DOI: 10.1038/s41598-022-10426-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 04/07/2022] [Indexed: 11/09/2022] Open
Abstract
Electrochemotherapy (ECT) and irreversible electroporation (IRE) are being investigated for treatment of hepatic tumours. The liver is a highly heterogeneous organ, permeated with a network of macro- and microvasculature, biliary tracts and connective tissue. The success of ECT and IRE depends on sufficient electric field established in whole target tissue; therefore, tissue heterogeneity may affect the treatment outcome. In this study, we investigate electroporation in the liver using a numerical mesoscale tissue model. We numerically reconstructed four ECT experiments in healthy porcine liver and computed the electric field distribution using our treatment planning framework. We compared the computed results with histopathological changes identified on microscopic images after treatment. The mean electric field threshold that best fitted the zone of coagulation necrosis was 1225 V/cm, while the mean threshold that best fitted the zone of partially damaged liver parenchyma attributed to IRE was 805 V/cm. We evaluated how the liver macro- and microstructures affect the electric field distribution. Our results show that the liver microstructure does not significantly affect the electric field distribution on the level needed for treatment planning. However, major hepatic vessels and portal spaces significantly affect the electric field distribution, and should be considered when planning treatments.
Collapse
Affiliation(s)
- Helena Cindric
- Faculty of Electrical Engineering, University of Ljubljana, Trzaska cesta 25, 1000, Ljubljana, Slovenia
| | - Gorana Gasljevic
- Institute of Oncology Ljubljana, Zaloska cesta 2, 1000, Ljubljana, Slovenia
| | - Ibrahim Edhemovic
- Institute of Oncology Ljubljana, Zaloska cesta 2, 1000, Ljubljana, Slovenia.,Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000, Ljubljana, Slovenia
| | - Erik Brecelj
- Institute of Oncology Ljubljana, Zaloska cesta 2, 1000, Ljubljana, Slovenia
| | - Jan Zmuc
- Institute of Oncology Ljubljana, Zaloska cesta 2, 1000, Ljubljana, Slovenia.,Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000, Ljubljana, Slovenia
| | - Maja Cemazar
- Institute of Oncology Ljubljana, Zaloska cesta 2, 1000, Ljubljana, Slovenia.,Faculty of Health Sciences, University of Primorska, Polje 42, 6310, Izola, Slovenia
| | - Alenka Seliskar
- University of Ljubljana, Veterinary Faculty, Gerbiceva ulica 60, 1000, Ljubljana, Slovenia
| | - Damijan Miklavcic
- Faculty of Electrical Engineering, University of Ljubljana, Trzaska cesta 25, 1000, Ljubljana, Slovenia
| | - Bor Kos
- Faculty of Electrical Engineering, University of Ljubljana, Trzaska cesta 25, 1000, Ljubljana, Slovenia.
| |
Collapse
|
5
|
Sachdev S, Potočnik T, Rems L, Miklavčič D. Revisiting the role of pulsed electric fields in overcoming the barriers to in vivo gene electrotransfer. Bioelectrochemistry 2022; 144:107994. [PMID: 34930678 DOI: 10.1016/j.bioelechem.2021.107994] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/15/2021] [Accepted: 11/02/2021] [Indexed: 12/21/2022]
Abstract
Gene therapies are revolutionizing medicine by providing a way to cure hitherto incurable diseases. The scientific and technological advances have enabled the first gene therapies to become clinically approved. In addition, with the ongoing COVID-19 pandemic, we are witnessing record speeds in the development and distribution of gene-based vaccines. For gene therapy to take effect, the therapeutic nucleic acids (RNA or DNA) need to overcome several barriers before they can execute their function of producing a protein or silencing a defective or overexpressing gene. This includes the barriers of the interstitium, the cell membrane, the cytoplasmic barriers and (in case of DNA) the nuclear envelope. Gene electrotransfer (GET), i.e., transfection by means of pulsed electric fields, is a non-viral technique that can overcome these barriers in a safe and effective manner. GET has reached the clinical stage of investigations where it is currently being evaluated for its therapeutic benefits across a wide variety of indications. In this review, we formalize our current understanding of GET from a biophysical perspective and critically discuss the mechanisms by which electric field can aid in overcoming the barriers. We also identify the gaps in knowledge that are hindering optimization of GET in vivo.
Collapse
Affiliation(s)
- Shaurya Sachdev
- University of Ljubljana, Faculty of Electrical Engineering, Tržaška cesta 25, 1000 Ljubljana, Slovenia
| | - Tjaša Potočnik
- University of Ljubljana, Faculty of Electrical Engineering, Tržaška cesta 25, 1000 Ljubljana, Slovenia
| | - Lea Rems
- University of Ljubljana, Faculty of Electrical Engineering, Tržaška cesta 25, 1000 Ljubljana, Slovenia
| | - Damijan Miklavčič
- University of Ljubljana, Faculty of Electrical Engineering, Tržaška cesta 25, 1000 Ljubljana, Slovenia.
| |
Collapse
|
6
|
Meglič SH, Pavlin M. The impact of impaired DNA mobility on gene electrotransfer efficiency: analysis in 3D model. Biomed Eng Online 2021; 20:85. [PMID: 34419072 PMCID: PMC8379608 DOI: 10.1186/s12938-021-00922-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 08/09/2021] [Indexed: 11/21/2022] Open
Abstract
Background Gene electrotransfer is an established method that enables transfer of DNA into cells with electric pulses. Several studies analyzed and optimized different parameters of gene electrotransfer, however, one of main obstacles toward efficient electrotransfection in vivo is relatively poor DNA mobility in tissues. Our aim was to analyze the effect of impaired mobility on gene electrotransfer efficiency experimentally and theoretically. We applied electric pulses with different durations on plated cells, cells grown on collagen layer and cells embedded in collagen gel (3D model) and analyzed gene electrotransfer efficiency. In order to analyze the effect of impaired mobility on gene electrotransfer efficiency, we applied electric pulses with different durations on plated cells, cells grown on collagen layer and cells embedded in collagen gel (3D model) and analyzed gene electrotransfer efficiency. Results We obtained the highest transfection in plated cells, while transfection efficiency of embedded cells in 3D model was lowest, similarly as in in vivo. To further analyze DNA diffusion in 3D model, we applied DNA on top or injected it into 3D model and showed, that for the former gene electrotransfer efficiency was similarly as in in vivo. The experimental results are explained with theoretical analysis of DNA diffusion and electromobility. Conclusion We show, empirically and theoretically that DNA has impaired electromobility and especially diffusion in collagen environment, where the latter crucially limits electrotransfection. Our model enables optimization of gene electrotransfer in in vitro conditions.
Collapse
Affiliation(s)
- Saša Haberl Meglič
- Faculty of Electrical Engineering, Laboratory of Biocybernetics, University of Ljubljana, Tržaška 25, 1000, Ljubljana, Slovenia
| | - Mojca Pavlin
- Faculty of Medicine, Institute of Biophysics, University of Ljubljana, Vrazov trg 2, 1000, Ljubljana, Slovenia. .,Faculty of Electrical Engineering, Group for Nano and Biotechnological Applications, University of Ljubljana, Tržaška 25, 1000, Ljubljana, Slovenia.
| |
Collapse
|
7
|
Potočnik T, Miklavčič D, Maček Lebar A. Gene transfer by electroporation with high frequency bipolar pulses in vitro. Bioelectrochemistry 2021; 140:107803. [PMID: 33975183 DOI: 10.1016/j.bioelechem.2021.107803] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 12/21/2022]
Abstract
High-frequency bipolar pulses (HF-BP) have been demonstrated to be efficient for membrane permeabilization and irreversible electroporation. Since membrane permeabilization has been achieved using HF-BP pulses we hypothesized that with these pulses we can also achieve successful gene electrotransfer (GET). Three variations of bursts of 2 µs bipolar pulses with 2 µs interphase delay were applied in HF-BP protocols. We compared transfection efficiency of monopolar micro and millisecond pulses and HF-BP protocols at various plasmid DNA (pDNA) concentrations on CHO - K1 cells. GET efficiency increased with increasing pDNA concentration. Overall GET obtained by HF-BP pulse protocols was comparable to overall GET obtained by longer monopolar pulse protocols. Our results, however, suggest that although we were able to achieve similar percent of transfected cells, the number of pDNA copies that were successfully transferred into cells seemed to be higher when longer monopolar pulses were used. Interestingly, we did not observe any direct correlation between fluorescence intensity of pDNA aggregates formed on cell membrane and transfection efficiency. The results of our study confirmed that we can achieve successful GET with bipolar microsecond i. e. HF-BP pulses, although at the expense of higher pDNA concentrations.
Collapse
Affiliation(s)
- Tjaša Potočnik
- University of Ljubljana, Faculty of Electrical Engineering, Tržaška 25, 1000 Ljubljana, Slovenia
| | - Damijan Miklavčič
- University of Ljubljana, Faculty of Electrical Engineering, Tržaška 25, 1000 Ljubljana, Slovenia
| | - Alenka Maček Lebar
- University of Ljubljana, Faculty of Electrical Engineering, Tržaška 25, 1000 Ljubljana, Slovenia.
| |
Collapse
|
8
|
Novickij V, Stanevičienė R, Gruškienė R, Badokas K, Lukša J, Sereikaitė J, Mažeika K, Višniakov N, Novickij J, Servienė E. Inactivation of Bacteria Using Bioactive Nanoparticles and Alternating Magnetic Fields. NANOMATERIALS 2021; 11:nano11020342. [PMID: 33573001 PMCID: PMC7911490 DOI: 10.3390/nano11020342] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/18/2021] [Accepted: 01/26/2021] [Indexed: 12/19/2022]
Abstract
Foodborne pathogens are frequently associated with risks and outbreaks of many diseases; therefore, food safety and processing remain a priority to control and minimize these risks. In this work, nisin-loaded magnetic nanoparticles were used and activated by alternating 10 and 125 mT (peak to peak) magnetic fields (AMFs) for biocontrol of bacteria Listeria innocua, a suitable model to study the inactivation of common foodborne pathogen L. monocytogenes. It was shown that L. innocua features high resistance to nisin-based bioactive nanoparticles, however, application of AMFs (15 and 30 min exposure) significantly potentiates the treatment resulting in considerable log reduction of viable cells. The morphological changes and the resulting cellular damage, which was induced by the synergistic treatment, was confirmed using scanning electron microscopy. The thermal effects were also estimated in the study. The results are useful for the development of new methods for treatment of the drug-resistant foodborne pathogens to minimize the risks of invasive infections. The proposed methodology is a contactless alternative to the currently established pulsed-electric field-based treatment in food processing.
Collapse
Affiliation(s)
- Vitalij Novickij
- Faculty of Electronics, Vilnius Gediminas Technical University, 03227 Vilnius, Lithuania;
- Correspondence: (V.N.); (E.S.)
| | - Ramunė Stanevičienė
- Laboratory of Genetics, Nature Research Centre, 08412 Vilnius, Lithuania; (R.S.); (J.L.)
| | - Rūta Gruškienė
- Faculty of Fundamental Sciences, Vilnius Gediminas Technical University, 10223 Vilnius, Lithuania; (R.G.); (J.S.)
| | - Kazimieras Badokas
- Institute of Photonics and Nanotechnology, Vilnius University, 10257 Vilnius, Lithuania;
| | - Juliana Lukša
- Laboratory of Genetics, Nature Research Centre, 08412 Vilnius, Lithuania; (R.S.); (J.L.)
| | - Jolanta Sereikaitė
- Faculty of Fundamental Sciences, Vilnius Gediminas Technical University, 10223 Vilnius, Lithuania; (R.G.); (J.S.)
| | - Kęstutis Mažeika
- Center for Physical Sciences and Technology, 02300 Vilnius, Lithuania;
| | - Nikolaj Višniakov
- Faculty of Mechanics, Vilnius Gediminas Technical University, 03224 Vilnius, Lithuania;
| | - Jurij Novickij
- Faculty of Electronics, Vilnius Gediminas Technical University, 03227 Vilnius, Lithuania;
| | - Elena Servienė
- Laboratory of Genetics, Nature Research Centre, 08412 Vilnius, Lithuania; (R.S.); (J.L.)
- Faculty of Fundamental Sciences, Vilnius Gediminas Technical University, 10223 Vilnius, Lithuania; (R.G.); (J.S.)
- Correspondence: (V.N.); (E.S.)
| |
Collapse
|
9
|
Maglietti F, Tellado M, De Robertis M, Michinski S, Fernández J, Signori E, Marshall G. Electroporation as the Immunotherapy Strategy for Cancer in Veterinary Medicine: State of the Art in Latin America. Vaccines (Basel) 2020; 8:E537. [PMID: 32957424 PMCID: PMC7564659 DOI: 10.3390/vaccines8030537] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/29/2020] [Accepted: 09/01/2020] [Indexed: 02/06/2023] Open
Abstract
Electroporation is a technology that increases cell membrane permeability by the application of electric pulses. Electrochemotherapy (ECT), the best-known application of electroporation, is a very effective local treatment for tumors of any histology in human and veterinary medicine. It induces a local yet robust immune response that is responsible for its high effectiveness. Gene electrotransfer (GET), used in research to produce a systemic immune response against cancer, is another electroporation-based treatment that is very appealing for its effectiveness, low cost, and simplicity. In this review, we present the immune effect of electroporation-based treatments and analyze the results of the vast majority of the published papers related to immune response enhancement by gene electrotransfer in companion animals with spontaneous tumors. In addition, we present a brief history of the initial steps and the state of the art of the electroporation-based treatments in Latin America. They have the potential to become an essential form of immunotherapy in the region. This review gives insight into the subject and helps to choose promising research lines for future work; it also helps to select the adequate treatment parameters for performing a successful application of this technology.
Collapse
Affiliation(s)
- Felipe Maglietti
- Instituto Universitario del Hospital Italiano de Buenos Aires, CONICET, Buenos Aires 1199, Argentina
| | - Matías Tellado
- VetOncologia, Veterinary Oncology Clinic, Buenos Aires 1408, Argentina; (M.T.); (J.F.)
| | - Mariangela De Robertis
- CNR-Institute of Biomembrane, Bioenergetics, and Molecular Biotechnology, 70126 Bari, Italy;
- Department of Bioscience, Biotechnology, and Biopharmaceutics, University of Bari, 70126 Bari, Italy
| | - Sebastián Michinski
- Instituto de Física del Plasma, DF, FCEyN, UBA-CONICET, Buenos Aires 1428, Argentina; (S.M.); (G.M.)
| | - Juan Fernández
- VetOncologia, Veterinary Oncology Clinic, Buenos Aires 1408, Argentina; (M.T.); (J.F.)
| | - Emanuela Signori
- Laboratory of Molecular Pathology and Experimental Oncology, Institute of Translational Pharmacology, CNR, 00133 Rome, Italy;
| | - Guillermo Marshall
- Instituto de Física del Plasma, DF, FCEyN, UBA-CONICET, Buenos Aires 1428, Argentina; (S.M.); (G.M.)
| |
Collapse
|
10
|
Miklavcic D, Novickij V, Kranjc M, Polajzer T, Haberl Meglic S, Batista Napotnik T, Romih R, Lisjak D. Contactless electroporation induced by high intensity pulsed electromagnetic fields via distributed nanoelectrodes. Bioelectrochemistry 2020; 132:107440. [DOI: 10.1016/j.bioelechem.2019.107440] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 12/03/2019] [Accepted: 12/05/2019] [Indexed: 12/19/2022]
|
11
|
Guenther E, Klein N, Mikus P, Botea F, Pautov M, Lugnani F, Macchioro M, Popescu I, Stehling MK, Rubinsky B. Toward a clinical real time tissue ablation technology: combining electroporation and electrolysis (E2). PeerJ 2020; 8:e7985. [PMID: 31998549 PMCID: PMC6977482 DOI: 10.7717/peerj.7985] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 10/03/2019] [Indexed: 01/05/2023] Open
Abstract
Background Percutaneous image-guided tissue ablation (IGA) plays a growing role in the clinical management of solid malignancies. Electroporation is used for IGA in several modalities: irreversible electroporation (IRE), and reversible electroporation with chemotoxic drugs, called electrochemotherapy (ECT). It was shown that the combination of electrolysis and electroporation—E2—affords tissue ablation with greater efficiency, that is, lower voltages, lower energy and shorter procedure times than IRE and without the need for chemotoxic additives as in ECT. Methods A new E2 waveform was designed that delivers optimal doses of electroporation and electrolysis in a single waveform. A series of experiments were performed in the liver of pigs to evaluate E2 in the context of clinical applications. The goal was to find initial parameter boundaries in terms of electrical field, pulse duration and charge as well as tissue behavior to enable real time tissue ablation of clinically relevant volumes. Results Histological results show that a single several hundred millisecond long E2 waveform can ablate large volume of tissue at relatively low voltages while preserving the integrity of large blood vessels and lumen structures in the ablation zone without the use of chemotoxic drugs or paralyzing drugs during anesthesia. This could translate clinically into much shorter treatment times and ease of use compared to other techniques that are currently applied.
Collapse
Affiliation(s)
- Enric Guenther
- Biophysics, Inter Science GmbH, Gisikon, Lucerne, Switzerland.,Department of Bioengineering and Department of Mechanical Engineering, University of California, Berkeley, Berkeley, CA, USA.,Institut fur Bildgebende Diagnostik, Offenbach, Germany
| | - Nina Klein
- Biophysics, Inter Science GmbH, Gisikon, Lucerne, Switzerland.,Institut fur Bildgebende Diagnostik, Offenbach, Germany.,Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain
| | - Paul Mikus
- Biophysics, Inter Science GmbH, Gisikon, Lucerne, Switzerland
| | - Florin Botea
- Center of General Surgery and Liver Transplantation, Fundeni Clinical Institute, Bucharest, Romania.,Center of Translational Medicine, Fundeni Clinical Institute, Bucharest, Romania
| | - Mihail Pautov
- Center of General Surgery and Liver Transplantation, Fundeni Clinical Institute, Bucharest, Romania.,Center of Translational Medicine, Fundeni Clinical Institute, Bucharest, Romania
| | | | | | - Irinel Popescu
- Center of General Surgery and Liver Transplantation, Fundeni Clinical Institute, Bucharest, Romania.,Center of Translational Medicine, Fundeni Clinical Institute, Bucharest, Romania
| | - Michael K Stehling
- Biophysics, Inter Science GmbH, Gisikon, Lucerne, Switzerland.,Department of Bioengineering and Department of Mechanical Engineering, University of California, Berkeley, Berkeley, CA, USA.,Institut fur Bildgebende Diagnostik, Offenbach, Germany
| | - Boris Rubinsky
- Biophysics, Inter Science GmbH, Gisikon, Lucerne, Switzerland.,Department of Bioengineering and Department of Mechanical Engineering, University of California, Berkeley, Berkeley, CA, USA
| |
Collapse
|
12
|
Kranjc Brezar S, Kranjc M, Čemažar M, Buček S, Serša G, Miklavčič D. Electrotransfer of siRNA to Silence Enhanced Green Fluorescent Protein in Tumor Mediated by a High Intensity Pulsed Electromagnetic Field. Vaccines (Basel) 2020; 8:E49. [PMID: 32012775 PMCID: PMC7157195 DOI: 10.3390/vaccines8010049] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/10/2020] [Accepted: 01/23/2020] [Indexed: 02/07/2023] Open
Abstract
The contactless high intensity pulsed electromagnetic field (HI-PEMF)-induced increase of cell membrane permeability is similar to conventional electroporation, with the important difference of inducing an electric field non-invasively by exposing a treated tissue to a time-varying magnetic field. Due to the limited number of studies in the field of electroporation induced by HI-PEMF, we designed experiments to explore the feasibility of such a contactless delivery technique for the gene electrotransfer of nucleic acids in tissues in vivo. By using HI-PEMF for gene electrotransfer, we silenced enhanced green fluorescent protein (EGFP) with siRNA molecules against EGFP in B16F10-EGFP tumors. Six days after the transfer, the fluorescent tumor area decreased by up to 39% as determined by fluorescence imaging in vivo. In addition, the silencing of EGFP to the same extent was confirmed at the mRNA and protein level. The results obtained in the in vivo mouse model demonstrate the potential use of HI-PEMF-induced cell permeabilization for gene therapy and DNA vaccination. Further studies are thus warranted to improve the equipment, optimize the protocols for gene transfer and the HI-PEMF parameters, and demonstrate the effects of HI-PEMF on a broader range of different normal and tumor tissues.
Collapse
Affiliation(s)
- Simona Kranjc Brezar
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloška 2, 1000 Ljubljana, Slovenia; (S.K.B.); (M.Č.); (G.S.)
| | - Matej Kranjc
- Faculty of Electrical Engineering, University of Ljubljana, Tržaška 25, 1000 Ljubljana, Slovenia;
| | - Maja Čemažar
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloška 2, 1000 Ljubljana, Slovenia; (S.K.B.); (M.Č.); (G.S.)
- Faculty of Health Sciences, University of Primorska, Polje 42, 6310 Izola, Slovenia
| | - Simon Buček
- Department of Cytopathology, Institute of Oncology Ljubljana, Zaloška 2, 1000 Ljubljana, Slovenia;
| | - Gregor Serša
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloška 2, 1000 Ljubljana, Slovenia; (S.K.B.); (M.Č.); (G.S.)
- Faculty of Health Sciences, University of Ljubljana, Zdravstvena pot 5, 1000 Ljubljana, Slovenia
| | - Damijan Miklavčič
- Faculty of Electrical Engineering, University of Ljubljana, Tržaška 25, 1000 Ljubljana, Slovenia;
| |
Collapse
|
13
|
Potočnik T, Miklavčič D, Maček Lebar A. Effect of electroporation and recovery medium pH on cell membrane permeabilization, cell survival and gene transfer efficiency in vitro. Bioelectrochemistry 2019; 130:107342. [DOI: 10.1016/j.bioelechem.2019.107342] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 07/31/2019] [Accepted: 07/31/2019] [Indexed: 12/12/2022]
|
14
|
|
15
|
Garabalino MA, Olaiz N, Portu A, Saint Martin G, Thorp SI, Pozzi ECC, Curotto P, Itoiz ME, Monti Hughes A, Colombo LL, Nigg DW, Trivillin VA, Marshall G, Schwint AE. Electroporation optimizes the uptake of boron-10 by tumor for boron neutron capture therapy (BNCT) mediated by GB-10: a boron biodistribution study in the hamster cheek pouch oral cancer model. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2019; 58:455-467. [PMID: 31123853 DOI: 10.1007/s00411-019-00796-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 05/07/2019] [Indexed: 05/17/2023]
Abstract
Boron neutron capture therapy (BNCT) is a promising cancer binary therapy modality that utilizes the nuclear capture reaction of thermal neutrons by boron-10 resulting in a localized release of high- and low-linear energy transfer (LET) radiation. Electrochemotherapy (ECT) is based on electroporation (EP) that induces opening of pores in cell membranes, allowing the entry of compounds. Because EP is applied locally to a tumor, the compound is incorporated preferentially by tumor cells. Based on the knowledge that the therapeutic success of BNCT depends centrally on the boron content in tumor and normal tissues and that EP has proven to be an excellent facilitator of tumor biodistribution of an anti-tumor agent, the aim of this study was to evaluate if EP can optimize the delivery of boronated compounds. We performed biodistribution studies and qualitative microdistribution analyses of boron employing the boron compound sodium decahydrodecaborate (GB-10) + EP in the hamster cheek pouch oral cancer model. Syrian hamsters with chemically induced exophytic squamous cell carcinomas were used. A typical EP treatment was applied to each tumor, varying the moment of application with respect to the administration of GB-10 (early or late). The results of this study showed a significant increase in the absolute and relative tumor boron concentration and optimization of the qualitative microdistribution of boron by the use of early EP + GB-10 versus GB-10 without EP. This strategy could be a tool to improve the therapeutic efficacy of BNCT/GB-10 in vivo.
Collapse
Affiliation(s)
- Marcela A Garabalino
- Departamento de Radiobiología, Comisión Nacional de Energía Atómica, Centro Atómico Constituyentes, Avenida General Paz 1499, B1650KNA, San Martin, Provincia Buenos Aires, Argentina.
| | - Nahuel Olaiz
- Departamento de Sistemas complejos, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón II, C1428EHA, Ciudad Autónoma De Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, C1425FQB, Cuidad Autónoma De Buenos Aires, Argentina
| | - Agustina Portu
- Departamento de Radiobiología, Comisión Nacional de Energía Atómica, Centro Atómico Constituyentes, Avenida General Paz 1499, B1650KNA, San Martin, Provincia Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, C1425FQB, Cuidad Autónoma De Buenos Aires, Argentina
| | - Gisela Saint Martin
- Departamento de Radiobiología, Comisión Nacional de Energía Atómica, Centro Atómico Constituyentes, Avenida General Paz 1499, B1650KNA, San Martin, Provincia Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, C1425FQB, Cuidad Autónoma De Buenos Aires, Argentina
| | - Silvia I Thorp
- Sub-gerencia Instrumentación y Control, Centro Atómico Ezeiza, Camino Real Presbítero González y Aragón 15, B1802AYA, Ezeiza, Provincia Buenos Aires, Argentina
| | - Emiliano C C Pozzi
- Departamento de Reactores de Investigación y Producción, Centro Atómico Ezeiza, Camino Real Presbítero González y Aragón 15, B1802AYA, Ezeiza, Provincia Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, C1425FQB, Cuidad Autónoma De Buenos Aires, Argentina
| | - Paula Curotto
- Departamento de Reactores de Investigación y Producción, Centro Atómico Ezeiza, Camino Real Presbítero González y Aragón 15, B1802AYA, Ezeiza, Provincia Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, C1425FQB, Cuidad Autónoma De Buenos Aires, Argentina
| | - María E Itoiz
- Departamento de Anatomía Patología, Facultad de Odontología, Universidad de Buenos Aires, Marcelo T. de Alvear 2142, C1122AAH, Ciudad Autónoma De Buenos Aires, Argentina
| | - Andrea Monti Hughes
- Departamento de Radiobiología, Comisión Nacional de Energía Atómica, Centro Atómico Constituyentes, Avenida General Paz 1499, B1650KNA, San Martin, Provincia Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, C1425FQB, Cuidad Autónoma De Buenos Aires, Argentina
| | - Lucas L Colombo
- Instituto de Oncología Angel H. Roffo, Avenida San Martin 5481, C1417DTB, Ciudad Autónoma De Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, C1425FQB, Cuidad Autónoma De Buenos Aires, Argentina
| | - David W Nigg
- Idaho National Laboratory, 2525 Fremont Ave, Idaho Falls, ID, 83402, USA
| | - Verónica A Trivillin
- Departamento de Radiobiología, Comisión Nacional de Energía Atómica, Centro Atómico Constituyentes, Avenida General Paz 1499, B1650KNA, San Martin, Provincia Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, C1425FQB, Cuidad Autónoma De Buenos Aires, Argentina
| | - Guillermo Marshall
- Departamento de Sistemas complejos, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón II, C1428EHA, Ciudad Autónoma De Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, C1425FQB, Cuidad Autónoma De Buenos Aires, Argentina
| | - Amanda E Schwint
- Departamento de Radiobiología, Comisión Nacional de Energía Atómica, Centro Atómico Constituyentes, Avenida General Paz 1499, B1650KNA, San Martin, Provincia Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, C1425FQB, Cuidad Autónoma De Buenos Aires, Argentina
| |
Collapse
|
16
|
Lv Y, Yao C, Rubinsky B. A 2-D Cell Layer Study on Synergistic Combinations of High-Voltage and Low-Voltage Irreversible Electroporation Pulses. IEEE Trans Biomed Eng 2019; 67:957-965. [PMID: 31265380 DOI: 10.1109/tbme.2019.2925774] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Irreversible electroporation (IRE) employs brief, high-electric field pulses to ablate tumors while preserving the extracellular matrix. Recently, we showed that combining short high-voltage (SHV) IRE pulses and long low-voltage (LLV) IRE pulses can enlarge the tissue ablation region, presumably through a synergistic effect. OBJECTIVE The goal of this study is to further investigate the effect of this combination on a 2-D cell layer tumor model. METHODS 2-D layers of tumor cells are exposed to various SHV and LLV combinations, and the results of propidium iodide (PI) and fluorescein diacetate staining are examined to correlate treatment protocols with the ensuing irreversible and reversible electroporation areas. RESULTS The combination of SHV+LLV pulses produces a larger area of electroporation and ablation than LLV+SHV pulses, LLV pulses alone, and SHV pulses alone. CONCLUSION Judiciously combining SHV and LLV pulses can produce a synergistic effect that enlarges the electroporation-induced ablation area. A hypothetical explanation for this effect is that it involves a combination of pore expansion and electrolysis induced by LLV pulses in the area that had been reversibly permeabilized by the SHV pulses. SIGNIFICANCE This paper is valuable for the design of improved IRE protocols and provides a hypothesis for the mechanisms involved.
Collapse
|
17
|
Influence of the electrode material on ROS generation and electroporation efficiency in low and high frequency nanosecond pulse range. Bioelectrochemistry 2019; 127:87-93. [DOI: 10.1016/j.bioelechem.2019.02.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 02/04/2019] [Accepted: 02/04/2019] [Indexed: 11/24/2022]
|
18
|
Mokhtare A, Shiv Krishna Reddy M, Roodan VA, Furlani EP, Abbaspourrad A. The role of pH fronts, chlorination and physicochemical reactions in tumor necrosis in the electrochemical treatment of tumors: A numerical study. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.03.148] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
19
|
A Conceivable Mechanism Responsible for the Synergy of High and Low Voltage Irreversible Electroporation Pulses. Ann Biomed Eng 2019; 47:1552-1563. [PMID: 30953220 DOI: 10.1007/s10439-019-02258-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 03/29/2019] [Indexed: 12/12/2022]
Abstract
Irreversible electroporation (IRE), is a new non-thermal tissue ablation technology in which brief high electric field pulses are delivered across the target tissue to induce cell death by irreversible permeabilization of the cell membrane. A deficiency of conventional IRE is that the ablation zone is relatively small, bounded by the irreversible electroporation isoelectric field margin. In the previous studies we have introduced a new treatment protocol that combines few short high voltage (SHV) pulses with long low-voltage (LLV) pulses. In the previous studies, we also have shown that the addition of few SHV pulses increases by almost a factor of two the area ablated by a protocol that employs only the LLV pulses. This study employs potato and gel phantom to generate a plausible explanation for the mechanism. The study provides circumstantial evidence that the mechanism involved is the production of electrolytic compounds by the LLV pulse sequence, which causes tissue ablation beyond the margin of the irreversible electroporation isoelectric field generated by the SHV pulses, presumable to the reversible electroporation isoelectric field margin generated by the SHV pulses.
Collapse
|
20
|
Romeo S, Sannino A, Scarfì MR, Vernier PT, Cadossi R, Gehl J, Zeni O. ESOPE-Equivalent Pulsing Protocols for Calcium Electroporation: An In Vitro Optimization Study on 2 Cancer Cell Models. Technol Cancer Res Treat 2018; 17:1533033818788072. [PMID: 30021498 PMCID: PMC6053871 DOI: 10.1177/1533033818788072] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Reversible electroporation is used to increase the uptake of chemotherapeutic drugs in local tumor treatment (electrochemotherapy) by applying the pulsing protocol (8 rectangular pulses, 1000 V/cm, 100 µs) standardized in the framework of the European Standard Operating Procedure on Electrochemotherapy multicenter trial. Currently, new electrochemotherapy strategies are under development to extend its applicability to tumors with different histology. Electrical parameters and drug type are critical factors. A possible approach is to test pulse parameters different from European Standard Operating Procedure on Electrochemotherapy but with comparable electroporation yield (European Standard Operating Procedure on Electrochemotherapy-equivalent protocols). Moreover, the use of non-toxic drugs combined with electroporation represents the new frontier for electrochemotherapy applications; calcium electroporation has been recently proposed as a simple tool for anticancer therapy. In vitro investigations facilitate the optimization of electrical parameters and drugs for in vivo and clinical testing. In this optimization study, new pulsing protocols have been tested by increasing the pulse number and reducing the electric field with respect to the standard. European Standard Operating Procedure on Electrochemotherapy-equivalent protocols have been identified in HL-60 and A431 cancer cell models, and a higher sensitivity in terms of electroporation yield has been recorded in HL-60 cells. Moreover, cell killing efficacy of European Standard Operating Procedure on Electrochemotherapy-equivalent protocols has been demonstrated in the presence of increasing calcium concentrations on both cell lines. Equivalent European Standard Operating Procedure on Electrochemotherapy protocols can be used to optimize the therapeutic effects in the clinic, where different regions of the same cancer tissue, with different electrical properties, might result in a differential electroporation yield of the standard protocol over the same tissue, or, eventually, in an override of the operational limits of the instrument. Moreover, using calcium can help overcome the drawbacks of standard drugs (side effects, high costs, difficult handling, preparation, and storage procedures). These results support the possibility of new treatment options in both standard electrochemotherapy and calcium electroporation, with clear advantages in the clinic.
Collapse
Affiliation(s)
- Stefania Romeo
- 1 National Research Council of Italy (CNR)-Institute for Electromagnetic Sensing of the Environment (IREA), Napoli, Italy
| | - Anna Sannino
- 1 National Research Council of Italy (CNR)-Institute for Electromagnetic Sensing of the Environment (IREA), Napoli, Italy
| | - Maria Rosaria Scarfì
- 1 National Research Council of Italy (CNR)-Institute for Electromagnetic Sensing of the Environment (IREA), Napoli, Italy
| | - P Thomas Vernier
- 2 Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA, USA
| | | | - Julie Gehl
- 4 Center for Experimental Drug and Gene Electrotransfer, Department of Clinical Oncology and Palliative Care, Zealand University Hospital, Roskilde, Denmark.,5 Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Olga Zeni
- 1 National Research Council of Italy (CNR)-Institute for Electromagnetic Sensing of the Environment (IREA), Napoli, Italy
| |
Collapse
|
21
|
Goldberg E, Suárez C, Alfonso M, Marchese J, Soba A, Marshall G. Cell membrane electroporation modeling: A multiphysics approach. Bioelectrochemistry 2018; 124:28-39. [DOI: 10.1016/j.bioelechem.2018.06.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 05/08/2018] [Accepted: 06/25/2018] [Indexed: 10/28/2022]
|
22
|
Ultrasonographic changes in the liver tumors as indicators of adequate tumor coverage with electric field for effective electrochemotherapy. Radiol Oncol 2018; 52:383-391. [PMID: 30352044 PMCID: PMC6287182 DOI: 10.2478/raon-2018-0041] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 10/04/2018] [Indexed: 12/21/2022] Open
Abstract
Background The aim of the study was to characterize ultrasonographic (US) findings during and after electrochem-otherapy of liver tumors to determine the actual ablation zone and to verify the coverage of the treated tumor with a sufficiently strong electric field for effective electrochemotherapy. Patients and methods US findings from two representative patients that describe immediate and delayed tumor changes after electrochemotherapy of colorectal liver metastases are presented. Results The US findings were interrelated with magnetic resonance imaging (MRI). Electrochemotherapy-treated tumors were exposed to electric pulses based on computational treatment planning. The US findings indicate immediate appearance of hyperechogenic microbubbles along the electrode tracks. Within minutes, the tumors became evenly hyperechogenic, and simultaneously, an oedematous rim was formed presenting as a hypoechogenic formation which persisted for several hours after treatment. The US findings overlapped with computed electric field distribution in the treated tissue, indicating adequate coverage of tumors with sufficiently strong electric field, which may predict an effective treatment outcome. Conclusions US provides a tool for assessment of appropriate electrode insertion for intraoperative electrochemo-therapy of liver tumors and assessment of the appropriate coverage of a tumor with a sufficiently strong electric field and can serve as predictor of the response of tumors.
Collapse
|
23
|
Korem M, Goldberg NS, Cahan A, Cohen MJ, Nissenbaum I, Moses AE. Clinically applicable irreversible electroporation for eradication of micro-organisms. Lett Appl Microbiol 2018; 67:15-21. [PMID: 29679390 DOI: 10.1111/lam.12996] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 04/15/2018] [Accepted: 04/16/2018] [Indexed: 12/18/2022]
Abstract
Irreversible electroporation (IRE) damages cell membranes and is used in medicine for nonthermal ablation of malignant tumours. Our aim was to evaluate the antimicrobial effect of IRE. The pathogenic micro-organisms, Staphylococcus aureus, Streptococcus pyogenes, Escherichia coli, Pseudomonas aeruginosa and Candida albicans were subjected to IRE. Survival was measured as a function of voltage and the number of pulses applied. Combined use of IRE and oxacillin for eradication of Staph. aureus was also tested. Log10 reduction in micro-organisms positively correlated with the number of applied pulses. The colony count of Strep. pyogenes and E. coli declined by 3·38 and 3·05 orders of magnitude, respectively, using an electric field of 2000 V and 100 pulses. Killing of Staph. aureus and P. aeruginosa was achieved with a double cycle of IRE (2000, 1500 V and repeated 1250 V respectively) of 50-100 IRE pulses. The addition of subclinical inhibitory concentrations of oxacillin to the Staph. aureus suspension prior to IRE led to total bacterial death, demonstrating synergism between oxacillin and IRE. Our results demonstrate that using IRE with clinically established parameters has a marked in vitro effect on pathogenic micro-organisms and highlights the potential of IRE as a treatment modality for deep-seated infections, particularly when combined with low doses of antibiotics. SIGNIFICANCE AND IMPACT OF THE STUDY Irreversible electroporation (IRE) is utilized in interventional radiology to treat cancer patients. In this study we evaluated in vitro the antimicrobial effect of IRE. We demonstrated that using IRE with clinically established parameters has a marked effect on pathogenic micro-organisms and is synergistic to antimicrobials when both are combined. Our results point to the potential of IRE as a treatment modality for deep-seated infections.
Collapse
Affiliation(s)
- M Korem
- Department of Clinical Microbiology and Infectious Diseases, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - N S Goldberg
- Department of Radiology, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - A Cahan
- IBM Research, Yorktown, NY, USA
| | - M J Cohen
- Clalit Health Services, Jerusalem, Israel
| | - I Nissenbaum
- Department of Radiology, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - A E Moses
- Department of Clinical Microbiology and Infectious Diseases, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|
24
|
Cemazar M, Sersa G, Frey W, Miklavcic D, Teissié J. Recommendations and requirements for reporting on applications of electric pulse delivery for electroporation of biological samples. Bioelectrochemistry 2018; 122:69-76. [PMID: 29571034 DOI: 10.1016/j.bioelechem.2018.03.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 03/09/2018] [Accepted: 03/10/2018] [Indexed: 01/26/2023]
Abstract
Electric field-induced membrane changes are an important approach in the life sciences. However, the developments in knowledge and translational applications face problems of reproducibility. Indeed, a quick survey of the literature reveals a lack of transparent and comprehensive reporting of essential technical information in many papers. Too many of the published scientific papers do not contain sufficient information for proper assessment of the presented results. The general rule/guidance in reporting experimental data should require details on exposure conditions such that other researchers are able to evaluate, judge and reproduce the experiments and data obtained. To enhance dissemination of information and reproducibility of protocols, it is important to agree upon nomenclature and reach a consensus on documentation of experimental methods and procedures. This paper offers recommendations and requirements for reporting on applications of electric pulse delivery for electroporation of biological samples in life science.
Collapse
Affiliation(s)
- M Cemazar
- Department of Experimental Oncology, Institute of Oncology, Ljubljana, Zaloska 2, 1000 Ljubljana, Slovenia; Faculty of Health Sciences, University of Primorska, Polje, 42, 6310 Izola, Slovenia
| | - G Sersa
- Department of Experimental Oncology, Institute of Oncology, Ljubljana, Zaloska 2, 1000 Ljubljana, Slovenia
| | - W Frey
- Karlsruhe Institute of Technology (KIT), Institute for Pulsed Power and Microwave Technology (IHM), 76344 Eggenstein-Leopoldshafen, Germany
| | - D Miklavcic
- University of Ljubljana, Faculty of Electrical Engineering, Trzaska 25, 1000 Ljubljana, Slovenia
| | - J Teissié
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France.
| |
Collapse
|
25
|
Lyu C, Wang J, Powell-Palm M, Rubinsky B. Simultaneous electroporation and dielectrophoresis in non-electrolytic micro/nano-electroporation. Sci Rep 2018; 8:2481. [PMID: 29410434 PMCID: PMC5802840 DOI: 10.1038/s41598-018-20535-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 01/19/2018] [Indexed: 12/15/2022] Open
Abstract
It was recently shown that electrolysis may play a substantial detrimental role in microfluidic electroporation. To overcome this problem, we have developed a non-electrolytic micro/nano electroporation (NEME) electrode surface, in which the metal electrodes are coated with a dielectric. A COMSOL based numerical scheme was used to simultaneously calculate the excitation frequency and dielectric material properties dependent electric field delivered across the dielectric, fluid flow, electroporation field and Clausius-Mossotti factor for yeast and E. coli cells flowing in a channel flow across a NEME surface. A two-layer model for yeast and a three-layer model for E. coli was used. The numerical analysis shows that in NEME electroporation, the electric fields could induce electroporation and dielectrophoresis simultaneously. The simultaneous occurrence of electroporation and dielectrophoresis gives rise to several interesting phenomena. For example, we found that a certain frequency exists for which an intact yeast cell is drawn to the NEME electrode, and once electroporated, the yeast cell is pushed back in the bulk fluid. The results suggest that developing electroporation technologies that combine, simultaneously, electroporation and dielectrophoresis could lead to new applications. Obviously, this is an early stage numerical study and much more theoretical and experimental research is needed.
Collapse
Affiliation(s)
- Chenang Lyu
- Zhejiang University, College of Biosystems Engineering and Food Science, Hangzhou, 310058, China.
- University of California Berkeley, Department of Mechanical Engineering, Berkeley, CA, 94720, USA.
| | - Jianping Wang
- Zhejiang University, College of Biosystems Engineering and Food Science, Hangzhou, 310058, China
| | - Matthew Powell-Palm
- University of California Berkeley, Department of Mechanical Engineering, Berkeley, CA, 94720, USA
| | - Boris Rubinsky
- University of California Berkeley, Department of Mechanical Engineering, Berkeley, CA, 94720, USA
| |
Collapse
|
26
|
Voyer D, Silve A, Mir LM, Scorretti R, Poignard C. Dynamical modeling of tissue electroporation. Bioelectrochemistry 2018; 119:98-110. [DOI: 10.1016/j.bioelechem.2017.08.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 08/22/2017] [Accepted: 08/28/2017] [Indexed: 12/21/2022]
|
27
|
Marino M, Olaiz N, Signori E, Maglietti F, Suárez C, Michinski S, Marshall G. pH fronts and tissue natural buffer interaction in gene electrotransfer protocols. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.09.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
28
|
Klein N, Guenther E, Mikus P, Stehling MK, Rubinsky B. Single exponential decay waveform; a synergistic combination of electroporation and electrolysis (E2) for tissue ablation. PeerJ 2017; 5:e3190. [PMID: 28439465 PMCID: PMC5398292 DOI: 10.7717/peerj.3190] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 03/15/2017] [Indexed: 12/18/2022] Open
Abstract
Background Electrolytic ablation and electroporation based ablation are minimally invasive, non-thermal surgical technologies that employ electrical currents and electric fields to ablate undesirable cells in a volume of tissue. In this study, we explore the attributes of a new tissue ablation technology that simultaneously delivers a synergistic combination of electroporation and electrolysis (E2). Method A new device that delivers a controlled dose of electroporation field and electrolysis currents in the form of a single exponential decay waveform (EDW) was applied to the pig liver, and the effect of various parameters on the extent of tissue ablation was examined with histology. Results Histological analysis shows that E2 delivered as EDW can produce tissue ablation in volumes of clinical significance, using electrical and temporal parameters which, if used in electroporation or electrolysis separately, cannot ablate the tissue. Discussion The E2 combination has advantages over the three basic technologies of non-thermal ablation: electrolytic ablation, electrochemical ablation (reversible electroporation with injection of drugs) and irreversible electroporation. E2 ablates clinically relevant volumes of tissue in a shorter period of time than electrolysis and electroporation, without the need to inject drugs as in reversible electroporation or use paralyzing anesthesia as in irreversible electroporation.
Collapse
Affiliation(s)
- Nina Klein
- Inter Science GmbH, Gisikon, Switzerland.,Prostata Center, Institut fur Bildgebende Diagnostik, Offenbach, Germany
| | - Enric Guenther
- Inter Science GmbH, Gisikon, Switzerland.,Prostata Center, Institut fur Bildgebende Diagnostik, Offenbach, Germany
| | - Paul Mikus
- Inter Science GmbH, Gisikon, Switzerland
| | - Michael K Stehling
- Inter Science GmbH, Gisikon, Switzerland.,Prostata Center, Institut fur Bildgebende Diagnostik, Offenbach, Germany
| | - Boris Rubinsky
- Inter Science GmbH, Gisikon, Switzerland.,Department of Mechanical Engineering, University of California, Berkeley, CA, United States
| |
Collapse
|
29
|
Muratori C, Pakhomov AG, Xiao S, Pakhomova ON. Electrosensitization assists cell ablation by nanosecond pulsed electric field in 3D cultures. Sci Rep 2016; 6:23225. [PMID: 26987779 PMCID: PMC4796786 DOI: 10.1038/srep23225] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 03/02/2016] [Indexed: 01/04/2023] Open
Abstract
Previous studies reported a delayed increase of sensitivity to electroporation (termed “electrosensitization”) in mammalian cells that had been subjected to electroporation. Electrosensitization facilitated membrane permeabilization and reduced survival in cell suspensions when the electric pulse treatments were split in fractions. The present study was aimed to visualize the effect of sensitization and establish its utility for cell ablation. We used KLN 205 squamous carcinoma cells embedded in an agarose gel and cell spheroids in Matrigel. A local ablation was created by a train of 200 to 600 of 300-ns pulses (50 Hz, 300–600 V) delivered by a two-needle probe with 1-mm inter-electrode distance. In order to facilitate ablation by engaging electrosensitization, the train was split in two identical fractions applied with a 2- to 480-s interval. At 400–600 V (2.9–4.3 kV/cm), the split-dose treatments increased the ablation volume and cell death up to 2–3-fold compared to single-train treatments. Under the conditions tested, the maximum enhancement of ablation was achieved when two fractions were separated by 100 s. The results suggest that engaging electrosensitization may assist in vivo cancer ablation by reducing the voltage or number of pulses required, or by enabling larger inter-electrode distances without losing the ablation efficiency.
Collapse
Affiliation(s)
- Claudia Muratori
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA 23508, USA
| | - Andrei G Pakhomov
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA 23508, USA
| | - Shu Xiao
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA 23508, USA.,Department of Electrical and Computer Engineering, Old Dominion University, Norfolk, VA 23508, USA
| | - Olga N Pakhomova
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA 23508, USA
| |
Collapse
|
30
|
Rosazza C, Meglic SH, Zumbusch A, Rols MP, Miklavcic D. Gene Electrotransfer: A Mechanistic Perspective. Curr Gene Ther 2016; 16:98-129. [PMID: 27029943 PMCID: PMC5412002 DOI: 10.2174/1566523216666160331130040] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 03/21/2016] [Accepted: 03/22/2016] [Indexed: 11/22/2022]
Abstract
Gene electrotransfer is a powerful method of DNA delivery offering several medical applications, among the most promising of which are DNA vaccination and gene therapy for cancer treatment. Electroporation entails the application of electric fields to cells which then experience a local and transient change of membrane permeability. Although gene electrotransfer has been extensively studied in in vitro and in vivo environments, the mechanisms by which DNA enters and navigates through cells are not fully understood. Here we present a comprehensive review of the body of knowledge concerning gene electrotransfer that has been accumulated over the last three decades. For that purpose, after briefly reviewing the medical applications that gene electrotransfer can provide, we outline membrane electropermeabilization, a key process for the delivery of DNA and smaller molecules. Since gene electrotransfer is a multipart process, we proceed our review in describing step by step our current understanding, with particular emphasis on DNA internalization and intracellular trafficking. Finally, we turn our attention to in vivo testing and methodology for gene electrotransfer.
Collapse
Affiliation(s)
| | | | | | - Marie-Pierre Rols
- Institute of Pharmacology and Structural Biology (IPBS), CNRS UMR5089, 205 route de Narbonne, 31077 Toulouse, France.
| | | |
Collapse
|
31
|
Electroporation on microchips: the harmful effects of pH changes and scaling down. Sci Rep 2015; 5:17817. [PMID: 26658168 PMCID: PMC4677314 DOI: 10.1038/srep17817] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 11/06/2015] [Indexed: 12/18/2022] Open
Abstract
Electroporation has been widely used in delivering foreign biomolecules into cells, but there is still much room for improvement, such as cell viability and integrity. In this manuscript, we investigate the distribution and the toxicity of pH changes during electroporation, which significantly decreases cell viability. A localized pH gradient forms between anode and cathode leading to a localized distribution of cell death near the electrodes, especially cathodes. The toxicity of hydroxyl ions is severe and acute due to their effect in the decomposition of phospholipid bilayer membrane. On the other hand, the electric field used for electroporation aggravates the toxicity of hydroxyl because the electropermeabilization of cell membrane makes bilayer structure more loosen and vulnerable. We also investigate the side effects during scaling down the size of electrodes in electroporation microchips. Higher percentage of cells is damaged when the size of electrodes is smaller. At last, we propose an effective strategy to constrain the change of pH by modifying the composition of electroporation buffer. The modified buffer decreases the changes of pH, thus enables high cell viability even when the electric pulse duration exceeds several milliseconds. This ability has potential advantage in some applications that require long-time electric pulse stimulation.
Collapse
|
32
|
Abstract
Emerging bacterial resistance renders many antibiotics ineffective, making alternative strategies of wound disinfection important. Here the authors report on a new, physical burn wound disinfection method: pulsed electric fields (PEFs). High voltage, short PEFs create nonthermal, permanent damage to cell membranes, possibly by irreversible electroporation. In medicine, PEF technology has recently been used for nonthermal ablation of solid tumors. The authors have expanded the spectrum of PEF applications in medicine to burn wound disinfection. A third-degree burn was induced on the dorsal skin of C57BL/6 mice. Immediately after the injury, the burn wound was infected with Acinetobacter baumannii expressing the luxCDABE operon. Thirty minutes after infection, the infected areas were treated with 80 pulses delivered at 500 V/mm, 70 μs, 1 Hz. The authors used bioluminescence to quantify bacteria on skin. Three animals were used for each experimental condition. PEFs were effective in the disinfection of infected burned murine skin. The bacterial load reduction correlated with the number of delivered pulses. Forty pulses of 500 V/mm led to a 2.04 ± 0.29 Log10 reduction in bacterial load; 80 pulses led to the immediate 5.53 ± 0.30 Log10 reduction. Three hours after PEF, the bacterial reduction of the skin treated with 500 V/mm, 80 pulses was 4.91 ± 0.71 Log10. The authors introduce a new method of wound disinfection using high voltage, short PEFs. They believe that PEF technology may represent an important alternative to antibiotics in addressing bacterial contamination of wounds, particularly those contaminated with multidrug-resistant bacteria.
Collapse
|
33
|
Meir A, Rubinsky B. Electrical impedance tomography of electrolysis. PLoS One 2015; 10:e0126332. [PMID: 26039686 PMCID: PMC4454594 DOI: 10.1371/journal.pone.0126332] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2014] [Accepted: 04/01/2015] [Indexed: 11/27/2022] Open
Abstract
The primary goal of this study is to explore the hypothesis that changes in pH during electrolysis can be detected with Electrical Impedance Tomography (EIT). The study has relevance to real time control of minimally invasive surgery with electrolytic ablation. To investigate the hypothesis, we compare EIT reconstructed images to optical images acquired using pH-sensitive dyes embedded in a physiological saline agar gel phantom treated with electrolysis. We further demonstrate the biological relevance of our work using a bacterial E.Coli model, grown on the phantom. The results demonstrate the ability of EIT to image pH changes in a physiological saline phantom and show that these changes correlate with cell death in the E.coli model. The results are promising, and invite further experimental explorations.
Collapse
Affiliation(s)
- Arie Meir
- Biophysics Graduate Program, University of California, Berkeley, California, United States of America
| | - Boris Rubinsky
- Department of Mechanical Engineering, University of California, Berkeley, California, United States of America
| |
Collapse
|
34
|
Baah-Dwomoh A, Rolong A, Gatenholm P, Davalos RV. The feasibility of using irreversible electroporation to introduce pores in bacterial cellulose scaffolds for tissue engineering. Appl Microbiol Biotechnol 2015; 99:4785-94. [PMID: 25690311 PMCID: PMC4437824 DOI: 10.1007/s00253-015-6445-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 01/27/2015] [Accepted: 01/28/2015] [Indexed: 10/24/2022]
Abstract
This work investigates the feasibility of the use of irreversible electroporation (IRE) in the biofabrication of 3D cellulose nanofibril networks via the bacterial strain Gluconacetobacter xylinus. IRE uses electrical pulses to increase membrane permeability by altering the transmembrane potential; past a threshold, damage to the cell becomes too great and leads to cell death. We hypothesized that using IRE to kill the bacteria at specific locations and particular times, we could introduce conduits in the overall scaffold by preventing cellulose biosynthesis locally. Through mathematical modeling and experimental techniques, electrical effects were investigated and the parameters for IRE of G. xylinus were determined. We found that for a specific set of parameters, an applied electric field of 8 to 12.5 kV/cm, producing a local field of 3 kV/cm, was sufficient to kill most of the bacteria and create a localized pore. However, an applied electric field of 17.5 kV/cm was required to kill all. Results suggest that IRE may be an effective tool to create scaffolds with appropriate porosity for orthopedic applications. Ideally, these engineered scaffolds could be used to successfully treat osteochondral defects.
Collapse
Affiliation(s)
- Adwoa Baah-Dwomoh
- Materials Science and Engineering, Virginia Tech, Blacksburg, VA, USA,
| | | | | | | |
Collapse
|
35
|
Meir A, Hjouj M, Rubinsky L, Rubinsky B. Magnetic resonance imaging of electrolysis. Sci Rep 2015; 5:8095. [PMID: 25659942 PMCID: PMC4321173 DOI: 10.1038/srep08095] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 01/06/2015] [Indexed: 11/09/2022] Open
Abstract
This study explores the hypothesis that Magnetic Resonance Imaging (MRI) can image the process of electrolysis by detecting pH fronts. The study has relevance to real time control of cell ablation with electrolysis. To investigate the hypothesis we compare the following MR imaging sequences: T1 weighted, T2 weighted and Proton Density (PD), with optical images acquired using pH-sensitive dyes embedded in a physiological saline agar solution phantom treated with electrolysis and discrete measurements with a pH microprobe. We further demonstrate the biological relevance of our work using a bacterial E. Coli model, grown on the phantom. The results demonstrate the ability of MRI to image electrolysis produced pH changes in a physiological saline phantom and show that these changes correlate with cell death in the E. Coli model grown on the phantom. The results are promising and invite further experimental research.
Collapse
Affiliation(s)
- Arie Meir
- Graduate Program in Biophysics, University of California Berkeley, Berkeley, CA 94720
| | - Mohammad Hjouj
- Medical Imaging Department; Faculty of Health Professions, Al-Quds University/Abu Dies/Jerusalem
| | - Liel Rubinsky
- Department of Mechanical Engineering, University of California Berkeley, Berkeley, CA 94720
| | - Boris Rubinsky
- 1] Graduate Program in Biophysics, University of California Berkeley, Berkeley, CA 94720 [2] Department of Mechanical Engineering, University of California Berkeley, Berkeley, CA 94720
| |
Collapse
|
36
|
Olaiz N, Signori E, Maglietti F, Soba A, Suárez C, Turjanski P, Michinski S, Marshall G. Tissue damage modeling in gene electrotransfer: The role of pH. Bioelectrochemistry 2014; 100:105-11. [DOI: 10.1016/j.bioelechem.2014.05.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 04/22/2014] [Accepted: 05/02/2014] [Indexed: 02/05/2023]
|
37
|
Phillips M, Rubinsky L, Meir A, Raju N, Rubinsky B. Combining Electrolysis and Electroporation for Tissue Ablation. Technol Cancer Res Treat 2014; 14:395-410. [PMID: 25416745 DOI: 10.1177/1533034614560102] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 10/22/2014] [Indexed: 11/16/2022] Open
Abstract
Electrolytic ablation is a method that operates by delivering low magnitude direct current to the target region over long periods of time, generating electrolytic products that destroy cells. This study was designed to explore the hypothesis stating that electrolytic ablation can be made more effective when the electrolysis-producing electric charges are delivered using electric pulses with field strength typical in reversible electroporation protocols. (For brevity we will refer to tissue ablation protocols that combine electroporation and electrolysis as E(2).) The mechanistic explanation of this hypothesis is related to the idea that products of electrolysis generated by E(2) protocols can gain access to the interior of the cell through the electroporation permeabilized cell membrane and therefore cause more effective cell death than from the exterior of an intact cell. The goal of this study is to provide a first-order examination of this hypothesis by comparing the charge dosage required to cause a comparable level of damage to a rat liver, in vivo, when using either conventional electrolysis or E(2) approaches. Our results show that E(2) protocols produce tissue damage that is consistent with electrolytic ablation. Furthermore, E(2) protocols cause damage comparable to that produced by conventional electrolytic protocols while delivering orders of magnitude less charge to the target tissue over much shorter periods of time.
Collapse
Affiliation(s)
- Mary Phillips
- Department of Engineering, Quinnipiac University, Hamden, CT, USA
| | - Liel Rubinsky
- Department of Mechanical Engineering, University of California Berkeley, Berkeley, CA, USA
| | - Arie Meir
- Graduate Program in Biophysics, University of California Berkeley, Berkeley, CA, USA
| | - Narayan Raju
- Pathology Research Laboratory, Inc, Hayward, CA, USA
| | - Boris Rubinsky
- Department of Mechanical Engineering, University of California Berkeley, Berkeley, CA, USA Graduate Program in Biophysics, University of California Berkeley, Berkeley, CA, USA
| |
Collapse
|
38
|
Garcia PA, Davalos RV, Miklavcic D. A numerical investigation of the electric and thermal cell kill distributions in electroporation-based therapies in tissue. PLoS One 2014; 9:e103083. [PMID: 25115970 PMCID: PMC4130512 DOI: 10.1371/journal.pone.0103083] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 06/27/2014] [Indexed: 12/18/2022] Open
Abstract
Electroporation-based therapies are powerful biotechnological tools for enhancing the delivery of exogeneous agents or killing tissue with pulsed electric fields (PEFs). Electrochemotherapy (ECT) and gene therapy based on gene electrotransfer (EGT) both use reversible electroporation to deliver chemotherapeutics or plasmid DNA into cells, respectively. In both ECT and EGT, the goal is to permeabilize the cell membrane while maintaining high cell viability in order to facilitate drug or gene transport into the cell cytoplasm and induce a therapeutic response. Irreversible electroporation (IRE) results in cell kill due to exposure to PEFs without drugs and is under clinical evaluation for treating otherwise unresectable tumors. These PEF therapies rely mainly on the electric field distributions and do not require changes in tissue temperature for their effectiveness. However, in immediate vicinity of the electrodes the treatment may results in cell kill due to thermal damage because of the inhomogeneous electric field distribution and high current density during the electroporation-based therapies. Therefore, the main objective of this numerical study is to evaluate the influence of pulse number and electrical conductivity in the predicted cell kill zone due to irreversible electroporation and thermal damage. Specifically, we simulated a typical IRE protocol that employs ninety 100-µs PEFs. Our results confirm that it is possible to achieve predominant cell kill due to electroporation if the PEF parameters are chosen carefully. However, if either the pulse number and/or the tissue conductivity are too high, there is also potential to achieve cell kill due to thermal damage in the immediate vicinity of the electrodes. Therefore, it is critical for physicians to be mindful of placement of electrodes with respect to critical tissue structures and treatment parameters in order to maintain the non-thermal benefits of electroporation and prevent unnecessary damage to surrounding healthy tissue, critical vascular structures, and/or adjacent organs.
Collapse
Affiliation(s)
- Paulo A. Garcia
- Bioelectromechanical Systems Laboratory, Virginia Tech – Wake Forest University, Blacksburg, Virginia, United States of America
| | - Rafael V. Davalos
- Bioelectromechanical Systems Laboratory, Virginia Tech – Wake Forest University, Blacksburg, Virginia, United States of America
| | - Damijan Miklavcic
- University of Ljubljana, Faculty of Electrical Engineering, Ljubljana, Slovenia
| |
Collapse
|
39
|
Golberg A, Broelsch GF, Vecchio D, Khan S, Hamblin MR, Austen WG, Sheridan RL, Yarmush ML. Eradication of multidrug-resistant A. baumannii in burn wounds by antiseptic pulsed electric field. TECHNOLOGY 2014; 2:153-160. [PMID: 25089285 PMCID: PMC4117356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Emerging bacterial resistance to multiple drugs is an increasing problem in burn wound management. New non-pharmacologic interventions are needed for burn wound disinfection. Here we report on a novel physical method for disinfection: antiseptic pulsed electric field (PEF) applied externally to the infected burns. In a mice model, we show that PEF can reduce the load of multidrug resistant Acinetobacter baumannii present in a full thickness burn wound by more than four orders of magnitude, as detected by bioluminescence imaging. Furthermore, using a finite element numerical model, we demonstrate that PEF provides non-thermal, homogeneous, full thickness treatment for the burn wound, thus, overcoming the limitation of treatment depth for many topical antimicrobials. These modeling tools and our in vivo results will be extremely useful for further translation of the PEF technology to the clinical setting, as they provide the essential elements for planning of electrode design and treatment protocol.
Collapse
|