1
|
Salehi M, Kamali MJ, Rajabzadeh A, Minoo S, Mosharafi H, Saeedi F, Daraei A. tRNA-derived fragments: Key determinants of cancer metastasis with emerging therapeutic and diagnostic potentials. Arch Biochem Biophys 2024; 753:109930. [PMID: 38369227 DOI: 10.1016/j.abb.2024.109930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/12/2024] [Accepted: 02/15/2024] [Indexed: 02/20/2024]
Abstract
Metastasis is a significant clinical challenge responsible for cancer mortality and non-response to treatment. However, the molecular mechanisms driving metastasis remain unclear, limiting the development of efficient diagnostic and therapeutic approaches. Recent breakthroughs in cancer biology have discovered a group of small non-coding RNAs called tRNA-derived fragments (tRFs), which play a critical role in the metastatic behavior of various tumors. tRFs are produced from cleavage modifications of tRNAs and have different functional classes based on the pattern of these modifications. They perform post-transcriptional regulation through microRNA-like functions, displacing RNA-binding proteins, and play a role in translational regulation by inducing ribosome synthesis, translation initiation, and epigenetic regulation. Tumor cells manipulate tRFs to develop and survive the tumor mass, primarily by inducing metastasis. Multiple studies have demonstrated the potential of tRFs as therapeutic, diagnostic, and prognostic targets for tumor metastasis. This review discusses the production and function of tRFs in cells, their aberrant molecular contributions to the metastatic environment, and their potential as promising targets for anti-metastasis treatment strategies.
Collapse
Affiliation(s)
- Mohammad Salehi
- Department of Medical Genetics, School of Advanced Technologies in Medicine, Golestan University of Medical Sciences, Gorgan, Iran; Student Research Committee, Golestan University of Medical Sciences, Gorgan, Iran
| | - Mohammad Javad Kamali
- Department of Medical Genetics, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Aliakbar Rajabzadeh
- Department of Anatomical Sciences, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Shima Minoo
- Department of Dentistry, Khorasgan Branch, Islamic Azad University, Isfahan, Iran
| | | | - Fatemeh Saeedi
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Abdolreza Daraei
- Department of Medical Genetics, School of Medicine, Babol University of Medical Sciences, Babol, Iran.
| |
Collapse
|
2
|
Zhang Z, Yu H, Yao W, Zhu N, Miao R, Liu Z, Song X, Xue C, Cai C, Cheng M, Lin K, Qi D. RRP9 promotes gemcitabine resistance in pancreatic cancer via activating AKT signaling pathway. Cell Commun Signal 2022; 20:188. [PMID: 36434608 PMCID: PMC9700947 DOI: 10.1186/s12964-022-00974-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 09/18/2022] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Pancreatic cancer (PC) is a highly lethal malignancy regarding digestive system, which is the fourth leading factor of cancer-related mortalities in the globe. Prognosis is poor due to diagnosis at advanced disease stage, low rates of surgical resection, and resistance to traditional radiotherapy and chemotherapy. In order to develop novel therapeutic strategies, further elucidation of the molecular mechanisms underlying PC chemoresistance is required. Ribosomal RNA biogenesis has been implicated in tumorigenesis. Small nucleolar RNAs (snoRNAs) is responsible for post-transcriptional modifications of ribosomal RNAs during biogenesis, which have been identified as potential markers of various cancers. Here, we investigate the U3 snoRNA-associated protein RRP9/U3-55 K along with its role in the development of PC and gemcitabine resistance. METHODS qRT-PCR, western blot and immunohistochemical staining assays were employed to detect RRP9 expression in human PC tissue samples and cell lines. RRP9-overexpression and siRNA-RRP9 plasmids were constructed to test the effects of RRP9 overexpression and knockdown on cell viability investigated by MTT assay, colony formation, and apoptosis measured by FACS and western blot assays. Immunoprecipitation and immunofluorescence staining were utilized to demonstrate a relationship between RRP9 and IGF2BP1. A subcutaneous xenograft tumor model was elucidated in BALB/c nude mice to examine the RRP9 role in PC in vivo. RESULTS Significantly elevated RRP9 expression was observed in PC tissues than normal tissues, which was negatively correlated with patient prognosis. We found that RRP9 promoted gemcitabine resistance in PC in vivo and in vitro. Mechanistically, RRP9 activated AKT signaling pathway through interacting with DNA binding region of IGF2BP1 in PC cells, thereby promoting PC progression, and inducing gemcitabine resistance through a reduction in DNA damage and inhibition of apoptosis. Treatment with a combination of the AKT inhibitor MK-2206 and gemcitabine significantly inhibited tumor proliferation induced by overexpression of RRP9 in vitro and in vivo. CONCLUSIONS Our data reveal that RRP9 has a critical function to induce gemcitabine chemoresistance in PC through the IGF2BP1/AKT signaling pathway activation, which might be a candidate to sensitize PC cells to gemcitabine. Video abstract.
Collapse
Affiliation(s)
- Zhiqi Zhang
- grid.24516.340000000123704535Department of Hepatic-Biliary-Pancreatic Surgery, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, No.1279 Sanmen Road, Hongkou District, Shanghai, 200434 China
| | - Haitao Yu
- grid.415468.a0000 0004 1761 4893Intensive Care Unit, Qingdao Municipal Hospital, Qingdao, 266001 Shandong Province China
| | - Wenyan Yao
- grid.24516.340000000123704535Department of Hepatic-Biliary-Pancreatic Surgery, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, No.1279 Sanmen Road, Hongkou District, Shanghai, 200434 China
| | - Na Zhu
- grid.24516.340000000123704535Department of Hepatic-Biliary-Pancreatic Surgery, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, No.1279 Sanmen Road, Hongkou District, Shanghai, 200434 China
| | - Ran Miao
- grid.24516.340000000123704535Department of Hepatic-Biliary-Pancreatic Surgery, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, No.1279 Sanmen Road, Hongkou District, Shanghai, 200434 China
| | - Zhiquan Liu
- grid.24516.340000000123704535Department of Hepatic-Biliary-Pancreatic Surgery, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, No.1279 Sanmen Road, Hongkou District, Shanghai, 200434 China
| | - Xuwei Song
- grid.24516.340000000123704535Department of Hepatic-Biliary-Pancreatic Surgery, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, No.1279 Sanmen Road, Hongkou District, Shanghai, 200434 China
| | - Chunhua Xue
- grid.24516.340000000123704535Department of Hepatic-Biliary-Pancreatic Surgery, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, No.1279 Sanmen Road, Hongkou District, Shanghai, 200434 China
| | - Cheng Cai
- grid.24516.340000000123704535Department of Hepatic-Biliary-Pancreatic Surgery, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, No.1279 Sanmen Road, Hongkou District, Shanghai, 200434 China
| | - Ming Cheng
- grid.24516.340000000123704535Department of Hepatic-Biliary-Pancreatic Surgery, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, No.1279 Sanmen Road, Hongkou District, Shanghai, 200434 China
| | - Ke Lin
- grid.203458.80000 0000 8653 0555Intensive Care Unit, University-Town Hospital of Chongqing Medical University, Chongqing, 401331 China
| | - Dachuan Qi
- grid.24516.340000000123704535Department of Hepatic-Biliary-Pancreatic Surgery, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, No.1279 Sanmen Road, Hongkou District, Shanghai, 200434 China
| |
Collapse
|
3
|
Song J, Zheng A, Li S, Zhang W, Zhang M, Li X, Jin F, Ji Z. Clinical significance and prognostic value of small nucleolar RNA SNORA38 in breast cancer. Front Oncol 2022; 12:930024. [PMID: 36158687 PMCID: PMC9500313 DOI: 10.3389/fonc.2022.930024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 08/10/2022] [Indexed: 12/24/2022] Open
Abstract
BackgroundBreast cancer is the most common malignant tumor among women worldwide, and breast cancer stem cells (BCSCs) are believed to be the source of tumorigenesis. New findings suggest that small nucleolar RNAs (snoRNAs) play a significant role in tumor development.MethodsThe Cancer Genome Atlas (TCGA) and Kaplan–Meier survival analysis were used to demonstrate expression and survival of SNORA38 signature. In situ hybridization (ISH) and immunohistochemical (IHC) were conducted to analyze the correlation between SNORA38 and stemness biomarker in 77 BC samples. Gene Set Enrichment Analysis (GSEA) was performed to investigate the mechanisms related to SNORA38 expression in BC. Real-time qPCR was employed to evaluate the expression of SNORA38 in breast cancer cell lines.ResultsIn the public database and patients’ biopsies, SNORA38 was significantly up-regulated in breast cancer. Furthermore, the expression of SNORA38 was significantly correlated with tumor size, lymph node metastasis, and TNM stage, among which tumor size was an independent factor for SNORA38 expression. Higher SNORA38 expression was associated with shorter overall survival (OS). Meanwhile, SNORA38 was positively associated with the stem cell marker OCT-4, which suggested that SNORA38 might be related to breast cancer stemness.ConclusionsSNORA38 is an important carcinogenic snoRNA in breast cancer and might be a prognostic biomarker for breast cancer.
Collapse
Affiliation(s)
- Jian Song
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Ang Zheng
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Shan Li
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Wenrong Zhang
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Meilin Zhang
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Xingzhe Li
- Department of Ultrasound, The First Hospital of China Medical University, Shenyang, China
| | - Feng Jin
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, China
- *Correspondence: Feng Jin, ; Ziyao Ji,
| | - Ziyao Ji
- Department of Ultrasound, The First Hospital of China Medical University, Shenyang, China
- *Correspondence: Feng Jin, ; Ziyao Ji,
| |
Collapse
|
4
|
Tumor Temperature: Friend or Foe of Virus-Based Cancer Immunotherapy. Biomedicines 2022; 10:biomedicines10082024. [PMID: 36009571 PMCID: PMC9405776 DOI: 10.3390/biomedicines10082024] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/16/2022] [Accepted: 08/16/2022] [Indexed: 11/17/2022] Open
Abstract
The temperature of a solid tumor is often dissimilar to baseline body temperature and, compared to healthy tissues, may be elevated, reduced, or a mix of both. The temperature of a tumor is dependent on metabolic activity and vascularization and can change due to tumor progression, treatment, or cancer type. Despite the need to function optimally within temperature-variable tumors, oncolytic viruses (OVs) are primarily tested at 37 °C in vitro. Furthermore, animal species utilized to test oncolytic viruses, such as mice, dogs, cats, and non-human primates, poorly recapitulate the temperature profile of humans. In this review, we discuss the importance of temperature as a variable for OV immunotherapy of solid tumors. Accumulating evidence supports that the temperature sensitivity of OVs lies on a spectrum, with some OVs likely hindered but others enhanced by elevated temperatures. We suggest that in vitro temperature sensitivity screening be performed for all OVs destined for the clinic to identify potential hinderances or benefits with regard to elevated temperature. Furthermore, we provide recommendations for the clinical use of temperature and OVs.
Collapse
|
5
|
Dome A, Dymova M, Richter V, Stepanov G. Post-Transcriptional Modifications of RNA as Regulators of Apoptosis in Glioblastoma. Int J Mol Sci 2022; 23:9272. [PMID: 36012529 PMCID: PMC9408889 DOI: 10.3390/ijms23169272] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/16/2022] [Accepted: 08/16/2022] [Indexed: 11/17/2022] Open
Abstract
This review is devoted to changes in the post-transcriptional maturation of RNA in human glioblastoma cells, which leads to disruption of the normal course of apoptosis in them. The review thoroughly highlights the latest information on both post-transcriptional modifications of certain regulatory RNAs, associated with the process of apoptosis, presents data on the features of apoptosis in glioblastoma cells, and shows the relationship between regulatory RNAs and the apoptosis in tumor cells. In conclusion, potential target candidates are presented that are necessary for the development of new drugs for the treatment of glioblastoma.
Collapse
Affiliation(s)
| | - Maya Dymova
- Institute of Chemical Biology and Fundamental Medicine of the Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | | | | |
Collapse
|
6
|
Coley AB, DeMeis JD, Chaudhary NY, Borchert GM. Small Nucleolar Derived RNAs as Regulators of Human Cancer. Biomedicines 2022; 10:1819. [PMID: 36009366 PMCID: PMC9404758 DOI: 10.3390/biomedicines10081819] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 11/25/2022] Open
Abstract
In the past decade, RNA fragments derived from full-length small nucleolar RNAs (snoRNAs) have been shown to be specifically excised and functional. These sno-derived RNAs (sdRNAs) have been implicated as gene regulators in a multitude of cancers, controlling a variety of genes post-transcriptionally via association with the RNA-induced silencing complex (RISC). In this review, we have summarized the literature connecting sdRNAs to cancer gene regulation. SdRNAs possess miRNA-like functions and are able to fill the role of tumor-suppressing or tumor-promoting RNAs in a tissue context-dependent manner. Indeed, there are many miRNAs that are actually derived from snoRNA transcripts, meaning that they are truly sdRNAs and as such are included in this review. As sdRNAs are frequently discarded from ncRNA analyses, we emphasize that sdRNAs are functionally relevant gene regulators and likely represent an overlooked subclass of miRNAs. Based on the evidence provided by the papers reviewed here, we propose that sdRNAs deserve more extensive study to better understand their underlying biology and to identify previously overlooked biomarkers and therapeutic targets for a multitude of human cancers.
Collapse
Affiliation(s)
- Alexander Bishop Coley
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA; (A.B.C.); (J.D.D.); (N.Y.C.)
| | - Jeffrey David DeMeis
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA; (A.B.C.); (J.D.D.); (N.Y.C.)
| | - Neil Yash Chaudhary
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA; (A.B.C.); (J.D.D.); (N.Y.C.)
| | - Glen Mark Borchert
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA; (A.B.C.); (J.D.D.); (N.Y.C.)
- School of Computing, University of South Alabama, Mobile, AL 36688, USA
| |
Collapse
|
7
|
Rojas-Pirela M, Andrade-Alviárez D, Medina L, Castillo C, Liempi A, Guerrero-Muñoz J, Ortega Y, Maya JD, Rojas V, Quiñones W, Michels PA, Kemmerling U. MicroRNAs: master regulators in host-parasitic protist interactions. Open Biol 2022; 12:210395. [PMID: 35702995 PMCID: PMC9198802 DOI: 10.1098/rsob.210395] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
MicroRNAs (miRNAs) are a group of small non-coding RNAs present in a wide diversity of organisms. MiRNAs regulate gene expression at a post-transcriptional level through their interaction with the 3' untranslated regions of target mRNAs, inducing translational inhibition or mRNA destabilization and degradation. Thus, miRNAs regulate key biological processes, such as cell death, signal transduction, development, cellular proliferation and differentiation. The dysregulation of miRNAs biogenesis and function is related to the pathogenesis of diseases, including parasite infection. Moreover, during host-parasite interactions, parasites and host miRNAs determine the probability of infection and progression of the disease. The present review is focused on the possible role of miRNAs in the pathogenesis of diseases of clinical interest caused by parasitic protists. In addition, the potential role of miRNAs as targets for the design of drugs and diagnostic and prognostic markers of parasitic diseases is also discussed.
Collapse
Affiliation(s)
- Maura Rojas-Pirela
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago de Chile 8380453, Chile,Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso 2373223, Chile,Facultad de Farmacia y Bioanálisis, Universidad de Los Andes, Mérida, Venezuela
| | - Diego Andrade-Alviárez
- Laboratorio de Enzimología de Parásitos, Facultad de Ciencias, Universidad de Los Andes, Mérida, Venezuela
| | - Lisvaneth Medina
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago de Chile 8380453, Chile
| | - Christian Castillo
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago de Chile 8380453, Chile,Núcleo de Investigación Aplicada en Ciencias Veterinarias y Agronómicas, Facultad de Medicina Veterinaria y Agronomía, Universidad de Las Américas, Chile
| | - Ana Liempi
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago de Chile 8380453, Chile
| | - Jesús Guerrero-Muñoz
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago de Chile 8380453, Chile
| | - Yessica Ortega
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago de Chile 8380453, Chile,Facultad de Farmacia y Bioanálisis, Universidad de Los Andes, Mérida, Venezuela
| | - Juan Diego Maya
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago de Chile 8380453, Chile
| | - Verónica Rojas
- Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso 2373223, Chile
| | - Wilfredo Quiñones
- Laboratorio de Enzimología de Parásitos, Facultad de Ciencias, Universidad de Los Andes, Mérida, Venezuela
| | - Paul A. Michels
- Centre for Immunity, Infection and Evolution and Centre for Translational and Chemical Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Ulrike Kemmerling
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago de Chile 8380453, Chile
| |
Collapse
|
8
|
Coley AB, Stahly AN, Kasukurthi MV, Barchie AA, Hutcheson SB, Houserova D, Huang Y, Watters BC, King VM, Dean MA, Roberts JT, DeMeis JD, Amin KV, McInnis CH, Godang NL, Wright RM, Haider DF, Piracha NB, Brown CL, Ijaz ZM, Li S, Xi Y, McDonald OG, Huang J, Borchert GM. MicroRNA-like snoRNA-Derived RNAs (sdRNAs) Promote Castration-Resistant Prostate Cancer. Cells 2022; 11:1302. [PMID: 35455981 PMCID: PMC9032336 DOI: 10.3390/cells11081302] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/06/2022] [Accepted: 04/10/2022] [Indexed: 12/13/2022] Open
Abstract
We have identified 38 specifically excised, differentially expressed snoRNA fragments (sdRNAs) in TCGA prostate cancer (PCa) patient samples as compared to normal prostate controls. SnoRNA-derived fragments sdRNA-D19b and -A24 emerged among the most differentially expressed and were selected for further experimentation. We found that the overexpression of either sdRNA significantly increased PC3 (a well-established model of castration-resistant prostate cancer (CRPC)) cell proliferation, and that sdRNA-D19b overexpression also markedly increased the rate of PC3 cell migration. In addition, both sdRNAs provided drug-specific resistances with sdRNA-D19b levels correlating with paclitaxel resistance and sdRNA-24A conferring dasatinib resistance. In silico and in vitro analyses revealed that two established PCa tumor suppressor genes, CD44 and CDK12, represent targets for sdRNA-D19b and sdRNA-A24, respectively. This outlines a biologically coherent mechanism by which sdRNAs downregulate tumor suppressors in AR-PCa to enhance proliferative and metastatic capabilities and to encourage chemotherapeutic resistance. Aggressive proliferation, rampant metastasis, and recalcitrance to chemotherapy are core characteristics of CRPC that synergize to produce a pathology that ranks second in cancer-related deaths for men. This study defines sdRNA-D19b and -A24 as contributors to AR-PCa, potentially providing novel biomarkers and therapeutic targets of use in PCa clinical intervention.
Collapse
Affiliation(s)
- Alexander B. Coley
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL 36608, USA; (A.B.C.); (A.A.B.); (S.B.H.); (D.H.); (Y.H.); (B.C.W.); (M.A.D.); (J.T.R.); (J.D.D.); (K.V.A.); (C.H.M.); (N.L.G.); (R.M.W.); (D.F.H.); (N.B.P.); (C.L.B.); (Z.M.I.)
| | - Ashlyn N. Stahly
- Medical Scientist Training Program, University of Colorado School of Medicine, Aurora, CO 80045, USA;
| | - Mohan V. Kasukurthi
- School of Computing, University of South Alabama, Mobile, AL 36608, USA; (M.V.K.); (S.L.); (J.H.)
| | - Addison A. Barchie
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL 36608, USA; (A.B.C.); (A.A.B.); (S.B.H.); (D.H.); (Y.H.); (B.C.W.); (M.A.D.); (J.T.R.); (J.D.D.); (K.V.A.); (C.H.M.); (N.L.G.); (R.M.W.); (D.F.H.); (N.B.P.); (C.L.B.); (Z.M.I.)
- Department of Biology, University of South Alabama, Mobile, AL 36608, USA;
| | - Sam B. Hutcheson
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL 36608, USA; (A.B.C.); (A.A.B.); (S.B.H.); (D.H.); (Y.H.); (B.C.W.); (M.A.D.); (J.T.R.); (J.D.D.); (K.V.A.); (C.H.M.); (N.L.G.); (R.M.W.); (D.F.H.); (N.B.P.); (C.L.B.); (Z.M.I.)
| | - Dominika Houserova
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL 36608, USA; (A.B.C.); (A.A.B.); (S.B.H.); (D.H.); (Y.H.); (B.C.W.); (M.A.D.); (J.T.R.); (J.D.D.); (K.V.A.); (C.H.M.); (N.L.G.); (R.M.W.); (D.F.H.); (N.B.P.); (C.L.B.); (Z.M.I.)
| | - Yulong Huang
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL 36608, USA; (A.B.C.); (A.A.B.); (S.B.H.); (D.H.); (Y.H.); (B.C.W.); (M.A.D.); (J.T.R.); (J.D.D.); (K.V.A.); (C.H.M.); (N.L.G.); (R.M.W.); (D.F.H.); (N.B.P.); (C.L.B.); (Z.M.I.)
| | - Brianna C. Watters
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL 36608, USA; (A.B.C.); (A.A.B.); (S.B.H.); (D.H.); (Y.H.); (B.C.W.); (M.A.D.); (J.T.R.); (J.D.D.); (K.V.A.); (C.H.M.); (N.L.G.); (R.M.W.); (D.F.H.); (N.B.P.); (C.L.B.); (Z.M.I.)
| | - Valeria M. King
- Department of Biology, University of South Alabama, Mobile, AL 36608, USA;
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | - Meghan A. Dean
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL 36608, USA; (A.B.C.); (A.A.B.); (S.B.H.); (D.H.); (Y.H.); (B.C.W.); (M.A.D.); (J.T.R.); (J.D.D.); (K.V.A.); (C.H.M.); (N.L.G.); (R.M.W.); (D.F.H.); (N.B.P.); (C.L.B.); (Z.M.I.)
- Department of Biology, University of South Alabama, Mobile, AL 36608, USA;
| | - Justin T. Roberts
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL 36608, USA; (A.B.C.); (A.A.B.); (S.B.H.); (D.H.); (Y.H.); (B.C.W.); (M.A.D.); (J.T.R.); (J.D.D.); (K.V.A.); (C.H.M.); (N.L.G.); (R.M.W.); (D.F.H.); (N.B.P.); (C.L.B.); (Z.M.I.)
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Jeffrey D. DeMeis
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL 36608, USA; (A.B.C.); (A.A.B.); (S.B.H.); (D.H.); (Y.H.); (B.C.W.); (M.A.D.); (J.T.R.); (J.D.D.); (K.V.A.); (C.H.M.); (N.L.G.); (R.M.W.); (D.F.H.); (N.B.P.); (C.L.B.); (Z.M.I.)
- Department of Biology, University of South Alabama, Mobile, AL 36608, USA;
| | - Krisha V. Amin
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL 36608, USA; (A.B.C.); (A.A.B.); (S.B.H.); (D.H.); (Y.H.); (B.C.W.); (M.A.D.); (J.T.R.); (J.D.D.); (K.V.A.); (C.H.M.); (N.L.G.); (R.M.W.); (D.F.H.); (N.B.P.); (C.L.B.); (Z.M.I.)
| | - Cameron H. McInnis
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL 36608, USA; (A.B.C.); (A.A.B.); (S.B.H.); (D.H.); (Y.H.); (B.C.W.); (M.A.D.); (J.T.R.); (J.D.D.); (K.V.A.); (C.H.M.); (N.L.G.); (R.M.W.); (D.F.H.); (N.B.P.); (C.L.B.); (Z.M.I.)
- Department of Biology, University of South Alabama, Mobile, AL 36608, USA;
| | - Noel L. Godang
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL 36608, USA; (A.B.C.); (A.A.B.); (S.B.H.); (D.H.); (Y.H.); (B.C.W.); (M.A.D.); (J.T.R.); (J.D.D.); (K.V.A.); (C.H.M.); (N.L.G.); (R.M.W.); (D.F.H.); (N.B.P.); (C.L.B.); (Z.M.I.)
- Department of Biology, University of South Alabama, Mobile, AL 36608, USA;
| | - Ryan M. Wright
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL 36608, USA; (A.B.C.); (A.A.B.); (S.B.H.); (D.H.); (Y.H.); (B.C.W.); (M.A.D.); (J.T.R.); (J.D.D.); (K.V.A.); (C.H.M.); (N.L.G.); (R.M.W.); (D.F.H.); (N.B.P.); (C.L.B.); (Z.M.I.)
- Department of Biology, University of South Alabama, Mobile, AL 36608, USA;
| | - David F. Haider
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL 36608, USA; (A.B.C.); (A.A.B.); (S.B.H.); (D.H.); (Y.H.); (B.C.W.); (M.A.D.); (J.T.R.); (J.D.D.); (K.V.A.); (C.H.M.); (N.L.G.); (R.M.W.); (D.F.H.); (N.B.P.); (C.L.B.); (Z.M.I.)
- Department of Biology, University of South Alabama, Mobile, AL 36608, USA;
| | - Neha B. Piracha
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL 36608, USA; (A.B.C.); (A.A.B.); (S.B.H.); (D.H.); (Y.H.); (B.C.W.); (M.A.D.); (J.T.R.); (J.D.D.); (K.V.A.); (C.H.M.); (N.L.G.); (R.M.W.); (D.F.H.); (N.B.P.); (C.L.B.); (Z.M.I.)
- Department of Biology, University of South Alabama, Mobile, AL 36608, USA;
| | - Cana L. Brown
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL 36608, USA; (A.B.C.); (A.A.B.); (S.B.H.); (D.H.); (Y.H.); (B.C.W.); (M.A.D.); (J.T.R.); (J.D.D.); (K.V.A.); (C.H.M.); (N.L.G.); (R.M.W.); (D.F.H.); (N.B.P.); (C.L.B.); (Z.M.I.)
| | - Zohaib M. Ijaz
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL 36608, USA; (A.B.C.); (A.A.B.); (S.B.H.); (D.H.); (Y.H.); (B.C.W.); (M.A.D.); (J.T.R.); (J.D.D.); (K.V.A.); (C.H.M.); (N.L.G.); (R.M.W.); (D.F.H.); (N.B.P.); (C.L.B.); (Z.M.I.)
| | - Shengyu Li
- School of Computing, University of South Alabama, Mobile, AL 36608, USA; (M.V.K.); (S.L.); (J.H.)
| | - Yaguang Xi
- Department of Genetics, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA;
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Oliver G. McDonald
- Department of Pathology, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33146, USA;
| | - Jingshan Huang
- School of Computing, University of South Alabama, Mobile, AL 36608, USA; (M.V.K.); (S.L.); (J.H.)
| | - Glen M. Borchert
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL 36608, USA; (A.B.C.); (A.A.B.); (S.B.H.); (D.H.); (Y.H.); (B.C.W.); (M.A.D.); (J.T.R.); (J.D.D.); (K.V.A.); (C.H.M.); (N.L.G.); (R.M.W.); (D.F.H.); (N.B.P.); (C.L.B.); (Z.M.I.)
- School of Computing, University of South Alabama, Mobile, AL 36608, USA; (M.V.K.); (S.L.); (J.H.)
| |
Collapse
|
9
|
Hamon L, Budkina K, Pastré D. YB-1 Structure/Function Relationship in the Packaging of mRNPs and Consequences for Translation Regulation and Stress Granule Assembly in Cells. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:S20-S93. [PMID: 35501984 DOI: 10.1134/s0006297922140036] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 06/14/2023]
Abstract
From their synthesis in the nucleus to their degradation in the cytoplasm, all mRNAs have the same objective, which is to translate the DNA-stored genetic information into functional proteins at the proper time and location. To this end, many proteins are generally associated with mRNAs as soon as transcription takes place in the nucleus to organize spatiotemporal regulation of the gene expression in cells. Here we reviewed how YB-1 (YBX1 gene), one of the major mRNA-binding proteins in the cytoplasm, packaged mRNAs into either compact or extended linear nucleoprotein mRNPs. Interestingly the structural plasticity of mRNPs coordinated by YB-1 could provide means for the contextual regulation of mRNA translation. Posttranslational modification of YB-1, notably in the long unstructured YB-1 C-terminal domain (CTD), and/or the protein partners of YB-1 may play a key role in activation/inactivation of mRNPs in the cells notably in response to cellular stress.
Collapse
Affiliation(s)
- Loïc Hamon
- SABNP, UnivEvry, INSERM U1204, Université Paris-Saclay, Evry, 91025, France.
| | - Karina Budkina
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
| | - David Pastré
- SABNP, UnivEvry, INSERM U1204, Université Paris-Saclay, Evry, 91025, France.
| |
Collapse
|
10
|
Delicato A, Montuori E, Angrisano T, Pollice A, Calabrò V. YB-1 Oncoprotein Controls PI3K/Akt Pathway by Reducing Pten Protein Level. Genes (Basel) 2021; 12:genes12101551. [PMID: 34680946 PMCID: PMC8535809 DOI: 10.3390/genes12101551] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 09/24/2021] [Accepted: 09/28/2021] [Indexed: 11/30/2022] Open
Abstract
YB-1 is a multifunctional protein overexpressed in many types of cancer. It is a crucial oncoprotein that regulates cancer cell progression and proliferation. Ubiquitously expressed in human cells, YB-1 protein functions are strictly dependent on its subcellular localization. In the cytoplasm, where YB-1 is primarily localized, it regulates mRNA translation and stability. However, in response to stress stimuli and activation of PI3K and RSK signaling, YB-1 moves to the nucleus acting as a prosurvival factor. YB-1 is reported to regulate many cellular signaling pathways in different types of malignancies. Furthermore, several observations also suggest that YB-1 is a sensor of oxidative stress and DNA damage. Here we show that YB-1 reduces PTEN intracellular levels thus leading to PI3K/Akt pathway activation. Remarkably, PTEN reduction mediated by YB-1 overexpression can be observed in human immortalized keratinocytes and HEK293T cells and cannot be reversed by proteasome inhibition. Real-time PCR data indicate that YB-1 silencing up-regulates the PTEN mRNA level. Collectively, these observations indicate that YB-1 negatively controls PTEN at the transcript level and its overexpression could confer survival and proliferative advantage to PTEN proficient cancer cells.
Collapse
|
11
|
Lambert M, Benmoussa A, Diallo I, Ouellet-Boutin K, Dorval V, Majeau N, Joly-Beauparlant C, Droit A, Bergeron A, Têtu B, Fradet Y, Pouliot F, Provost P. Identification of Abundant and Functional dodecaRNAs (doRNAs) Derived from Ribosomal RNA. Int J Mol Sci 2021; 22:9757. [PMID: 34575920 PMCID: PMC8467515 DOI: 10.3390/ijms22189757] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/02/2021] [Accepted: 09/05/2021] [Indexed: 12/17/2022] Open
Abstract
Using a modified RNA-sequencing (RNA-seq) approach, we discovered a new family of unusually short RNAs mapping to ribosomal RNA 5.8S, which we named dodecaRNAs (doRNAs), according to the number of core nucleotides (12 nt) their members contain. Using a new quantitative detection method that we developed, we confirmed our RNA-seq data and determined that the minimal core doRNA sequence and its 13-nt variant C-doRNA (doRNA with a 5' Cytosine) are the two most abundant doRNAs, which, together, may outnumber microRNAs. The C-doRNA/doRNA ratio is stable within species but differed between species. doRNA and C-doRNA are mainly cytoplasmic and interact with heterogeneous nuclear ribonucleoproteins (hnRNP) A0, A1 and A2B1, but not Argonaute 2. Reporter gene activity assays suggest that C-doRNA may function as a regulator of Annexin II receptor (AXIIR) expression. doRNAs are differentially expressed in prostate cancer cells/tissues and may control cell migration. These findings suggest that unusually short RNAs may be more abundant and important than previously thought.
Collapse
Affiliation(s)
- Marine Lambert
- CHU de Québec Research Center/CHUL Pavilion—Université Laval, 2705 boulevard Laurier, Quebec City, QC G1V 4G2, Canada; (M.L.); (A.B.); (I.D.); (K.O.-B.); (N.M.); (C.J.-B.); (A.D.); (A.B.); (B.T.); (Y.F.); (F.P.)
- Department of Microbiology, Infectious Diseases and Immunology, Université Laval, Quebec City, QC G1V 4G2, Canada
- Faculty of Medicine, Université Laval, Quebec City, QC G1V 0A6, Canada
| | - Abderrahim Benmoussa
- CHU de Québec Research Center/CHUL Pavilion—Université Laval, 2705 boulevard Laurier, Quebec City, QC G1V 4G2, Canada; (M.L.); (A.B.); (I.D.); (K.O.-B.); (N.M.); (C.J.-B.); (A.D.); (A.B.); (B.T.); (Y.F.); (F.P.)
- Department of Microbiology, Infectious Diseases and Immunology, Université Laval, Quebec City, QC G1V 4G2, Canada
- Faculty of Medicine, Université Laval, Quebec City, QC G1V 0A6, Canada
| | - Idrissa Diallo
- CHU de Québec Research Center/CHUL Pavilion—Université Laval, 2705 boulevard Laurier, Quebec City, QC G1V 4G2, Canada; (M.L.); (A.B.); (I.D.); (K.O.-B.); (N.M.); (C.J.-B.); (A.D.); (A.B.); (B.T.); (Y.F.); (F.P.)
- Department of Microbiology, Infectious Diseases and Immunology, Université Laval, Quebec City, QC G1V 4G2, Canada
- Faculty of Medicine, Université Laval, Quebec City, QC G1V 0A6, Canada
| | - Katheryn Ouellet-Boutin
- CHU de Québec Research Center/CHUL Pavilion—Université Laval, 2705 boulevard Laurier, Quebec City, QC G1V 4G2, Canada; (M.L.); (A.B.); (I.D.); (K.O.-B.); (N.M.); (C.J.-B.); (A.D.); (A.B.); (B.T.); (Y.F.); (F.P.)
- Department of Microbiology, Infectious Diseases and Immunology, Université Laval, Quebec City, QC G1V 4G2, Canada
- Faculty of Medicine, Université Laval, Quebec City, QC G1V 0A6, Canada
| | - Véronique Dorval
- CHU de Québec Research Center/CHUL Pavilion—Université Laval, 2705 boulevard Laurier, Quebec City, QC G1V 4G2, Canada; (M.L.); (A.B.); (I.D.); (K.O.-B.); (N.M.); (C.J.-B.); (A.D.); (A.B.); (B.T.); (Y.F.); (F.P.)
| | - Nathalie Majeau
- CHU de Québec Research Center/CHUL Pavilion—Université Laval, 2705 boulevard Laurier, Quebec City, QC G1V 4G2, Canada; (M.L.); (A.B.); (I.D.); (K.O.-B.); (N.M.); (C.J.-B.); (A.D.); (A.B.); (B.T.); (Y.F.); (F.P.)
| | - Charles Joly-Beauparlant
- CHU de Québec Research Center/CHUL Pavilion—Université Laval, 2705 boulevard Laurier, Quebec City, QC G1V 4G2, Canada; (M.L.); (A.B.); (I.D.); (K.O.-B.); (N.M.); (C.J.-B.); (A.D.); (A.B.); (B.T.); (Y.F.); (F.P.)
- Faculty of Medicine, Université Laval, Quebec City, QC G1V 0A6, Canada
- Department of Molecular Medicine, Université Laval, Quebec City, QC G1V 4G2, Canada
| | - Arnaud Droit
- CHU de Québec Research Center/CHUL Pavilion—Université Laval, 2705 boulevard Laurier, Quebec City, QC G1V 4G2, Canada; (M.L.); (A.B.); (I.D.); (K.O.-B.); (N.M.); (C.J.-B.); (A.D.); (A.B.); (B.T.); (Y.F.); (F.P.)
- Faculty of Medicine, Université Laval, Quebec City, QC G1V 0A6, Canada
- Department of Molecular Medicine, Université Laval, Quebec City, QC G1V 4G2, Canada
| | - Alain Bergeron
- CHU de Québec Research Center/CHUL Pavilion—Université Laval, 2705 boulevard Laurier, Quebec City, QC G1V 4G2, Canada; (M.L.); (A.B.); (I.D.); (K.O.-B.); (N.M.); (C.J.-B.); (A.D.); (A.B.); (B.T.); (Y.F.); (F.P.)
- Faculty of Medicine, Université Laval, Quebec City, QC G1V 0A6, Canada
- Department of Surgery, Université Laval, Quebec City, QC G1R 2J6, Canada
| | - Bernard Têtu
- CHU de Québec Research Center/CHUL Pavilion—Université Laval, 2705 boulevard Laurier, Quebec City, QC G1V 4G2, Canada; (M.L.); (A.B.); (I.D.); (K.O.-B.); (N.M.); (C.J.-B.); (A.D.); (A.B.); (B.T.); (Y.F.); (F.P.)
- Faculty of Medicine, Université Laval, Quebec City, QC G1V 0A6, Canada
| | - Yves Fradet
- CHU de Québec Research Center/CHUL Pavilion—Université Laval, 2705 boulevard Laurier, Quebec City, QC G1V 4G2, Canada; (M.L.); (A.B.); (I.D.); (K.O.-B.); (N.M.); (C.J.-B.); (A.D.); (A.B.); (B.T.); (Y.F.); (F.P.)
- Faculty of Medicine, Université Laval, Quebec City, QC G1V 0A6, Canada
- Department of Surgery, Université Laval, Quebec City, QC G1R 2J6, Canada
| | - Frédéric Pouliot
- CHU de Québec Research Center/CHUL Pavilion—Université Laval, 2705 boulevard Laurier, Quebec City, QC G1V 4G2, Canada; (M.L.); (A.B.); (I.D.); (K.O.-B.); (N.M.); (C.J.-B.); (A.D.); (A.B.); (B.T.); (Y.F.); (F.P.)
- Faculty of Medicine, Université Laval, Quebec City, QC G1V 0A6, Canada
- Department of Surgery, Université Laval, Quebec City, QC G1R 2J6, Canada
| | - Patrick Provost
- CHU de Québec Research Center/CHUL Pavilion—Université Laval, 2705 boulevard Laurier, Quebec City, QC G1V 4G2, Canada; (M.L.); (A.B.); (I.D.); (K.O.-B.); (N.M.); (C.J.-B.); (A.D.); (A.B.); (B.T.); (Y.F.); (F.P.)
- Department of Microbiology, Infectious Diseases and Immunology, Université Laval, Quebec City, QC G1V 4G2, Canada
- Faculty of Medicine, Université Laval, Quebec City, QC G1V 0A6, Canada
| |
Collapse
|
12
|
Y-Box Binding Protein 1 Regulates Angiogenesis in Bladder Cancer via miR-29b-3p-VEGFA Pathway. JOURNAL OF ONCOLOGY 2021; 2021:9913015. [PMID: 34306080 PMCID: PMC8270724 DOI: 10.1155/2021/9913015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 06/23/2021] [Indexed: 12/26/2022]
Abstract
Angiogenesis plays a vital role in the development of bladder cancer (BC). The Y-box-binding protein 1 (YB-1) is a well-known oncoprotein which is closely related to angiogenesis of tumors, but the relationship and mechanism of YB-1 and angiogenesis in BC remain unclear. Based on 56 clinical BC specimens, this study found that high expression of YB-1 samples demonstrated a higher expression of vascular endothelial growth factor A (VEGFA) than those of YB-1 low expression. Subsequently, the expression of YB-1 and miR-29b-3p was regulated in the BC cell lines where we noted that YB-1 promoted VEGFA expression by downregulating the expression of miR- 29b-3p. The ability of BC cells to induce angiogenesis decreased after YB-1 was knocked down. Moreover, the in vivo study further confirmed that YB-1 promotes angiogenesis in BC. Our findings enhance the understanding of how YB-1 promotes angiogenesis in BC and provide evidence for YB-1 as a therapeutic target of BC. Moreover, this may provide new inspiration for miRNAs replacement therapies.
Collapse
|
13
|
Dsouza VL, Adiga D, Sriharikrishnaa S, Suresh PS, Chatterjee A, Kabekkodu SP. Small nucleolar RNA and its potential role in breast cancer - A comprehensive review. Biochim Biophys Acta Rev Cancer 2021; 1875:188501. [PMID: 33400969 DOI: 10.1016/j.bbcan.2020.188501] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/07/2020] [Accepted: 12/28/2020] [Indexed: 02/07/2023]
Abstract
Small Nucleolar RNAs (snoRNAs) are known for their canonical functions, including ribosome biogenesis and RNA modification. snoRNAs act as endogenous sponges that regulate miRNA expression. Thus, precise snoRNA expression is critical for fine-tuning miRNA expression. snoRNAs processed into miRNA-like sequences play a crucial role in regulating the expression of protein-coding genes similar to that of miRNAs. Recent studies have linked snoRNA deregulation to breast cancer (BC). Inappropriate snoRNA expression contributes to BC pathology by facilitating breast cells to acquire cancer hallmarks. Since snoRNAs show significant differential expression in normal and cancer conditions, measuring snoRNA levels could be useful for BC prognosis and diagnosis. The present article provides a comprehensive overview of the role of snoRNAs in breast cancer pathology. More specifically, we have discussed the regulation, biological function, signaling pathways, and clinical utility of abnormally expressed snoRNAs in BC. Besides, we have also discussed the role of snoRNA host genes in breast tumorigenesis and emerging and future research directions in the field of snoRNA and cancer.
Collapse
Affiliation(s)
- Venzil Lavie Dsouza
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Divya Adiga
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - S Sriharikrishnaa
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Padmanaban S Suresh
- School of Biotechnology, National Institute of Technology, Calicut, Kerala 673601, India
| | - Aniruddha Chatterjee
- Department of Pathology, Otago Medical School, Dunedin Campus, University of Otago, Dunedin, New Zealand
| | - Shama Prasada Kabekkodu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| |
Collapse
|
14
|
Yu X, Xie Y, Zhang S, Song X, Xiao B, Yan Z. tRNA-derived fragments: Mechanisms underlying their regulation of gene expression and potential applications as therapeutic targets in cancers and virus infections. Am J Cancer Res 2021; 11:461-469. [PMID: 33391486 PMCID: PMC7681095 DOI: 10.7150/thno.51963] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 10/02/2020] [Indexed: 12/17/2022] Open
Abstract
tRNA-derived fragments (tRFs) are a new category of regulatory noncoding RNAs with distinct biological functions in cancers and stress-induced diseases. Herein, we first summarize the classification and biogenesis of tRFs. tRFs are produced from pre-tRNAs or mature tRNAs. Based on the incision loci, tRFs are classified into several types: tRF-1, tRF-2, tRF-3, tRF-5, and i-tRF. Some tRFs participate in posttranscriptional regulation through microRNA-like actions or by displacing RNA binding proteins and regulating protein translation by promoting ribosome biogenesis or interfering with translation initiation. Other tRFs prevent cell apoptosis by binding to cytochrome c or promoting virus replication. More importantly, the dysregulation of tRFs has important clinical implications. They are potential diagnostic and prognostic biomarkers of gastric cancer, liver cancer, breast cancer, prostate cancer, and chronic lymphocytic leukemia. tRFs may become new therapeutic targets for the treatment of diseases such as hepatocellular carcinoma and respiratory syncytial virus infection. Finally, we point out the existing problems and future research directions associated with tRFs. In conclusion, the current progress in the research of tRFs reveals that they have important clinical implications and may constitute novel molecular therapeutic targets for modulating pathological processes.
Collapse
|
15
|
Motolani A, Martin M, Sun M, Lu T. Phosphorylation of the Regulators, a Complex Facet of NF-κB Signaling in Cancer. Biomolecules 2020; 11:E15. [PMID: 33375283 PMCID: PMC7823564 DOI: 10.3390/biom11010015] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 12/15/2020] [Accepted: 12/23/2020] [Indexed: 12/18/2022] Open
Abstract
The nuclear factor kappa B (NF-κB) is a ubiquitous transcription factor central to inflammation and various malignant diseases in humans. The regulation of NF-κB can be influenced by a myriad of post-translational modifications (PTMs), including phosphorylation, one of the most popular PTM formats in NF-κB signaling. The regulation by phosphorylation modification is not limited to NF-κB subunits, but it also encompasses the diverse regulators of NF-κB signaling. The differential site-specific phosphorylation of NF-κB itself or some NF-κB regulators can result in dysregulated NF-κB signaling, often culminating in events that induce cancer progression and other hyper NF-κB related diseases, such as inflammation, cardiovascular diseases, diabetes, as well as neurodegenerative diseases, etc. In this review, we discuss the regulatory role of phosphorylation in NF-κB signaling and the mechanisms through which they aid cancer progression. Additionally, we highlight some of the known and novel NF-κB regulators that are frequently subjected to phosphorylation. Finally, we provide some future perspectives in terms of drug development to target kinases that regulate NF-κB signaling for cancer therapeutic purposes.
Collapse
Affiliation(s)
- Aishat Motolani
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (A.M.); (M.M.); (M.S.)
| | - Matthew Martin
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (A.M.); (M.M.); (M.S.)
| | - Mengyao Sun
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (A.M.); (M.M.); (M.S.)
| | - Tao Lu
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (A.M.); (M.M.); (M.S.)
- Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
16
|
Zhang J, Fan JS, Li S, Yang Y, Sun P, Zhu Q, Wang J, Jiang B, Yang D, Liu M. Structural basis of DNA binding to human YB-1 cold shock domain regulated by phosphorylation. Nucleic Acids Res 2020; 48:9361-9371. [PMID: 32710623 PMCID: PMC7498358 DOI: 10.1093/nar/gkaa619] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 06/27/2020] [Accepted: 07/14/2020] [Indexed: 12/11/2022] Open
Abstract
Human Y-box binding protein 1 (YB-1) is a multifunctional protein and overexpressed in many types of cancer. It specifically recognizes DNA/RNA through a cold shock domain (CSD) and regulates nucleic acid metabolism. The C-terminal extension of CSD and the phosphorylation of S102 are indispensable for YB-1 function. Until now, the roles of the C-terminal extension and phosphorylation in gene transcription and translation are still largely unknown. Here, we solved the structure of human YB-1 CSD with a C-terminal extension sequence (CSDex). The structure reveals that the extension interacts with several residues in the conventional CSD and adopts a rigid structure instead of being disordered. Either deletion of this extension or phosphorylation of S102 destabilizes the protein and results in partial unfolding. Structural characterization of CSDex in complex with a ssDNA heptamer shows that all the seven nucleotides are involved in DNA-protein interactions and the C-terminal extension provides a unique DNA binding site. Our DNA-binding study indicates that CSDex can recognize more DNA sequences than previously thought and the phosphorylation reduces its binding to ssDNA dramatically. Our results suggest that gene transcription and translation can be regulated by changing the affinity of CSDex binding to DNA and RNA through phosphorylation, respectively.
Collapse
Affiliation(s)
- Jingfeng Zhang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan National Laboratory for Optoelectronics, Wuhan 430071, China
| | - Jing-Song Fan
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, 117543, Singapore
| | - Shuangli Li
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan National Laboratory for Optoelectronics, Wuhan 430071, China
| | - Yunhuang Yang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan National Laboratory for Optoelectronics, Wuhan 430071, China
| | - Peng Sun
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan National Laboratory for Optoelectronics, Wuhan 430071, China
| | - Qinjun Zhu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan National Laboratory for Optoelectronics, Wuhan 430071, China
| | - Jiannan Wang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan National Laboratory for Optoelectronics, Wuhan 430071, China
| | - Bin Jiang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan National Laboratory for Optoelectronics, Wuhan 430071, China
| | - Daiwen Yang
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, 117543, Singapore
| | - Maili Liu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan National Laboratory for Optoelectronics, Wuhan 430071, China
| |
Collapse
|
17
|
Ojha S, Malla S, Lyons SM. snoRNPs: Functions in Ribosome Biogenesis. Biomolecules 2020; 10:biom10050783. [PMID: 32443616 PMCID: PMC7277114 DOI: 10.3390/biom10050783] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/10/2020] [Accepted: 05/13/2020] [Indexed: 01/18/2023] Open
Abstract
Ribosomes are perhaps the most critical macromolecular machine as they are tasked with carrying out protein synthesis in cells. They are incredibly complex structures composed of protein components and heavily chemically modified RNAs. The task of assembling mature ribosomes from their component parts consumes a massive amount of energy and requires greater than 200 assembly factors. Among the most critical of these are small nucleolar ribonucleoproteins (snoRNPs). These are small RNAs complexed with diverse sets of proteins. As suggested by their name, they localize to the nucleolus, the site of ribosome biogenesis. There, they facilitate multiple roles in ribosomes biogenesis, such as pseudouridylation and 2′-O-methylation of ribosomal (r)RNA, guiding pre-rRNA processing, and acting as molecular chaperones. Here, we reviewed their activity in promoting the assembly of ribosomes in eukaryotes with regards to chemical modification and pre-rRNA processing.
Collapse
Affiliation(s)
- Sandeep Ojha
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02115, USA; (S.O.); (S.M.)
| | - Sulochan Malla
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02115, USA; (S.O.); (S.M.)
| | - Shawn M. Lyons
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02115, USA; (S.O.); (S.M.)
- The Genome Science Institute, Boston University School of Medicine, Boston, MA 02115, USA
- Correspondence: ; Tel.: +1-617-358-4280
| |
Collapse
|
18
|
Y-Box Binding Proteins in mRNP Assembly, Translation, and Stability Control. Biomolecules 2020; 10:biom10040591. [PMID: 32290447 PMCID: PMC7226217 DOI: 10.3390/biom10040591] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/06/2020] [Accepted: 04/10/2020] [Indexed: 12/12/2022] Open
Abstract
Y-box binding proteins (YB proteins) are DNA/RNA-binding proteins belonging to a large family of proteins with the cold shock domain. Functionally, these proteins are known to be the most diverse, although the literature hardly offers any molecular mechanisms governing their activities in the cell, tissue, or the whole organism. This review describes the involvement of YB proteins in RNA-dependent processes, such as mRNA packaging into mRNPs, mRNA translation, and mRNA stabilization. In addition, recent data on the structural peculiarities of YB proteins underlying their interactions with nucleic acids are discussed.
Collapse
|
19
|
Liang J, Wen J, Huang Z, Chen XP, Zhang BX, Chu L. Small Nucleolar RNAs: Insight Into Their Function in Cancer. Front Oncol 2019; 9:587. [PMID: 31338327 PMCID: PMC6629867 DOI: 10.3389/fonc.2019.00587] [Citation(s) in RCA: 171] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Accepted: 06/17/2019] [Indexed: 02/04/2023] Open
Abstract
Small nucleolar RNAs (SnoRNAs) are a class of non-coding RNAs divided into two classes: C/D box snoRNAs and H/ACA box snoRNAs. The canonical function of C/D box and H/ACA box snoRNAs are 2'-O-ribose methylation and pseudouridylation of ribosomal RNAs (rRNAs), respectively. Emerging evidence has demonstrated that snoRNAs are involved in various physiological and pathological cellular processes. Mutations and aberrant expression of snoRNAs have been reported in cell transformation, tumorigenesis, and metastasis, indicating that snoRNAs may serve as biomarkers and/or therapeutic targets of cancer. Hence, further study of the functions and underlying mechanism of snoRNAs is valuable. In this review, we summarize the biogenesis and functions of snoRNAs, as well as the association of snoRNAs in different types of cancers and their potential roles in cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Junnan Liang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jingyuan Wen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhao Huang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiao-Ping Chen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bi-Xiang Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liang Chu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
20
|
tRNA-derived fragments and tRNA halves: The new players in cancers. Cancer Lett 2019; 452:31-37. [DOI: 10.1016/j.canlet.2019.03.012] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 02/25/2019] [Accepted: 03/08/2019] [Indexed: 01/27/2023]
|
21
|
Lindquist JA, Mertens PR. Cold shock proteins: from cellular mechanisms to pathophysiology and disease. Cell Commun Signal 2018; 16:63. [PMID: 30257675 PMCID: PMC6158828 DOI: 10.1186/s12964-018-0274-6] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 09/13/2018] [Indexed: 12/21/2022] Open
Abstract
Cold shock proteins are multifunctional RNA/DNA binding proteins, characterized by the presence of one or more cold shock domains. In humans, the best characterized members of this family are denoted Y-box binding proteins, such as Y-box binding protein-1 (YB-1). Biological activities range from the regulation of transcription, splicing and translation, to the orchestration of exosomal RNA content. Indeed, the secretion of YB-1 from cells via exosomes has opened the door to further potent activities. Evidence links a skewed cold shock protein expression pattern with cancer and inflammatory diseases. In this review the evidence for a causative involvement of cold shock proteins in disease development and progression is summarized. Furthermore, the potential application of cold shock proteins for diagnostics and as targets for therapy is elucidated.
Collapse
Affiliation(s)
- Jonathan A Lindquist
- Clinic for Nephrology and Hypertension, Diabetology and Endocrinology, Otto-von-Guericke University Magdeburg, Leipziger Strasse 44, 39120, Magdeburg, Germany
| | - Peter R Mertens
- Clinic for Nephrology and Hypertension, Diabetology and Endocrinology, Otto-von-Guericke University Magdeburg, Leipziger Strasse 44, 39120, Magdeburg, Germany.
| |
Collapse
|
22
|
A stress-induced response complex (SIRC) shuttles miRNAs, siRNAs, and oligonucleotides to the nucleus. Proc Natl Acad Sci U S A 2018; 115:E5756-E5765. [PMID: 29866826 PMCID: PMC6016802 DOI: 10.1073/pnas.1721346115] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The deregulation of miRNA function is critical in the pathogenesis of cancer and other diseases. miRNAs and other noncoding RNAs (ncRNAs) tightly regulate gene expression, often in the cell nucleus. Heretofore, there has been no understanding that there exists a general shuttling mechanism that brings miRNAs, in addition to therapeutic oligonucleotides and siRNAs, from the cytoplasm into the nucleus. We have identified this shuttling mechanism, which occurs in response to cell stress. Nuclear imported miRNAs are functional, can potentially alter gene expression, and participate in cell stress response mechanisms. This shuttling mechanism can be augmented to target specific RNAs, including miRNA sponges, and long ncRNAs like Malat-1, which have been implicated in promoting tumor metastasis. Although some information is available for specific subsets of miRNAs and several factors have been shown to bind oligonucleotides (ONs), no general transport mechanism for these molecules has been identified to date. In this work, we demonstrate that the nuclear transport of ONs, siRNAs, and miRNAs responds to cellular stress. Furthermore, we have identified a stress-induced response complex (SIRC), which includes Ago-1 and Ago-2 in addition to the transcription and splicing regulators YB1, CTCF, FUS, Smad1, Smad3, and Smad4. The SIRC transports endogenous miRNAs, siRNAs, and ONs to the nucleus. We show that cellular stress can significantly increase ON- or siRNA-directed splicing switch events and endogenous miRNA targeting of nuclear RNAs.
Collapse
|
23
|
Huang SQ, Sun B, Xiong ZP, Shu Y, Zhou HH, Zhang W, Xiong J, Li Q. The dysregulation of tRNAs and tRNA derivatives in cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:101. [PMID: 29743091 PMCID: PMC5944149 DOI: 10.1186/s13046-018-0745-z] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 03/29/2018] [Indexed: 11/14/2022]
Abstract
Transfer RNAs (tRNAs), traditionally considered to participate in protein translation, were interspersed in the entire genome. Recent studies suggested that dysregulation was observed in not only tRNAs, but also tRNA derivatives generated by the specific cleavage of pre- and mature tRNAs in the progression of cancer. Accumulating evidence had identified that certain tRNAs and tRNA derivatives were involved in proliferation, metastasis and invasiveness of cancer cell, as well as tumor growth and angiogenesis in several malignant human tumors. This paper reviews the importance of the dysregulation of tRNAs and tRNA derivatives during the development of cancer, such as breast cancer, lung cancer, and melanoma, aiming at a better understanding of the tumorigenesis and providing new ideas for the treatment of these cancers.
Collapse
Affiliation(s)
- Shi-Qiong Huang
- Department of Clinical Pharmacology, Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Xiangya Hospital, Central South University, Changsha, Hunan, 410078, People's Republic of China.,Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, 410078, People's Republic of China
| | - Bao Sun
- Department of Clinical Pharmacology, Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Xiangya Hospital, Central South University, Changsha, Hunan, 410078, People's Republic of China.,Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, 410078, People's Republic of China
| | - Zong-Ping Xiong
- Department of Clinical Pharmacology, Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Xiangya Hospital, Central South University, Changsha, Hunan, 410078, People's Republic of China.,Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, 410078, People's Republic of China
| | - Yan Shu
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland at Baltimore, Baltimore, MD, USA
| | - Hong-Hao Zhou
- Department of Clinical Pharmacology, Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Xiangya Hospital, Central South University, Changsha, Hunan, 410078, People's Republic of China.,Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, 410078, People's Republic of China
| | - Wei Zhang
- Department of Clinical Pharmacology, Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Xiangya Hospital, Central South University, Changsha, Hunan, 410078, People's Republic of China.,Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, 410078, People's Republic of China
| | - Jing Xiong
- Department of gynaecology and obstetrics, The Second Xiangya Hospital of Central South University, Central South University, Changsha, 410078, People's Republic of China.
| | - Qing Li
- Department of Clinical Pharmacology, Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Xiangya Hospital, Central South University, Changsha, Hunan, 410078, People's Republic of China. .,Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, 410078, People's Republic of China.
| |
Collapse
|
24
|
Serum levels of miR-320 family members are associated with clinical parameters and diagnosis in prostate cancer patients. Oncotarget 2017. [PMID: 29535815 PMCID: PMC5828216 DOI: 10.18632/oncotarget.23781] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
We studied the association of the serum levels of the microRNA family members miR-320a/-b/-c with clinico-pathological data to assess their applicability as diagnostic biomarker in prostate cancer (PCa) patients. The levels of miR-320a/-b/-c in 3 groups were evaluated by qRT-PCR (145 patients with PCa, 31 patients with benign prostatic hyperplasia (BPH) and 19 healthy controls). The levels of the three family members of miR-320 were directly correlated within each group (P < 0.001), but they differed significantly among the three groups (P < 0.001). The serum levels of the miR-320 family members were significantly increased in older patients compared to younger patients (≤ 66 years vs. > 66 years, P ≤ 0.001). In addition, the levels of all three miR-320 family members were significantly different in patients with low tumor stage compared with those with high tumor stage (miR-320a: P = 0.034; miR-320b: P = 0.006; miR-320c: P = 0.007) and in patients with low serum PSA compared with those with high serum PSA (≤ 4 ng vs. > 4 ng; miR-320a: P = 0.003; miR-320b: P = 0.003; miR-320c: P = 0.006). The levels of these miRNAs were inversely correlated with serum PSA levels. Detection in the serum samples of PCa patients with or without PSA relapse revealed higher levels of miR-320a/-b/-c in the group without PSA relapse before/after radical prostatectomy than in that with PCa relapse. In summary, the differences among the PCa/BPH/healthy control groups with respect to miR-320a/-b/-c levels in conjunction with higher levels in patients without a PSA relapse than in those with a relapse suggest the diagnostic potential of these miRNA-320 family members in PCa patients.
Collapse
|
25
|
Schulten HJ, Bangash M, Karim S, Dallol A, Hussein D, Merdad A, Al-Thoubaity FK, Al-Maghrabi J, Jamal A, Al-Ghamdi F, Choudhry H, Baeesa SS, Chaudhary AG, Al-Qahtani MH. Comprehensive molecular biomarker identification in breast cancer brain metastases. J Transl Med 2017; 15:269. [PMID: 29287594 PMCID: PMC5747948 DOI: 10.1186/s12967-017-1370-x] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 12/18/2017] [Indexed: 01/09/2023] Open
Abstract
Background Breast cancer brain metastases (BCBM) develop in about 20–30% of breast cancer (BC) patients. BCBM are associated with dismal prognosis not at least due to lack of valuable molecular therapeutic targets. The aim of the study was to identify new molecular biomarkers and targets in BCBM by using complementary state-of-the-art techniques. Methods We compared array expression profiles of three BCBM with 16 non-brain metastatic BC and 16 primary brain tumors (prBT) using a false discovery rate (FDR) p < 0.05 and fold change (FC) > 2. Biofunctional analysis was conducted on the differentially expressed probe sets. High-density arrays were employed to detect copy number variations (CNVs) and whole exome sequencing (WES) with paired-end reads of 150 bp was utilized to detect gene mutations in the three BCBM. Results The top 370 probe sets that were differentially expressed between BCBM and both BC and prBT were in the majority comparably overexpressed in BCBM and included, e.g. the coding genes BCL3, BNIP3, BNIP3P1, BRIP1, CASP14, CDC25A, DMBT1, IDH2, E2F1, MYCN, RAD51, RAD54L, and VDR. A number of small nucleolar RNAs (snoRNAs) were comparably overexpressed in BCBM and included SNORA1, SNORA2A, SNORA9, SNORA10, SNORA22, SNORA24, SNORA30, SNORA37, SNORA38, SNORA52, SNORA71A, SNORA71B, SNORA71C, SNORD13P2, SNORD15A, SNORD34, SNORD35A, SNORD41, SNORD53, and SCARNA22. The top canonical pathway was entitled, role of BRCA1 in DNA damage response. Network analysis revealed key nodes as Akt, ERK1/2, NFkB, and Ras in a predicted activation stage. Downregulated genes in a data set that was shared between BCBM and prBT comprised, e.g. BC cell line invasion markers JUN, MMP3, TFF1, and HAS2. Important cancer genes affected by CNVs included TP53, BRCA1, BRCA2, ERBB2, IDH1, and IDH2. WES detected numerous mutations, some of which affecting BC associated genes as CDH1, HEPACAM, and LOXHD1. Conclusions Using complementary molecular genetic techniques, this study identified shared and unshared molecular events in three highly aberrant BCBM emphasizing the challenge to detect new molecular biomarkers and targets with translational implications. Among new findings with the capacity to gain clinical relevance is the detection of overexpressed snoRNAs known to regulate some critical cellular functions as ribosome biogenesis. Electronic supplementary material The online version of this article (10.1186/s12967-017-1370-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hans-Juergen Schulten
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Mohammed Bangash
- Division of Neurosurgery, Department of Surgery, King Abdulaziz University Hospital, Jeddah, Saudi Arabia
| | - Sajjad Karim
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ashraf Dallol
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Deema Hussein
- King Fahad Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Adnan Merdad
- Department of Surgery, Faculty of Medicine, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Fatma K Al-Thoubaity
- Department of Surgery, Faculty of Medicine, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Jaudah Al-Maghrabi
- Department of Pathology, Faculty of Medicine, King Abdulaziz University Hospital, Jeddah, Saudi Arabia.,Department of Pathology, King Faisal Specialist Hospital and Research Center, Jeddah, Saudi Arabia
| | - Awatif Jamal
- Department of Pathology, Faculty of Medicine, King Abdulaziz University Hospital, Jeddah, Saudi Arabia
| | - Fahad Al-Ghamdi
- Department of Pathology, Faculty of Medicine, King Abdulaziz University Hospital, Jeddah, Saudi Arabia
| | - Hani Choudhry
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Saleh S Baeesa
- Division of Neurosurgery, Department of Surgery, King Abdulaziz University Hospital, Jeddah, Saudi Arabia
| | - Adeel G Chaudhary
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammed H Al-Qahtani
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
26
|
Abstract
Cells release vesicles containing selectively packaged cargo, including RNA, into the extracellular environment. Prior studies have identified RNA inside extracellular vesicles (EVs), but due to limitations of conventional sequencing methods, highly structured and posttranscriptionally modified RNA species were not effectively captured. Using an alternative sequencing approach (thermostable group II intron reverse transcriptase sequencing, TGIRT-seq), we found that EVs contain abundant small noncoding RNA species, including full-length transfer RNAs and Y RNAs. Using a knockout cell line, we obtained evidence that the RNA-binding protein YBX1 plays a role in sorting small noncoding RNAs into a subpopulation of EVs termed exosomes. These experiments expand our understanding of EV–RNA composition and provide insights into how RNA is sorted into EVs for cellular export. RNA is secreted from cells enclosed within extracellular vesicles (EVs). Defining the RNA composition of EVs is challenging due to their coisolation with contaminants, lack of knowledge of the mechanisms of RNA sorting into EVs, and limitations of conventional RNA-sequencing methods. Here we present our observations using thermostable group II intron reverse transcriptase sequencing (TGIRT-seq) to characterize the RNA extracted from HEK293T cell EVs isolated by flotation gradient ultracentrifugation and from exosomes containing the tetraspanin CD63 further purified from the gradient fractions by immunoisolation. We found that EV-associated transcripts are dominated by full-length, mature transfer RNAs (tRNAs) and other small noncoding RNAs (ncRNAs) encapsulated within vesicles. A substantial proportion of the reads mapping to protein-coding genes, long ncRNAs, and antisense RNAs were due to DNA contamination on the surface of vesicles. Nevertheless, sequences mapping to spliced mRNAs were identified within HEK293T cell EVs and exosomes, among the most abundant being transcripts containing a 5′ terminal oligopyrimidine (5′ TOP) motif. Our results indicate that the RNA-binding protein YBX1, which is required for the sorting of selected miRNAs into exosomes, plays a role in the sorting of highly abundant small ncRNA species, including tRNAs, Y RNAs, and Vault RNAs. Finally, we obtained evidence for an EV-specific tRNA modification, perhaps indicating a role for posttranscriptional modification in the sorting of some RNA species into EVs. Our results suggest that EVs and exosomes could play a role in the purging and intercellular transfer of excess free RNAs, including full-length tRNAs and other small ncRNAs.
Collapse
|
27
|
Di Liegro CM, Schiera G, Di Liegro I. Extracellular Vesicle-Associated RNA as a Carrier of Epigenetic Information. Genes (Basel) 2017; 8:genes8100240. [PMID: 28937658 PMCID: PMC5664090 DOI: 10.3390/genes8100240] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 09/08/2017] [Accepted: 09/20/2017] [Indexed: 12/19/2022] Open
Abstract
Post-transcriptional regulation of messenger RNA (mRNA) metabolism and subcellular localization is of the utmost importance both during development and in cell differentiation. Besides carrying genetic information, mRNAs contain cis-acting signals (zip codes), usually present in their 5'- and 3'-untranslated regions (UTRs). By binding to these signals, trans-acting factors, such as RNA-binding proteins (RBPs), and/or non-coding RNAs (ncRNAs), control mRNA localization, translation and stability. RBPs can also form complexes with non-coding RNAs of different sizes. The release of extracellular vesicles (EVs) is a conserved process that allows both normal and cancer cells to horizontally transfer molecules, and hence properties, to neighboring cells. By interacting with proteins that are specifically sorted to EVs, mRNAs as well as ncRNAs can be transferred from cell to cell. In this review, we discuss the mechanisms underlying the sorting to EVs of different classes of molecules, as well as the role of extracellular RNAs and the associated proteins in altering gene expression in the recipient cells. Importantly, if, on the one hand, RBPs play a critical role in transferring RNAs through EVs, RNA itself could, on the other hand, function as a carrier to transfer proteins (i.e., chromatin modifiers, and transcription factors) that, once transferred, can alter the cell's epigenome.
Collapse
Affiliation(s)
- Carlo Maria Di Liegro
- Department of Biological Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo (UNIPA), I-90128 Palermo, Italy.
| | - Gabriella Schiera
- Department of Biological Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo (UNIPA), I-90128 Palermo, Italy.
| | - Italia Di Liegro
- Department of Experimental Biomedicine and Clinical Neurosciences (BIONEC), University of Palermo,I-90127 Palermo,Italy.
| |
Collapse
|
28
|
Venkatesh T, Hussain SA, Suresh PS. A tale of three RNAs in mitochondria: tRNA, tRNA derived fragments and mitomiRs. J Theor Biol 2017; 435:42-49. [PMID: 28888947 DOI: 10.1016/j.jtbi.2017.09.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 09/01/2017] [Accepted: 09/02/2017] [Indexed: 10/18/2022]
Affiliation(s)
- Thejaswini Venkatesh
- Department of Biochemistry and Molecular Biology, Central University of Kerala, Kasargod, Kerala, India.
| | - Shaharabhanu A Hussain
- Department of Biochemistry and Molecular Biology, Central University of Kerala, Kasargod, Kerala, India
| | - Padmanaban S Suresh
- Department of Biosciences, Mangalore University, Mangalagangotri, Mangalore 574 199, Karnataka, India.
| |
Collapse
|
29
|
Soares AR, Santos M. Discovery and function of transfer RNA-derived fragments and their role in disease. WILEY INTERDISCIPLINARY REVIEWS-RNA 2017; 8. [PMID: 28608481 DOI: 10.1002/wrna.1423] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 03/16/2017] [Accepted: 03/23/2017] [Indexed: 01/02/2023]
Abstract
Until recently, transfer RNAs (tRNAs) were thought to function in protein translation only. However, recent findings demonstrate that both pre- and mature tRNAs can undergo endonucleolytic cleavage by different ribonucleases originating different types of small non-coding RNAs, known as tRNA-derived fragments (tRFs). tRFs are classified according to their origin and are implicated in various cellular processes, namely apoptosis, protein synthesis control, and RNA interference. Although their functions are still poorly understood, their mechanisms of action vary according to the tRF sub-type. Several tRFs have been associated with cancer, neurodegenerative disorders, and viral infections and growing evidence shows that they may constitute novel molecular targets for modulating pathological processes. Here, we recapitulate the current knowledge of tRF biology, highlight the known functions and mechanisms of action of the different sub-classes of tRFs and discuss their implications in human disease. WIREs RNA 2017, 8:e1423. doi: 10.1002/wrna.1423 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Ana Raquel Soares
- Institute of Biomedicine iBiMED, University of Aveiro, Aveiro, Portugal
| | - Manuel Santos
- Institute of Biomedicine iBiMED, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
30
|
Khurana R, Ranches G, Schafferer S, Lukasser M, Rudnicki M, Mayer G, Hüttenhofer A. Identification of urinary exosomal noncoding RNAs as novel biomarkers in chronic kidney disease. RNA (NEW YORK, N.Y.) 2017; 23:142-152. [PMID: 27872161 PMCID: PMC5238789 DOI: 10.1261/rna.058834.116] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 11/08/2016] [Indexed: 06/06/2023]
Abstract
In chronic kidney disease (CKD), the decline in the glomerular filtration rate is associated with increased morbidity and mortality and thus poses a major challenge for healthcare systems. While the contribution of tissue-derived miRNAs and mRNAs to CKD progression has been extensively studied, little is known about the role of urinary exosomes and their association with CKD. Exosomes are small, membrane-derived endocytic vesicles that contribute to cell-to-cell communication and are present in various body fluids, such as blood or urine. Next-generation sequencing approaches have revealed that exosomes are enriched in noncoding RNAs and thus exhibit great potential for sensitive nucleic acid biomarkers in various human diseases. Therefore, in this study we aimed to identify urinary exosomal ncRNAs as novel biomarkers for diagnosis of CKD. Since up to now most approaches have focused on the class of miRNAs, we extended our analysis to several other noncoding RNA classes, such as tRNAs, tRNA fragments (tRFs), mitochondrial tRNAs, or lincRNAs. For their computational identification from RNA-seq data, we developed a novel computational pipeline, designated as ncRNASeqScan. By these analyses, in CKD patients we identified 30 differentially expressed ncRNAs, derived from urinary exosomes, as suitable biomarkers for early diagnosis. Thereby, miRNA-181a appeared as the most robust and stable potential biomarker, being significantly decreased by about 200-fold in exosomes of CKD patients compared to healthy controls. Using a cell culture system for CKD indicated that urinary exosomes might indeed originate from renal proximal tubular epithelial cells.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Biomarkers/urine
- Case-Control Studies
- Early Diagnosis
- Epithelial Cells/metabolism
- Epithelial Cells/pathology
- Exosomes/chemistry
- Exosomes/metabolism
- Female
- Glomerular Filtration Rate
- High-Throughput Nucleotide Sequencing
- Humans
- Kidney Tubules, Proximal/metabolism
- Kidney Tubules, Proximal/pathology
- Male
- MicroRNAs/urine
- Middle Aged
- Molecular Sequence Annotation
- RNA/urine
- RNA, Long Noncoding/urine
- RNA, Mitochondrial
- RNA, Transfer/urine
- Renal Insufficiency, Chronic/diagnosis
- Renal Insufficiency, Chronic/pathology
- Renal Insufficiency, Chronic/urine
- Sequence Analysis, RNA
- Severity of Illness Index
Collapse
Affiliation(s)
- Rimpi Khurana
- Division of Genomics and RNomics, Biocenter, Medical University Innsbruck, 6020 Innsbruck, Austria
| | - Glory Ranches
- Division of Genomics and RNomics, Biocenter, Medical University Innsbruck, 6020 Innsbruck, Austria
| | - Simon Schafferer
- Division of Genomics and RNomics, Biocenter, Medical University Innsbruck, 6020 Innsbruck, Austria
| | - Melanie Lukasser
- Division of Genomics and RNomics, Biocenter, Medical University Innsbruck, 6020 Innsbruck, Austria
| | - Michael Rudnicki
- Department of Internal Medicine IV, Nephrology and Hypertension, Medical University Innsbruck, 6020 Innsbruck, Austria
| | - Gert Mayer
- Department of Internal Medicine IV, Nephrology and Hypertension, Medical University Innsbruck, 6020 Innsbruck, Austria
| | - Alexander Hüttenhofer
- Division of Genomics and RNomics, Biocenter, Medical University Innsbruck, 6020 Innsbruck, Austria
- i-med GenomeSeq Core, 6020 Innsbruck, Austria
| |
Collapse
|
31
|
Shurtleff MJ, Temoche-Diaz MM, Karfilis KV, Ri S, Schekman R. Y-box protein 1 is required to sort microRNAs into exosomes in cells and in a cell-free reaction. eLife 2016; 5. [PMID: 27559612 PMCID: PMC5047747 DOI: 10.7554/elife.19276] [Citation(s) in RCA: 440] [Impact Index Per Article: 48.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 08/24/2016] [Indexed: 12/31/2022] Open
Abstract
Exosomes are small vesicles that are secreted from metazoan cells and may convey selected membrane proteins and small RNAs to target cells for the control of cell migration, development and metastasis. To study the mechanisms of RNA packaging into exosomes, we devised a purification scheme based on the membrane marker CD63 to isolate a single exosome species secreted from HEK293T cells. Using immunoisolated CD63-containing exosomes we identified a set of miRNAs that are highly enriched with respect to their cellular levels. To explore the biochemical requirements for exosome biogenesis and RNA packaging, we devised a cell-free reaction that recapitulates the species-selective enclosure of miR-223 in isolated membranes supplemented with cytosol. We found that the RNA-binding protein Y-box protein I (YBX1) binds to and is required for the sorting of miR-223 in the cell-free reaction. Furthermore, YBX1 serves an important role in the secretion of miRNAs in exosomes by HEK293T cells. DOI:http://dx.doi.org/10.7554/eLife.19276.001 Human cells release molecules into their surroundings via membrane-bound packets called exosomes. These molecules can then circulate throughout the body and are protected from degradation. Among the cargos carried by exosomes are small molecules of RNA known as microRNAs, which are involved in regulating gene activity. Only a select subset of the hundreds of microRNAs in a human cell end up packaged into exosomes. This suggests that there might be a specific mechanism that sorts those microRNAs that are destined for export. However, few proteins or other factors that might be involved in this sorting process had been identified to date. Shurtleff et al. set out to identify these factors and started by purifying exosomes from human cells grown in the laboratory and looking for microRNAs that were more abundant in the exosomes than the cells. One exosome-specific microRNA, called miR-223, was further studied via a test-tube based system that uses extracts from cells rather than cells themselves. These experiments confirmed that miR-223 is selectively packed into exosomes that formed in the test tube. Using this system, Shurtleff et al. then isolated a protein called Y-box Protein I (or YBX1 for short) that binds to RNA molecules and found that it was required for this selective packaging. YBX1 is known to be a constituent of exosomes released from intact cells and may therefore be required to sort other RNA molecules into exosomes. Future studies will explore how YBX1 recognizes those RNA molecules to be exported from cells via exosomes. Also, because exosomes have been implicated in some diseases such as cancer, it will be important to explore what role exosome-specific microRNAs play in both health and disease. DOI:http://dx.doi.org/10.7554/eLife.19276.002
Collapse
Affiliation(s)
- Matthew J Shurtleff
- Department of Plant and Microbial Biology, University of California, Berkeley, United States
| | - Morayma M Temoche-Diaz
- Department of Plant and Microbial Biology, University of California, Berkeley, United States
| | - Kate V Karfilis
- Institute of Molecular Biology, University of Oregon, Eugene, United States
| | - Sayaka Ri
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, University of California, Berkeley, United States
| | - Randy Schekman
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, University of California, Berkeley, United States
| |
Collapse
|
32
|
Keam SP, Hutvagner G. tRNA-Derived Fragments (tRFs): Emerging New Roles for an Ancient RNA in the Regulation of Gene Expression. Life (Basel) 2015; 5:1638-51. [PMID: 26703738 PMCID: PMC4695841 DOI: 10.3390/life5041638] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 11/17/2015] [Accepted: 11/17/2015] [Indexed: 12/15/2022] Open
Abstract
This review will summarise the recent discoveries and current state of research on short noncoding RNAs derived from tRNAs—known as tRNA-derived fragments (tRFs). It will describe the features of the known subtypes of these RNAs; including sequence characteristics, protein interactors, expression characteristics, biogenesis, and similarity to canonical miRNA pathways. Also their role in regulating gene expression; including mediating translational suppression, will be discussed. We also highlight their potential use as biomarkers, functions in gene regulation and links to disease. Finally, this review will speculate as to the origin and rationale for the conservation of this novel class of noncoding RNAs amongst both prokaryotes and eukaryotes.
Collapse
Affiliation(s)
- Simon P Keam
- Centre for Health Technologies, Faculty of Engineering and Information Technology, University of Technology Sydney, Ultimo 2007, Australia.
| | - Gyorgy Hutvagner
- Centre for Health Technologies, Faculty of Engineering and Information Technology, University of Technology Sydney, Ultimo 2007, Australia.
| |
Collapse
|
33
|
Venkatesh T, Suresh PS, Tsutsumi R. Non-coding RNAs: Functions and applications in endocrine-related cancer. Mol Cell Endocrinol 2015; 416:88-96. [PMID: 26360585 DOI: 10.1016/j.mce.2015.08.026] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Revised: 08/28/2015] [Accepted: 08/31/2015] [Indexed: 01/25/2023]
Abstract
A significant fraction of the human genome is transcribed as non-coding RNAs (ncRNAs). This non-coding transcriptome has challenged the notion of the central dogma and its involvement in transcriptional and post-transcriptional regulation of gene expression is well established. Interestingly, several ncRNAs are dysregulated in cancer and current non-coding transcriptome research aims to use our increasing knowledge of these ncRNAs for the development of cancer biomarkers and anti-cancer drugs. In endocrine-related cancers, for which survival rates can be relatively low, there is a need for such advancements. In this review, we aimed to summarize the roles and clinical implications of recently discovered ncRNAs, including long ncRNAs, PIWI-interacting RNAs, tRNA- and Y RNA-derived ncRNAs, and small nucleolar RNAs, in endocrine-related cancers affecting both sexes. We focus on recent studies highlighting discoveries in ncRNA biology and expression in cancer, and conclude with a discussion on the challenges and future directions, including clinical application. ncRNAs show great promise as diagnostic tools and therapeutic targets, but further work is necessary to realize the potential of these unconventional transcripts.
Collapse
MESH Headings
- Biomarkers, Tumor/classification
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Endocrine Gland Neoplasms/genetics
- Endocrine Gland Neoplasms/metabolism
- Endocrine Gland Neoplasms/therapy
- Female
- Gene Expression Regulation
- Humans
- Male
- RNA, Long Noncoding/classification
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- RNA, Small Interfering/classification
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- RNA, Small Nucleolar/classification
- RNA, Small Nucleolar/genetics
- RNA, Small Nucleolar/metabolism
- Transcriptome
Collapse
Affiliation(s)
- Thejaswini Venkatesh
- Nitte University Centre for Science Education and Research (NUCSER), Nitte University, Deralakatte, Mangalore 575 018, Karnataka, India
| | - Padmanaban S Suresh
- Department of Biosciences, Mangalore University, Mangalagangothri, Mangalore 574 199, Karnataka, India.
| | - Rie Tsutsumi
- Division of Nutrition and Metabolism, Institute of Biomedical Science, Tokushima University, Tokushima, Japan
| |
Collapse
|
34
|
A novel miRNA-based predictive model for biochemical failure following post-prostatectomy salvage radiation therapy. PLoS One 2015; 10:e0118745. [PMID: 25760964 PMCID: PMC4356539 DOI: 10.1371/journal.pone.0118745] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 01/12/2015] [Indexed: 12/11/2022] Open
Abstract
Purpose To develop a microRNA (miRNA)-based predictive model for prostate cancer patients of 1) time to biochemical recurrence after radical prostatectomy and 2) biochemical recurrence after salvage radiation therapy following documented biochemical disease progression post-radical prostatectomy. Methods Forty three patients who had undergone salvage radiation therapy following biochemical failure after radical prostatectomy with greater than 4 years of follow-up data were identified. Formalin-fixed, paraffin-embedded tissue blocks were collected for all patients and total RNA was isolated from 1mm cores enriched for tumor (>70%). Eight hundred miRNAs were analyzed simultaneously using the nCounter human miRNA v2 assay (NanoString Technologies; Seattle, WA). Univariate and multivariate Cox proportion hazards regression models as well as receiver operating characteristics were used to identify statistically significant miRNAs that were predictive of biochemical recurrence. Results Eighty eight miRNAs were identified to be significantly (p<0.05) associated with biochemical failure post-prostatectomy by multivariate analysis and clustered into two groups that correlated with early (≤ 36 months) versus late recurrence (>36 months). Nine miRNAs were identified to be significantly (p<0.05) associated by multivariate analysis with biochemical failure after salvage radiation therapy. A new predictive model for biochemical recurrence after salvage radiation therapy was developed; this model consisted of miR-4516 and miR-601 together with, Gleason score, and lymph node status. The area under the ROC curve (AUC) was improved to 0.83 compared to that of 0.66 for Gleason score and lymph node status alone. Conclusion miRNA signatures can distinguish patients who fail soon after radical prostatectomy versus late failures, giving insight into which patients may need adjuvant therapy. Notably, two novel miRNAs (miR-4516 and miR-601) were identified that significantly improve prediction of biochemical failure post-salvage radiation therapy compared to clinico-histopathological factors, supporting the use of miRNAs within clinically used predictive models. Both findings warrant further validation studies.
Collapse
|