1
|
Gavilan NH, de Freitas Morel LJ, da Silva Coppede J, Taleb-Contini SH, de Castro França S, Bertoni BW, Pereira AMS. Genetic diversity and verbascoside content in natural populations of Pyrostegia venusta (Ker Gawl.) Miers. Mol Biol Rep 2022; 49:8617-8625. [PMID: 35867291 DOI: 10.1007/s11033-022-07697-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 06/09/2022] [Indexed: 10/17/2022]
Abstract
BACKGROUND Pyrostegia venusta (Ker Gawl.) Miers occurs in threatened biodiversity hotspots of Cerrado and Atlantic forest biomes in Brazil and is used in traditional medicine to treat various respiratory and skin diseases. METHODS AND RESULTS This study (i) examined the genetic diversity and structure of six natural populations of P. venusta from different Brazilian regions using sequence-related amplified polymorphism (SRAP) markers; and (ii) compared the intra- and inter-populational levels of the bioactive component verbascoside using high-performance liquid chromatography. The population from Nova Mutum, Mato Grosso, presented the highest genetic variability (Nei index H = 0.2759; Shannon index I = 0.4170; 85.14% polymorphic loci), whereas the population from Araxá, Minas Gerais, presented the lowest genetic variability (H = 0.1811; I = 0.2820; 70.27% polymorphic loci). The intra-populational variability (79%) was significantly higher (p = 0.001) than the inter-populational variability (21%). The populations were clustered into two groups but their genetic differentiation was not associated with geographical origin (Mantel test, r = 0.328; p > 0.05). The verbascoside content significantly differed (p > 0.05) among the six populations and between the individuals from each population. The highest verbascoside levels (> 200 µg/mg extract) were detected in populations from Araxá and Serrana, while the lowest verbacoside levels were detected in populations from Paranaíta and Sinop. CONCLUSIONS This is the first report on the use of SRAP markers to analyze genetic variability in the family Bignoniaceae. Our findings shall help to better understand the genetic and chemical diversity of P. venusta populations, as well as provide useful information to select the most appropriate individuals to prepare phytomedicines.
Collapse
Affiliation(s)
- Natália Helena Gavilan
- Departamento de Horticultura, Universidade Estadual Paulista "Júlio de Mesquita Filho", Botucatu, São Paulo, 18618-970, Brazil
| | - Lucas Junqueira de Freitas Morel
- Departamento de Biotecnologia em Plantas Medicinais, Universidade de Ribeirão Preto-UNAERP, Ribeirão Preto, São Paulo, 14096-900, Brazil
| | - Juliana da Silva Coppede
- Departamento de Biotecnologia em Plantas Medicinais, Universidade de Ribeirão Preto-UNAERP, Ribeirão Preto, São Paulo, 14096-900, Brazil
| | - Silvia Helena Taleb-Contini
- Departamento de Biotecnologia em Plantas Medicinais, Universidade de Ribeirão Preto-UNAERP, Ribeirão Preto, São Paulo, 14096-900, Brazil
| | - Suzelei de Castro França
- Departamento de Biotecnologia em Plantas Medicinais, Universidade de Ribeirão Preto-UNAERP, Ribeirão Preto, São Paulo, 14096-900, Brazil
| | - Bianca Waléria Bertoni
- Departamento de Biotecnologia em Plantas Medicinais, Universidade de Ribeirão Preto-UNAERP, Ribeirão Preto, São Paulo, 14096-900, Brazil.,Jardim Botânico de Plantas Medicinais Ordem e Progresso, Jardinópolis, São Paulo, 14680-000, Brazil
| | - Ana Maria Soares Pereira
- Departamento de Biotecnologia em Plantas Medicinais, Universidade de Ribeirão Preto-UNAERP, Ribeirão Preto, São Paulo, 14096-900, Brazil. .,Jardim Botânico de Plantas Medicinais Ordem e Progresso, Jardinópolis, São Paulo, 14680-000, Brazil.
| |
Collapse
|
2
|
Tsuruta SI, Srithawong S, Sakuanrungsirikul S, Ebina M, Kobayashi M, Terajima Y, Tippayawat A, Ponragdee W. Erianthus germplasm collection in Thailand: genetic structure and phylogenetic aspects of tetraploid and hexaploid accessions. BMC PLANT BIOLOGY 2022; 22:45. [PMID: 35065606 PMCID: PMC8783461 DOI: 10.1186/s12870-021-03418-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 12/24/2021] [Indexed: 06/05/2023]
Abstract
BACKGROUND The genus Erianthus, which belongs to the "Saccharum complex", includes C4 warm-season grasses. Erianthus species are widely distributed throughout Southeast Asia, East Asia and South Asia. Erianthus arundinaceus (Retz.) Jeswiet is highly adaptable to the environment, has a high percentage of dry matter, and is highly productive. Recently, this species has attracted attention as a novel bioenergy crop and as a breeding material for sugarcane improvement. Such interest in E. arundinaceus has accelerated the collection and conservation of its genetic resources, mainly in Asian countries, and also evaluation of morphological, agricultural, and cytogenetic features in germplasm collections. In Thailand, genetic resources of E. arundinaceus have been collected over the past 20 years and their phenotypic traits have been evaluated. However, the genetic differences and relatedness of the germplasms are not fully understood. RESULTS A set of 41 primer pairs for nuclear simple sequence repeats (SSRs) developed from E. arundinaceus were used to assess the genetic diversity of 121 Erianthus germplasms collected in Thailand; of these primer pairs, 28 detected a total of 316 alleles. A Bayesian clustering approach with these alleles classified the accessions into four main groups, generally corresponding to the previous classification based on phenotypic analysis. The results of principal coordinate analysis and phylogenetic analysis of the 121 accessions on the basis of the SSR markers showed the same trend as Bayesian clustering, whereas sequence variations of three non-coding regions of chloroplast DNA revealed eight haplotypes among the accessions. The analysis of genetic structure and phylogenetic relationships, however, found some accessions whose classification contradicted the results of previous phenotypic classification. CONCLUSIONS The molecular approach used in this study characterized the genetic diversity and relatedness of Erianthus germplasms collected across Thailand. This knowledge would allow efficient maintenance and conservation of the genetic resources of this grass and would help to use Erianthus species as breeding materials for development of novel bioenergy crops and sugarcane improvement.
Collapse
Affiliation(s)
- Shin-Ichi Tsuruta
- Tropical Agriculture Research Front, Japan International Research Center for Agricultural Sciences (JIRCAS), Ishigaki, Okinawa, 907-0002, Japan.
| | - Suparat Srithawong
- Department of Agriculture, Khon Kaen Field Crops Research Center (KKFCRC), Khon Kaen, 40000, Thailand
- Present address: Biotechnology Research and Development Office (BIRDO), Department of Agriculture, Pathum Thani, 12110, Thailand
| | | | - Masumi Ebina
- Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization (NARO), Nasushiobara, Tochigi, 329-2793, Japan
| | - Makoto Kobayashi
- Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization (NARO), Nasushiobara, Tochigi, 329-2793, Japan
| | - Yoshifumi Terajima
- Tropical Agriculture Research Front, Japan International Research Center for Agricultural Sciences (JIRCAS), Ishigaki, Okinawa, 907-0002, Japan
| | - Amarawan Tippayawat
- Department of Agriculture, Khon Kaen Field Crops Research Center (KKFCRC), Khon Kaen, 40000, Thailand
- Present address: Department of Agriculture, Faculty of Agriculture, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Werapon Ponragdee
- Department of Agriculture, Khon Kaen Field Crops Research Center (KKFCRC), Khon Kaen, 40000, Thailand
- Present address: Field and Renewable Energy Crops Research Institute (FCRI), Department of Agriculture, Bangkok, 10900, Thailand
| |
Collapse
|
3
|
Sheng J, She X, Liu X, Wang J, Hu Z. Comparative analysis of codon usage patterns in chloroplast genomes of five Miscanthus species and related species. PeerJ 2021; 9:e12173. [PMID: 34631315 PMCID: PMC8466072 DOI: 10.7717/peerj.12173] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 08/27/2021] [Indexed: 11/20/2022] Open
Abstract
Miscanthus is not only a perennial fiber biomass crop, but also valuable breeding resource for its low-nutrient requirements, photosynthetic efficiency and strong adaptability to environment. In the present study, the codon usage patterns of five different Miscanthus plants and other two related species were systematically analyzed. The results indicated that the cp genomes of the seven representative species were preference to A/T bases and A/T-ending codons. In addition, 21 common high-frequency codons and 4–11 optimal codons were detected in the seven chloroplast genomes. The results of ENc-plot, PR2-plot and neutrality analysis revealed the codon usage patterns of the seven chloroplast genomes are influenced by multiple factors, in which nature selection is the main influencing factor. Comparative analysis of the codon usage frequencies between the seven representative species and four model organisms suggested that Arabidopsis thaliana, Populus trichocarpa and Saccharomyces cerevisiae could be considered as preferential appropriate exogenous expression receptors. These results might not only provide important reference information for evolutionary analysis, but also shed light on the way to improve the expression efficiency of exogenous gene in transgenic research based on codon optimization.
Collapse
Affiliation(s)
- Jiajing Sheng
- Nantong University, School of Life Sciences, Jiangsu Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong, China
| | | | - Xiaoyu Liu
- Nantong University, School of Life Sciences, Jiangsu Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong, China
| | - Jia Wang
- Anhui University of Science and Technology, Huainan, China
| | | |
Collapse
|
4
|
Ma SJ, Sa KJ, Hong TK, Lee JK. Genetic diversity and population structure analysis in Perilla crop and their weedy types from northern and southern areas of China based on simple sequence repeat (SSRs). Genes Genomics 2018; 41:267-281. [PMID: 30426456 DOI: 10.1007/s13258-018-0756-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 10/24/2018] [Indexed: 11/29/2022]
Abstract
INTRODUCTION Identification of genetic variation is an essential ability for the long-term success of breeding programs and maximizes the use of germplasm resources. In East Asia, China has a long history of the cultivation of Perilla crop, but there has been little research on the genetic diversity and genetic relationships among accessions of Perilla crop and their weedy types. OBJECTIVES To better understand the genetic variations of the cultivated and weedy types of Perilla crop in China, the 91 accessions were evaluated for genetic diversity by 21 simple sequence repeat (SSR) markers. METHODS SSR amplifications were conducted in a total volume of 20 µL, consisting of 20 ng genomic DNA, 1X PCR buffer, 0.5 µM forward and reverse primers, 0.2 mM dNTPs, and 1 U Taq polymerase. Power Marker version 3.25 was applied to obtain the information on the number of alleles, allele frequency, major allele frequency, gene diversity (GD), and polymorphic information content (PIC). The similarity matrix was used to construct an unweighted pair group method with arithmetic mean dendrogram by the application of SAHN-Clustering from NTSYS-pc.V.2.1. RESULTS A total of 147 alleles were identified with an average of 7 alleles per locus. The average values of PIC and GD were 0.577 and 0.537, respectively. The genetic diversity level of accessions from Northern China was lower than accessions from Southern China. The genetic diversity level and PIC values for accessions of var. crispa were the highest. For accessions of cultivated var. frutescens, genetic diversity in Southern China was higher than that in Northern China. CONCLUSION Most cultivated Perilla accessions were clearly separated from weedy Perilla accessions, but there was no clear geographic structure between cultivated Perilla crop and weedy types based on their regional distribution. This study demonstrated the utility of SSR analysis for performing genetic and population analysis of cultivated and weedy types of Perilla accessions in China.
Collapse
Affiliation(s)
- Shi Jun Ma
- Department of Applied Plant Sciences, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, 24341, South Korea.,School of Life Sciences, Shandong University, No.72 Binhai Road, Jimo District, Qingdao, 266237, P.R. China
| | - Kyu Jin Sa
- Department of Applied Plant Sciences, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, 24341, South Korea
| | - Tak-Ki Hong
- Department of Applied Plant Sciences, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, 24341, South Korea
| | - Ju Kyong Lee
- Department of Applied Plant Sciences, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, 24341, South Korea.
| |
Collapse
|
5
|
Zhang J, Yan J, Shen X, Chang D, Bai S, Zhang Y, Zhang J. How genetic variation is affected by geographic environments and ploidy level in Erianthus arundinaceus? PLoS One 2017; 12:e0178451. [PMID: 28557997 PMCID: PMC5448781 DOI: 10.1371/journal.pone.0178451] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 05/12/2017] [Indexed: 11/18/2022] Open
Abstract
Erianthus arundinaceus is not only a candidate plant for sugarcane breeding programs, but also a potential bioenergy grass. Genetic variation that is affected by geographic environments and ploidy level is very important for the utilization of Erianthus arundinaceus. In this study, effects of geographic environments and ploidy level on genetic variation were studied through analyzing the genetic diversity, genetic similarity and cluster analysis of 46 E. arundinaceus materials from natural habitats in China by using 7 ISSRs and 15 SSRs. Results showed that: 1) Seven ISSRs generated total 66 bands, of which 77% were polymorphic bands, the Nei's genetic similarity coefficient of tested materials ranged from 0.642 to 0.904 with an average value of 0.765. Fifteen SSRs generated 138 bands, of which 81% were polymorphic bands, the Nei's genetic similarity coefficient of tested materials ranged from 0.634 to 0.963 with an average value of 0.802. The results indicated great genetic diversity existed in the tested materials. 2)The tested materials were clustered into 3 groups and 7 subgroups, which demonstrated a strong geographic effect on variation of the local E. arundinaceus, and weak relationship was found between genetic distance and geographic distance. Five tetraploid materials were not clustered together, and were clustered together with materials from similar geographical location. 3) The genetic variation and cluster results were affected by geographic landforms and environments, the gene flow was blocked by Ocean and mountains, and promoted by river. The effect of ploidy level on genetic variation was little.
Collapse
Affiliation(s)
- Jianbo Zhang
- Sichuan Academy of Grassland Science, Chengdu, Sichuan, China
| | - Jiajun Yan
- Sichuan Academy of Grassland Science, Chengdu, Sichuan, China
| | - Xiaoyun Shen
- State Engineerting Technology Institute for Karst Desertification Control, Guizhou Normal University, Guiyang, China
- School of Life Science and Engineering, Southwest Universtiy of Science and Technology, Mianyang, China
- Foreign capital project management center, Guizhou proverty alleviation and development office, Guiyang, China
| | - Dan Chang
- Sichuan Academy of Grassland Science, Chengdu, Sichuan, China
| | - Shiqie Bai
- Sichuan Academy of Grassland Science, Chengdu, Sichuan, China
- * E-mail:
| | - Yu Zhang
- Sichuan Academy of Grassland Science, Chengdu, Sichuan, China
| | - Jin Zhang
- Sichuan Academy of Grassland Science, Chengdu, Sichuan, China
| |
Collapse
|
6
|
Complete Chloroplast Genomes of Erianthus arundinaceus and Miscanthus sinensis: Comparative Genomics and Evolution of the Saccharum Complex. PLoS One 2017; 12:e0169992. [PMID: 28125648 PMCID: PMC5268433 DOI: 10.1371/journal.pone.0169992] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 12/27/2016] [Indexed: 11/19/2022] Open
Abstract
The genera Erianthus and Miscanthus, both members of the Saccharum complex, are of interest as potential resources for sugarcane improvement and as bioenergy crops. Recent studies have mainly focused on the conservation and use of wild accessions of these genera as breeding materials. However, the sequence data are limited, which hampers the studies of phylogenetic relationships, population structure, and evolution of these grasses. Here, we determined the complete chloroplast genome sequences of Erianthus arundinaceus and Miscanthus sinensis by using 454 GS FLX pyrosequencing and Sanger sequencing. Alignment of the E. arundinaceus and M. sinensis chloroplast genome sequences with the known sequence of Saccharum officinarum demonstrated a high degree of conservation in gene content and order. Using the data sets of 76 chloroplast protein-coding genes, we performed phylogenetic analysis in 40 taxa including E. arundinaceus and M. sinensis. Our results show that S. officinarum is more closely related to M. sinensis than to E. arundinaceus. We estimated that E. arundinaceus diverged from the subtribe Sorghinae before the divergence of Sorghum bicolor and the common ancestor of S. officinarum and M. sinensis. This is the first report of the phylogenetic and evolutionary relationships inferred from maternally inherited variation in the Saccharum complex. Our study provides an important framework for understanding the phylogenetic relatedness of the economically important genera Erianthus, Miscanthus, and Saccharum.
Collapse
|