1
|
Becker GM, Thorne JW, Burke JM, Lewis RM, Notter DR, Morgan JLM, Schauer CS, Stewart WC, Redden RR, Murdoch BM. Genetic diversity of United States Rambouillet, Katahdin and Dorper sheep. Genet Sel Evol 2024; 56:56. [PMID: 39080565 PMCID: PMC11290166 DOI: 10.1186/s12711-024-00905-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 04/23/2024] [Indexed: 08/02/2024] Open
Abstract
BACKGROUND Managing genetic diversity is critically important for maintaining species fitness. Excessive homozygosity caused by the loss of genetic diversity can have detrimental effects on the reproduction and production performance of a breed. Analysis of genetic diversity can facilitate the identification of signatures of selection which may contribute to the specific characteristics regarding the health, production and physical appearance of a breed or population. In this study, breeds with well-characterized traits such as fine wool production (Rambouillet, N = 745), parasite resistance (Katahdin, N = 581) and environmental hardiness (Dorper, N = 265) were evaluated for inbreeding, effective population size (Ne), runs of homozygosity (ROH) and Wright's fixation index (FST) outlier approach to identify differential signatures of selection at 36,113 autosomal single nucleotide polymorphisms (SNPs). RESULTS Katahdin sheep had the largest current Ne at the most recent generation estimated with both the GONe and NeEstimator software. The most highly conserved ROH Island was identified in Rambouillet with a signature of selection on chromosome 6 containing 202 SNPs called in an ROH in 50 to 94% of the individuals. This region contained the DCAF16, LCORL and NCAPG genes that have been previously reported to be under selection and have biological roles related to milk production and growth traits. The outlier regions identified through the FST comparisons of Katahdin with Rambouillet and Dorper contained genes with known roles in milk production and mastitis resistance or susceptibility, and the FST comparisons of Rambouillet with Katahdin and Dorper identified genes related to wool growth, suggesting these traits have been under natural or artificial selection pressure in these populations. Genes involved in the cytokine-cytokine receptor interaction pathways were identified in all FST breed comparisons, which indicates the presence of allelic diversity between these breeds in genomic regions controlling cytokine signaling mechanisms. CONCLUSIONS In this paper, we describe signatures of selection within diverse and economically important U.S. sheep breeds. The genes contained within these signatures are proposed for further study to understand their relevance to biological traits and improve understanding of breed diversity.
Collapse
Affiliation(s)
- Gabrielle M Becker
- Department of Animal, Veterinary and Food Science, University of Idaho, Moscow, ID, USA
| | - Jacob W Thorne
- Department of Animal, Veterinary and Food Science, University of Idaho, Moscow, ID, USA
- Texas A&M AgriLife Extension, Texas A&M University, San Angelo, TX, USA
| | - Joan M Burke
- USDA, ARS, Dale Bumpers Small Farms Research Center, Booneville, AR, USA
| | - Ronald M Lewis
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - David R Notter
- School of Animal Sciences, Virginia Tech, Blacksburg, VA, USA
| | | | - Christopher S Schauer
- Hettinger Research Extension Center, North Dakota State University, Hettinger, ND, USA
| | - Whit C Stewart
- Department of Animal Science, University of Wyoming, Laramie, WY, USA
| | - R R Redden
- Texas A&M AgriLife Extension, Texas A&M University, San Angelo, TX, USA
| | - Brenda M Murdoch
- Department of Animal, Veterinary and Food Science, University of Idaho, Moscow, ID, USA.
| |
Collapse
|
2
|
Haase B, Willet CE, Chew T, Samaha G, Child G, Wade CM. De-novo and genome-wide meta-analyses identify a risk haplotype for congenital sensorineural deafness in Dalmatian dogs. Sci Rep 2022; 12:15439. [PMID: 36104420 PMCID: PMC9474838 DOI: 10.1038/s41598-022-19535-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 08/30/2022] [Indexed: 11/29/2022] Open
Abstract
Congenital sensorineural deafness (CSD) has been reported to affect up to 30% of Dalmatian dogs world-wide and while unilaterally deaf dogs can live a close to normal life, dogs suffering bilateral deafness are frequently euthanized. Extreme-white coat patterning as encoded by the gene Melanocyte Inducing Transcription Factor (MITF) has long been postulated as the major risk factor for CSD in the Dalmatian breed. While attempts to identify causative risk variants associated with CSD have been numerous, no genome-wide association study has positively identified MITF as a risk locus for either bilateral or unilateral deafness in the Dalmatian breed to date. In this study, we identified an association with CSD on CFA20 in the vicinity of MITF within Australian Dalmatian dogs. Although not genome-wide significant, the association signal was validated by reanalysing publicly available data and merging the wider data resource with the local data to improve statistical power. The merged data, representing three major global populations of Dalmatian dogs, enabled us to identify a single, well-defined genome-wide significant risk haplotype for CSD. The haplotype was formed by three genome-wide significant associated markers (BICF2G630233852T>C, BICF2G630233861T>C, BICF2G630233888G>A) on CFA20 with 62% of bilaterally deaf dogs homozygous for the risk haplotype (CCA), while 30% of bilaterally deaf and 45% of hearing dogs carried one copy of the risk haplotype. Animals homozygous or heterozygous for the low-risk haplotype were less likely to be unilaterally deaf. While the association between the risk haplotype and deafness is incomplete, animals homozygous for the risk haplotype were 10-times more likely to be bilaterally deaf. Although the underlying causative variants are yet to be discovered, results from this study can now assist with reducing deafness in Dalmatian dogs.
Collapse
|
3
|
Brancalion L, Haase B, Wade CM. Canine coat pigmentation genetics: a review. Anim Genet 2021; 53:3-34. [PMID: 34751460 DOI: 10.1111/age.13154] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 09/21/2021] [Accepted: 10/20/2021] [Indexed: 11/27/2022]
Abstract
Our understanding of canine coat colour genetics and the associated health implications is developing rapidly. To date, there are 15 genes with known roles in canine coat colour phenotypes. Many coat phenotypes result from complex and/or epistatic genetic interactions among variants within and between loci, some of which remain unidentified. Some genes involved in canine pigmentation have been linked to aural, visual and neurological impairments. Consequently, coat pigmentation in the domestic dog retains considerable ethical and economic interest. In this paper we discuss coat colour phenotypes in the domestic dog, the genes and variants responsible for these phenotypes and any proven coat colour-associated health effects.
Collapse
Affiliation(s)
- L Brancalion
- Faculty of Science, School of Life and Environmental Sciences, University of Sydney, Camperdown, NSW, 2006, Australia
| | - B Haase
- Faculty of Science, School of Veterinary Science, University of Sydney, Camperdown, NSW, 2006, Australia
| | - C M Wade
- Faculty of Science, School of Life and Environmental Sciences, University of Sydney, Camperdown, NSW, 2006, Australia
| |
Collapse
|
4
|
Seddon JM, Fortes M, Kelly-Smith M, Sommerlad SF, Hayward JJ, Burmeister L, De Risio L, Mellersh C, Freeman J, Strain GM. Deafness in Australian Cattle Dogs associated to QTL on chromosome 20 in genome-wide association study analyses. Anim Genet 2021; 52:694-702. [PMID: 34318504 DOI: 10.1111/age.13115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/25/2021] [Indexed: 11/29/2022]
Abstract
Pigment-associated deafness is a common hereditary condition in a range of dog breeds. The aim of this study was to perform a genome-wide association analysis to investigate the genetic architecture of deafness in Australian Cattle Dogs. Genotypes for 104 757 polymorphisms in 216 dogs were available for analyses after quality control. A genomic relationship matrix was used in the mixed model analyses to account for polygenic effects, as we tested each polymorphism for its association with deafness, in a case/control experimental design. Three approaches were used to code the genotypes and test for additive, recessive and dominant SNP effects. The genome-wide association study analyses identified a clear association peak on CFA20, with the most significant SNPs on this chromosome (1.29 × 10-4 ) in the vicinity of MITF. Variants in MITF have been associated with white pigmentation in dogs and with deafness in humans and other species, supporting the premise that canine deafness is associated with variants in or near this gene. A recessive inheritance for the peak in CFA20 is possible given the significant results in the recessive model; however, the estimated heritability was low (4.54 × 10-5 ). Further validation, identification of variants and testing in other dog breeds are needed.
Collapse
Affiliation(s)
- J M Seddon
- School of Veterinary Science, The University of Queensland, Gatton, Qld, 4343, Australia
| | - M Fortes
- School of Chemistry and Molecular Biosciences, Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Brisbane, Qld, 4072, Australia
| | - M Kelly-Smith
- Comparative Biomedical Sciences, Louisiana State University, School of Veterinary Medicine, Baton Rouge, LA, 70803, USA
| | - S F Sommerlad
- School of Veterinary Science, The University of Queensland, Gatton, Qld, 4343, Australia
| | - J J Hayward
- Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - L Burmeister
- Animal Health Trust, Newmarket, Suffolk, CB8 7UU, UK
| | - L De Risio
- Animal Health Trust, Newmarket, Suffolk, CB8 7UU, UK
| | - C Mellersh
- Animal Health Trust, Newmarket, Suffolk, CB8 7UU, UK
| | - J Freeman
- Animal Health Trust, Newmarket, Suffolk, CB8 7UU, UK
| | - G M Strain
- Comparative Biomedical Sciences, Louisiana State University, School of Veterinary Medicine, Baton Rouge, LA, 70803, USA
| |
Collapse
|
5
|
A Missense Mutation in the KLF7 Gene Is a Potential Candidate Variant for Congenital Deafness in Australian Stumpy Tail Cattle Dogs. Genes (Basel) 2021; 12:genes12040467. [PMID: 33805165 PMCID: PMC8064056 DOI: 10.3390/genes12040467] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 03/21/2021] [Accepted: 03/23/2021] [Indexed: 12/20/2022] Open
Abstract
Congenital deafness is prevalent among modern dog breeds, including Australian Stumpy Tail Cattle Dogs (ASCD). However, in ASCD, no causative gene has been identified so far. Therefore, we performed a genome-wide association study (GWAS) and whole genome sequencing (WGS) of affected and normal individuals. For GWAS, 3 bilateral deaf ASCDs, 43 herding dogs, and one unaffected ASCD were used, resulting in 13 significantly associated loci on 6 chromosomes, i.e., CFA3, 8, 17, 23, 28, and 37. CFA37 harbored a region with the most significant association (−log10(9.54 × 10−21) = 20.02) as well as 7 of the 13 associated loci. For whole genome sequencing, the same three affected ASCDs and one unaffected ASCD were used. The WGS data were compared with 722 canine controls and filtered for protein coding and non-synonymous variants, resulting in four missense variants present only in the affected dogs. Using effect prediction tools, two variants remained with predicted deleterious effects within the Heart development protein with EGF like domains 1 (HEG1) gene (NC_006615.3: g.28028412G>C; XP_022269716.1: p.His531Asp) and Kruppel-like factor 7 (KLF7) gene (NC_006619.3: g.15562684G>A; XP_022270984.1: p.Leu173Phe). Due to its function as a regulator in heart and vessel formation and cardiovascular development, HEG1 was excluded as a candidate gene. On the other hand, KLF7 plays a crucial role in the nervous system, is expressed in the otic placode, and is reported to be involved in inner ear development. 55 additional ASCD samples (28 deaf and 27 normal hearing dogs) were genotyped for the KLF7 variant, and the variant remained significantly associated with deafness in ASCD (p = 0.014). Furthermore, 24 dogs with heterozygous or homozygous mutations were detected, including 18 deaf dogs. The penetrance was calculated to be 0.75, which is in agreement with previous reports. In conclusion, KLF7 is a promising candidate gene causative for ASCD deafness.
Collapse
|
6
|
Lewis T, Freeman J, De Risio L. Decline in prevalence of congenital sensorineural deafness in Dalmatian dogs in the United Kingdom. J Vet Intern Med 2020; 34:1524-1531. [PMID: 32543777 PMCID: PMC7379008 DOI: 10.1111/jvim.15776] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 03/23/2020] [Accepted: 03/23/2020] [Indexed: 11/30/2022] Open
Abstract
Background Congenital sensorineural deafness (CSD) is the most common type of deafness in Dalmatian dogs. Objectives To use results of CSD screening in Dalmatian dogs in the United Kingdom in genetic analysis and to determine any changes in the prevalence of CSD in this breed over time. Animals A total of 8955 Dalmatian puppies undergoing hearing function screening using brainstem auditory evoked response (BAER) between July 1992 and February 2019. Methods Results of BAER testing and pigmentation phenotypic data were linked to the UK Kennel Club Dalmatian pedigree database. Mixed model analysis was used to estimate variance parameters. Results The overall prevalence of CSD was 17.8% (13.4%, unilateral; 4.4%, bilateral). Heritability of CSD was approximately 0.3 (across models) and significantly >0. Genetic correlations between CSD and blue irises (+0.6) and pigmented head patch (−0.86) were large in magnitude and significantly different form 0. Significant improving phenotypic and genetic trends were identified, likely as the result of selection against deafness, equivalent to avoiding breeding with the 4% to 5% of animals with the highest genetic risk of CSD. Conclusions and Clinical Importance A decrease in the prevalence and genetic risk of CSD implies breeders have been selecting for hearing dogs. Selective breeding based on estimated breeding values (EBVs) can help further decrease the prevalence of CSD in Dalmatians in the future.
Collapse
Affiliation(s)
- Tom Lewis
- The Kennel Club, London, UK.,School of Veterinary Medicine and Science, The University of Nottingham, Leicestershire, UK
| | | | | |
Collapse
|
7
|
Hayward JJ, Kelly-Smith M, Boyko AR, Burmeister L, De Risio L, Mellersh C, Freeman J, Strain GM. A genome-wide association study of deafness in three canine breeds. PLoS One 2020; 15:e0232900. [PMID: 32413090 PMCID: PMC7228063 DOI: 10.1371/journal.pone.0232900] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 04/23/2020] [Indexed: 12/17/2022] Open
Abstract
Congenital deafness in the domestic dog is usually related to the presence of white pigmentation, which is controlled primarily by the piebald locus on chromosome 20 and also by merle on chromosome 10. Pigment-associated deafness is also seen in other species, including cats, mice, sheep, alpacas, horses, cows, pigs, and humans, but the genetic factors determining why some piebald or merle dogs develop deafness while others do not have yet to be determined. Here we perform a genome-wide association study (GWAS) to identify regions of the canine genome significantly associated with deafness in three dog breeds carrying piebald: Dalmatian, Australian cattle dog, and English setter. We include bilaterally deaf, unilaterally deaf, and matched control dogs from the same litter, phenotyped using the brainstem auditory evoked response (BAER) hearing test. Principal component analysis showed that we have different distributions of cases and controls in genetically distinct Dalmatian populations, therefore GWAS was performed separately for North American and UK samples. We identified one genome-wide significant association and 14 suggestive (chromosome-wide) associations using the GWAS design of bilaterally deaf vs. control Australian cattle dogs. However, these associations were not located on the same chromosome as the piebald locus, indicating the complexity of the genetics underlying this disease in the domestic dog. Because of this apparent complex genetic architecture, larger sample sizes may be needed to detect the genetic loci modulating risk in piebald dogs.
Collapse
Affiliation(s)
- Jessica J. Hayward
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Maria Kelly-Smith
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Adam R. Boyko
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | | | - Luisa De Risio
- Animal Health Trust, Newmarket, Suffolk, England, United Kingdom
| | - Cathryn Mellersh
- Animal Health Trust, Newmarket, Suffolk, England, United Kingdom
| | - Julia Freeman
- Animal Health Trust, Newmarket, Suffolk, England, United Kingdom
| | - George M. Strain
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
- * E-mail:
| |
Collapse
|
8
|
Kelly-Smith M, Strain GM. STRING data mining of GWAS data in canine hereditary pigment-associated deafness. Vet Anim Sci 2020; 9:100118. [PMID: 32734119 PMCID: PMC7386748 DOI: 10.1016/j.vas.2020.100118] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 05/06/2020] [Indexed: 02/06/2023] Open
Abstract
Genome-wide association studies may fail to identify significant associations between a disorder and causative genes in complex hereditary disorders. STRING software is a bioinformatics data mining tool that identifies known and predicted physical and functional relationship networks among the proteins of candidate genes. STRING analysis provides a mechanism to identify gene-gene interactions that might not otherwise have been recognized. Relationships identified from STRING analysis can uncover function-based gene-gene relationships that may not be easily extracted from literature, thereby providing genes for pursuit as a cause of a complex hereditary disorder. In this study STRING analysis was applied to identification of candidate genes to pursue as the cause of pigment-associated hereditary deafness in dogs.
Most canine deafness is linked to white pigmentation caused by the piebald locus, shown to be the gene MITF (melanocyte inducing transcription factor), but studies have failed to identify a deafness cause. The coding regions of MITF have not been shown to be mutated in deaf dogs, leading us to pursue genes acting on or controlled by MITF. We have genotyped DNA from 502 deaf and hearing Australian cattle dogs, Dalmatians, and English setters, breeds with a high deafness prevalence. Genome-wide significance was not attained in any of our analyses, but we did identify several suggestive associations. Genome-wide association studies (GWAS) in complex hereditary disorders frequently fail to identify causative gene variants, so advanced bioinformatics data mining techniques are needed to extract information to guide future studies. STRING diagrams are graphical representations of known and predicted networks of protein-protein interactions, identifying documented relationships between gene proteins based on the scientific literature, to identify functional gene groupings to pursue for further scrutiny. The STRING program predicts associations at a preset confidence level and suggests biological functions based on the identified genes. Starting with (1) genes within 500 kb of GWAS-suggested SNPs, (2) known pigmentation genes, (3) known human deafness genes, and (4) genes identified from proteomic analysis of the cochlea, we generated STRING diagrams that included these genes. We then reduced the number of genes by excluding genes with no relationship to auditory function, pigmentation, or relevant structures, and identified clusters of genes that warrant further investigation.
Collapse
Affiliation(s)
- Maria Kelly-Smith
- Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803 USA
| | - George M Strain
- Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803 USA
| |
Collapse
|
9
|
Lukić B, Ferenčaković M, Šalamon D, Čačić M, Orehovački V, Iacolina L, Curik I, Cubric-Curik V. Conservation Genomic Analysis of the Croatian Indigenous Black Slavonian and Turopolje Pig Breeds. Front Genet 2020; 11:261. [PMID: 32296459 PMCID: PMC7136467 DOI: 10.3389/fgene.2020.00261] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 03/05/2020] [Indexed: 12/19/2022] Open
Abstract
The majority of the nearly 400 existing local pig breeds are adapted to specific environments and human needs. The demand for large production quantities and the industrialized pig production have caused a rapid decline of many local pig breeds in recent decades. Black Slavonian pig and Turopolje pig, the latter highly threatened, are the two Croatian local indigenous breeds typically grown in extensive or semi-intensive systems. In order to guide a long-term breeding program to prevent the disappearance of these breeds, we analyzed their genetic diversity, inbreeding level and relationship with other local breeds across the world, as well as modern breeds and several wild populations, using high throughput genomic data obtained using the Illumina Infinium PorcineSNP60 v2 BeadChip. Multidimensional scaling analysis positioned Black Slavonian pigs close to the UK/North American breeds, while the Turopolje pig clustered within the Mediterranean breeds. Turopolje pig showed a very high inbreeding level (FROH>4Mb = 0.400 and FROH>8Mb = 0.332) that considerably exceeded the level of full-sib mating, while Black Slavonian pig showed much lower inbreeding (FROH>4Mb = 0.098 and FROH>8Mb = 0.074), indicating a planned mating strategy. In Croatian local breeds we identified several genome regions showing adaptive selection signals that were not present in commercial breeds. The results obtained in this study reflect the current genetic status and breeding management of the two Croatian indigenous local breeds. Given the small populations of both breeds, a controlled management activity has been implemented in Black Slavonian pigs since their commercial value has been recognized. In contrast, the extremely high inbreeding level observed in Turopolje pig argues for an urgent conservation plan with a long-term, diversity-oriented breeding program.
Collapse
Affiliation(s)
- Boris Lukić
- Department for Animal Production and Biotechnology, Faculty of Agrobiotechnical Sciences Osijek, J.J. Strossmayer University of Osijek, Osijek, Croatia
| | - Maja Ferenčaković
- Department of Animal Science, Faculty of Agriculture, University of Zagreb, Zagreb, Croatia
| | - Dragica Šalamon
- Department of Animal Science, Faculty of Agriculture, University of Zagreb, Zagreb, Croatia
| | - Mato Čačić
- Ministry of Agriculture, Zagreb, Croatia
| | | | - Laura Iacolina
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark.,Department for Apiculture, Wildlife Management and Special Zoology, Faculty of Agriculture, University of Zagreb, Zagreb, Croatia
| | - Ino Curik
- Department of Animal Science, Faculty of Agriculture, University of Zagreb, Zagreb, Croatia
| | - Vlatka Cubric-Curik
- Department of Animal Science, Faculty of Agriculture, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
10
|
Teeling EC, Jones G, Rossiter SJ. Phylogeny, Genes, and Hearing: Implications for the Evolution of Echolocation in Bats. BAT BIOACOUSTICS 2016. [DOI: 10.1007/978-1-4939-3527-7_2] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
11
|
Abstract
Although deafness can be acquired throughout an animal's life from a variety of causes, hereditary deafness, especially congenital hereditary deafness, is a significant problem in several species. Extensive reviews exist of the genetics of deafness in humans and mice, but not for deafness in domestic animals. Hereditary deafness in many species and breeds is associated with loci for white pigmentation, where the cochlear pathology is cochleo-saccular. In other cases, there is no pigmentation association and the cochlear pathology is neuroepithelial. Late onset hereditary deafness has recently been identified in dogs and may be present but not yet recognized in other species. Few genes responsible for deafness have been identified in animals, but progress has been made for identifying genes responsible for the associated pigmentation phenotypes. Across species, the genes identified with deafness or white pigmentation patterns include MITF, PMEL, KIT, EDNRB, CDH23, TYR, and TRPM1 in dog, cat, horse, cow, pig, sheep, ferret, mink, camelid, and rabbit. Multiple causative genes are present in some species. Significant work remains in many cases to identify specific chromosomal deafness genes so that DNA testing can be used to identify carriers of the mutated genes and thereby reduce deafness prevalence.
Collapse
Affiliation(s)
- George M. Strain
- Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA
| |
Collapse
|