1
|
Wang ZY, Xiao W, Jiang YZ, Dong W, Zhang XW, Zhang L. HN1L promotes invasion and metastasis of the esophagogastric junction adenocarcinoma. Thorac Cancer 2021; 12:650-658. [PMID: 33471419 PMCID: PMC7919121 DOI: 10.1111/1759-7714.13842] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/30/2020] [Accepted: 12/31/2020] [Indexed: 01/04/2023] Open
Abstract
Background Adenocarcinoma of the esophagogastric junction (AEG) refers to cancer that crosses the line of the gastroesophageal junction and includes distal esophageal cancer and proximal gastric cancer. It is characterized by early metastasis and a poor prognosis and has few treatment options. Here, we report a novel potential therapeutic target, hematological and neurological expressed 1‐like (HN1L), in AEG. Methods A total of 38 patients who underwent surgical resection of AEG at the Department of Thoracic Surgery of Shandong Provincial Hospital from September 2018 to June 2019 were enrolled into the study. We detected the expression of HN1L in AEG and adjacent nontumor tissues by IHC staining. The clinicopathological characteristics of HN1L were statistically analyzed. Then, the expression of HN1L in different cell lines was detected by RT‐q PCR. Finally, AGS and HGC‐27 cell lines were performed to inhibit HN1L by shRNA in order to explore its role in the development of AEG. Results Immunohistochemical staining showed that the expression of HN1L in cancer tissues was higher than that in nontumor tissue (p < 0.001). High expression of HN1L was significantly correlated with TNM stage (p = 0.013) and lymph node metastasis (p = 0.03). The expression of HN1L was upregulated in tumor cell lines compared with normal cell line. Additionally, Cell function studies demonstrated that lentivirus‐mediated shRNA silencing of HN1L expression could effectively reduce the proliferation, invasion, and metastasis of tumor cell lines and promote their apoptosis (p < 0.05). Conclusions HN1L expression might contribute to the invasion and metastasis of AEG and is a promising therapeutic target.
Collapse
Affiliation(s)
- Zhao Yang Wang
- Department of Thoracic Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, China
| | - Wen Xiao
- Department of Thoracic Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, China
| | - Yuan Zhu Jiang
- Department of Thoracic Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, China.,Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Wei Dong
- Department of Thoracic Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, China.,Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Xiang Wei Zhang
- Department of Thoracic Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, China.,Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Lin Zhang
- Department of Thoracic Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, China.,Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| |
Collapse
|
2
|
Kim KM, Hussein UK, Park SH, Moon YJ, Zhang Z, Ahmed AG, Ahn AR, Park HS, Kim JR, Jang KY. Expression of IL4Rα and IL13Rα1 are associated with poor prognosis of soft-tissue sarcoma of the extremities, superficial trunk, and retroperitoneum. Diagn Pathol 2021; 16:2. [PMID: 33419470 PMCID: PMC7796579 DOI: 10.1186/s13000-020-01066-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 12/29/2020] [Indexed: 02/08/2023] Open
Abstract
Background IL4Rα and IL13Rα1 are constituents of the type II IL4 receptor. Recently, IL4Rα and IL13Rα1 were reported to have roles in cancer progression and suggested as potential prognostic markers. However, studies on IL4Rα and IL13Rα1 in soft-tissue sarcomas have been limited. Methods This study investigated the immunohistochemical expression of IL4Rα and IL13Rα1 in 89 soft-tissue sarcomas of the extremities, superficial trunk, and retroperitoneum. Immunohistochemical staining for IL4Rα and IL13Rα1 were scored according to a combination of staining intensity and staining area in tissue microarray samples. Positivity for the immunohistochemical expression of IL4Rα and IL13Rα1 were determined using receiver operating curve analysis. Statistical analysis was performed using regression analysis and a chi-square test. Results In human soft-tissue sarcomas, immunohistochemical expression of IL4Rα was significantly associated with IL13Rα1 expression. Nuclear and cytoplasmic expression of IL4Rα and IL13Rα1 were significantly associated with shorter survival of soft-tissue sarcoma patients in univariate analysis. Multivariate analysis indicated that nuclear expression of IL4Rα and IL13Rα1 were independent indicators of shorter overall survival (IL4Rα; p = 0.002, IL13Rα1; p = 0.016) and relapse-free survival (IL4Rα; p = 0.022, IL13Rα1; p < 0.001) of soft-tissue sarcoma patients. Moreover, the co-expression pattern of nuclear IL4Rα and IL13Rα1 was an independent indicator of shorter survival of soft-tissue sarcoma patients (overall survival; overall p < 0.001, relapse-free survival; overall p < 0.001). Conclusions This study suggests IL4Rα and IL13Rα1 are associated with the progression of soft-tissue sarcoma, and the expression of IL4Rα and IL13Rα1 might be novel prognostic indicators of soft-tissue sarcoma patients.
Collapse
Affiliation(s)
- Kyoung Min Kim
- Department of Pathology, Jeonbuk National University Medical School, 567 Baekje-daero, Dukjin-gu, Jeonju, 54896, Republic of Korea.,Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical, Research Institute of Jeonbuk National University Hospital and Research Institute for Endocrine Sciences, Jeonju, Republic of Korea
| | - Usama Khamis Hussein
- Department of Pathology, Jeonbuk National University Medical School, 567 Baekje-daero, Dukjin-gu, Jeonju, 54896, Republic of Korea.,Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - See-Hyoung Park
- Department of Bio and Chemical Engineering, Hongik University, Sejong, Republic of Korea
| | - Young Jae Moon
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical, Research Institute of Jeonbuk National University Hospital and Research Institute for Endocrine Sciences, Jeonju, Republic of Korea.,Department of Biochemistry and Molecular Biology, Jeonbuk National University Medical School, Jeonju, Republic of Korea
| | - Zhongkai Zhang
- Department of Orthopedic Surgery, Jeonbuk National University Medical School, 567 Baekje-daero, Dukjin-gu, Jeonju, 54896, Republic of Korea
| | - Asmaa Gamal Ahmed
- Department of Pathology, Jeonbuk National University Medical School, 567 Baekje-daero, Dukjin-gu, Jeonju, 54896, Republic of Korea.,Faculty of Postgraduate Studies and Advanced Sciences, Beni-Suef University, Beni-Suef, Egypt
| | - Ae-Ri Ahn
- Department of Pathology, Jeonbuk National University Medical School, 567 Baekje-daero, Dukjin-gu, Jeonju, 54896, Republic of Korea.,Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical, Research Institute of Jeonbuk National University Hospital and Research Institute for Endocrine Sciences, Jeonju, Republic of Korea
| | - Ho Sung Park
- Department of Pathology, Jeonbuk National University Medical School, 567 Baekje-daero, Dukjin-gu, Jeonju, 54896, Republic of Korea.,Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical, Research Institute of Jeonbuk National University Hospital and Research Institute for Endocrine Sciences, Jeonju, Republic of Korea
| | - Jung Ryul Kim
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical, Research Institute of Jeonbuk National University Hospital and Research Institute for Endocrine Sciences, Jeonju, Republic of Korea. .,Department of Orthopedic Surgery, Jeonbuk National University Medical School, 567 Baekje-daero, Dukjin-gu, Jeonju, 54896, Republic of Korea.
| | - Kyu Yun Jang
- Department of Pathology, Jeonbuk National University Medical School, 567 Baekje-daero, Dukjin-gu, Jeonju, 54896, Republic of Korea. .,Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical, Research Institute of Jeonbuk National University Hospital and Research Institute for Endocrine Sciences, Jeonju, Republic of Korea.
| |
Collapse
|
3
|
Symeonidis N, Lambropoulou M, Pavlidis E, Anagnostopoulos C, Tsaroucha A, Kotini A, Nikolaidou C, Kiziridou A, Simopoulos C. PAK1 Expression in Pancreatic Cancer: Clinicopathological Characteristics and Prognostic Significance. CLINICAL MEDICINE INSIGHTS-ONCOLOGY 2019; 13:1179554919831990. [PMID: 30799970 PMCID: PMC6379789 DOI: 10.1177/1179554919831990] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 01/17/2019] [Indexed: 12/15/2022]
Abstract
Background: Improvement of the management of pancreatic cancer requires a better
understanding of the genetic and molecular changes responsible for the
development of the disease. The family of p21-activated kinases (PAKs) and
especially PAK1 appears to mediate many cellular processes that contribute
to the development and progression of pancreatic cancer, but the clinical
relevance of PAK1 expression with the disease still remains unclear. Aim of
the study was to assess the clinical value and the potential prognostic
significance of PAK1 in pancreatic adenocarcinoma. Methods: We investigated the relationship between the PAK1 expression and the clinical
and histopathologic characteristics of pancreatic cancer patients and the
potential significance of PAK1 on survival. We examined tissue samples from
51 patients operated for pancreatic cancer. PAK1 expression was investigated
with immunohistochemistry and correlated to clinicopathological
parameters. Results: PAK1 was detected in all tumor samples and high expression was found in most
patients. High PAK1 expression was also associated with younger age and
well-differentiated tumors, but no association was found between PAK1
expression and Tumor-Node-Metastasis stage as well as deceased or alive
status on follow-up. Moderate to high PAK1 expression favored higher 6-month
and 1-year survival and low PAK1 expression 2-year survival but without
statistical significance. Conclusions Our results indicate that PAK1 could potentially be used as a prognostic
marker in pancreatic cancer. Further studies could clarify whether
utilization of PAK1 in therapeutic protocols for the treatment of pancreatic
cancer will render them more effective.
Collapse
Affiliation(s)
- Nikolaos Symeonidis
- Postgraduate Program in Hepatobiliary/Pancreatic Surgery, School of Medicine, Democritus University of Thrace, Alexandroupolis, Greece.,2nd Surgical Propedeutic Department, Hippokratio General Hospital, Thessaloniki, Greece
| | - Maria Lambropoulou
- Laboratory of Histology-Embryology, School of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Efstathios Pavlidis
- Postgraduate Program in Hepatobiliary/Pancreatic Surgery, School of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | | | - Alexandra Tsaroucha
- 2nd Department of Surgery and Laboratory of Experimental Surgery-Postgraduate Program in Hepatobiliary/Pancreatic Surgery, School of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Athanasia Kotini
- Laboratory of Medical Physics, School of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Christina Nikolaidou
- Laboratory of Histology-Embryology, School of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Anastasia Kiziridou
- Department of Pathology, Theagenio Anticancer Hospital, Thessaloniki, Greece
| | - Constantinos Simopoulos
- 2nd Department of Surgery and Laboratory of Experimental Surgery-Postgraduate Program in Hepatobiliary/Pancreatic Surgery, School of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| |
Collapse
|
4
|
Bhushan A, Singh A, Kapur S, Borthakar BB, Sharma J, Rai AK, Kataki AC, Saxena S. Identification and Validation of Fibroblast Growth Factor 12 Gene as a Novel Potential Biomarker in Esophageal Cancer Using Cancer Genomic Datasets. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2018; 21:616-631. [PMID: 29049013 DOI: 10.1089/omi.2017.0116] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Esophageal squamous cell carcinoma (ESCC) has a complex, multifactorial etiology in which environmental, geographical, and genetic factors play major roles. It is the second most common cancer among men and the fourth most common among women in India, with a particularly high prevalence in Northeast India. In this study, an integrative in silico [DAVID, NCG5.0, Oncomine, Cancer Cell Line Encyclopedia, and The Cancer Genome Atlas (TCGA)] approach was used to identify the potential biomarkers by using the available three genomic datasets on ESCC from Northeast India followed by its in vitro functional validation. Fibroblast Growth Factor 12 (FGF12) gene was overexpressed in ESCC. The upregulation of FGF12 was also observed on ESCC of TCGA OncoPrint portal, whereas very low expression of FGF12 gene was mapped in normal esophageal tissue on the GTEx database. Silencing of FGF12 showed significant inhibition in activity of tumor cell proliferation, colony formation, and cell migration. The upregulation of FGF12 showed significantly reduced survival in ESCC patients. The protein interaction analysis of FGF12 found the binding with MAPK8IP2 and MAPK13. High expression of FGF12 along with MAPK8IP2, and MAPK13 proteins correlate with poor survival in ESCC patients. Tissue microarray also showed expression of these proteins in patients with ESCC. These results indicate that FGF12 has a potential role in ESCC and suggest that cancer genomic datasets with application of in silico approaches are instrumental for biomarker discovery research broadly and specifically, for the identification of FGF12 as a putative biomarker in ESCC.
Collapse
Affiliation(s)
- Ashish Bhushan
- 1 National Institute of Pathology (ICMR) , New Delhi, India .,2 Faculty of Health and Biomedical Sciences, Symbiosis International University , Pune, India
| | - Avninder Singh
- 1 National Institute of Pathology (ICMR) , New Delhi, India
| | - Sujala Kapur
- 1 National Institute of Pathology (ICMR) , New Delhi, India
| | | | | | - Avdhesh K Rai
- 3 Dr. B. Borooah Cancer Institute (BBCI) , Guwahati, India
| | - Amal C Kataki
- 3 Dr. B. Borooah Cancer Institute (BBCI) , Guwahati, India
| | - Sunita Saxena
- 1 National Institute of Pathology (ICMR) , New Delhi, India
| |
Collapse
|
5
|
|
6
|
Fang F, Pan J, Li YP, Li G, Xu LX, Su GH, Li ZH, Feng X, Wang J. p21-activated kinase 1 (PAK1) expression correlates with prognosis in solid tumors: A systematic review and meta-analysis. Oncotarget 2017; 7:27422-9. [PMID: 27027431 PMCID: PMC5053660 DOI: 10.18632/oncotarget.8320] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 03/14/2016] [Indexed: 12/15/2022] Open
Abstract
p21 protein (Cdc42/Rac)-activated kinase 1 (PAK1) expression appears to be predictive of prognosis in various solid tumors, though the evidence is not yet conclusive. We therefore performed a meta-analysis to explore the relationship between PAK1 and prognosis in patients with solid tumors. Relevant publications were searched in several widely used databases, and 15 studies (3068 patients) were included in the meta-analysis. Pooled hazard ratios (HRs) and 95% confidence intervals (CIs) were calculated to evaluate the strength of the association between PAK1 and prognosis. Associations between PAK1 expression and prognosis were observed for overall survival (HR = 2.81, 95% CI = 1.07-7.39) and disease-specific survival (HR = 2.15, 95% CI = 1.47-3.16). No such association was detected for time to tumor progression (HR = 1.78, 95% CI = 0.99-3.21).Our meta-analysis thus indicates that PAK1 expression may be a predictive marker of overall survival and disease-specific survival in patients with solid tumors.
Collapse
Affiliation(s)
- Fang Fang
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou 215025, Jiangsu, China
| | - Jian Pan
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou 215025, Jiangsu, China
| | - Yi-Ping Li
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou 215025, Jiangsu, China
| | - Gang Li
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou 215025, Jiangsu, China
| | - Li-Xiao Xu
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou 215025, Jiangsu, China
| | - Guang-Hao Su
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou 215025, Jiangsu, China
| | - Zhi-Heng Li
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou 215025, Jiangsu, China
| | - Xing Feng
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou 215025, Jiangsu, China
| | - Jian Wang
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou 215025, Jiangsu, China
| |
Collapse
|
7
|
Gan J, Ke X, Jiang J, Dong H, Yao Z, Lin Y, Lin W, Wu X, Yan S, Zhuang Y, Chu WK, Cai R, Zhang X, Cheung HS, Block NL, Pang CP, Schally AV, Zhang H. Growth hormone-releasing hormone receptor antagonists inhibit human gastric cancer through downregulation of PAK1-STAT3/NF-κB signaling. Proc Natl Acad Sci U S A 2016; 113:14745-14750. [PMID: 27930339 PMCID: PMC5187693 DOI: 10.1073/pnas.1618582114] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Gastric cancer (GC) ranks as the fourth most frequent in incidence and second in mortality among all cancers worldwide. The development of effective treatment approaches is an urgent requirement. Growth hormone-releasing hormone (GHRH) and GHRH receptor (GHRH-R) have been found to be present in a variety of tumoral tissues and cell lines. Therefore the inhibition of GHRH-R was proposed as a promising approach for the treatment of these cancers. However, little is known about GHRH-R and the relevant therapy in human GC. By survival analyses of multiple cohorts of GC patients, we identified that increased GHRH-R in tumor specimens correlates with poor survival and is an independent predictor of patient prognosis. We next showed that MIA-602, a highly potent GHRH-R antagonist, effectively inhibited GC growth in cultured cells. Further, this inhibitory effect was verified in multiple models of human GC cell lines xenografted into nude mice. Mechanistically, GHRH-R antagonists target GHRH-R and down-regulate the p21-activated kinase 1 (PAK1)-mediated signal transducer and activator of transcription 3 (STAT3)/nuclear factor-κB (NF-κB) inflammatory pathway. Overall, our studies establish GHRH-R as a potential molecular target in human GC and suggest treatment with GHRH-R antagonist as a promising therapeutic intervention for this cancer.
Collapse
Affiliation(s)
- Jinfeng Gan
- Cancer Research Center, Shantou University Medical College, Shantou 515041, China
| | - Xiurong Ke
- Cancer Research Center, Shantou University Medical College, Shantou 515041, China
| | - Jiali Jiang
- Cancer Research Center, Shantou University Medical College, Shantou 515041, China
| | - Hongmei Dong
- Cancer Research Center, Shantou University Medical College, Shantou 515041, China
| | - Zhimeng Yao
- Cancer Research Center, Shantou University Medical College, Shantou 515041, China
| | - Yusheng Lin
- Cancer Research Center, Shantou University Medical College, Shantou 515041, China
| | - Wan Lin
- Cancer Research Center, Shantou University Medical College, Shantou 515041, China
| | - Xiao Wu
- Tumor Tissue Bank, Affiliated Cancer Hospital of Shantou University Medical College, Shantou 515041, China
| | - Shumei Yan
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Yixuan Zhuang
- Tumor Tissue Bank, Affiliated Cancer Hospital of Shantou University Medical College, Shantou 515041, China
| | - Wai Kit Chu
- Department of Ophthalmology & Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Renzhi Cai
- Endocrine, Polypeptide, and Cancer Institute, Veterans Affairs Medical Center, Miami, FL 33125
- South Florida Veterans Affairs Foundation for Research and Education, Miami, FL 33125
- Division of Hematology and Oncology, Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL 33136
- Division of Endocrinology, Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL 33136
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136
| | - Xianyang Zhang
- Endocrine, Polypeptide, and Cancer Institute, Veterans Affairs Medical Center, Miami, FL 33125
- South Florida Veterans Affairs Foundation for Research and Education, Miami, FL 33125
- Division of Hematology and Oncology, Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL 33136
- Division of Endocrinology, Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL 33136
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136
| | - Herman S Cheung
- Endocrine, Polypeptide, and Cancer Institute, Veterans Affairs Medical Center, Miami, FL 33125
- South Florida Veterans Affairs Foundation for Research and Education, Miami, FL 33125
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL 33146
| | - Norman L Block
- Department of Pathology, Miller School of Medicine, University of Miami, Miami, FL 33136
| | - Chi Pui Pang
- Department of Ophthalmology & Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Joint Shantou International Eye Center, Shantou University and The Chinese University of Hong Kong, Shantou 515041, China
| | - Andrew V Schally
- Endocrine, Polypeptide, and Cancer Institute, Veterans Affairs Medical Center, Miami, FL 33125;
- South Florida Veterans Affairs Foundation for Research and Education, Miami, FL 33125
- Division of Hematology and Oncology, Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL 33136
- Division of Endocrinology, Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL 33136
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136
- Department of Pathology, Miller School of Medicine, University of Miami, Miami, FL 33136
| | - Hao Zhang
- Cancer Research Center, Shantou University Medical College, Shantou 515041, China;
- Tumor Tissue Bank, Affiliated Cancer Hospital of Shantou University Medical College, Shantou 515041, China
- Department of Biotherapy, Affiliated Cancer Hospital of Shantou University Medical College, Shantou 515041, China
| |
Collapse
|
8
|
Kumar R, Li DQ. PAKs in Human Cancer Progression: From Inception to Cancer Therapeutic to Future Oncobiology. Adv Cancer Res 2016; 130:137-209. [PMID: 27037753 DOI: 10.1016/bs.acr.2016.01.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Since the initial recognition of a mechanistic role of p21-activated kinase 1 (PAK1) in breast cancer invasion, PAK1 has emerged as one of the widely overexpressed or hyperactivated kinases in human cancer at-large, allowing the PAK family to make in-roads in cancer biology, tumorigenesis, and cancer therapeutics. Much of our current understanding of the PAK family in cancer progression relates to a central role of the PAK family in the integration of cancer-promoting signals from cell membrane receptors as well as function as a key nexus-modifier of complex, cytoplasmic signaling network. Another core aspect of PAK signaling that highlights its importance in cancer progression is through PAK's central role in the cross talk with signaling and interacting proteins, as well as PAK's position as a key player in the phosphorylation of effector substrates to engage downstream components that ultimately leads to the development cancerous phenotypes. Here we provide a comprehensive review of the recent advances in PAK cancer research and its downstream substrates in the context of invasion, nuclear signaling and localization, gene expression, and DNA damage response. We discuss how a deeper understanding of PAK1's pathobiology over the years has widened research interest to the PAK family and human cancer, and positioning the PAK family as a promising cancer therapeutic target either alone or in combination with other therapies. With many landmark findings and leaps in the progress of PAK cancer research since the infancy of this field nearly 20 years ago, we also discuss postulated advances in the coming decade as the PAK family continues to shape the future of oncobiology.
Collapse
Affiliation(s)
- R Kumar
- School of Medicine and Health Sciences, George Washington University, Washington, DC, United States; Rajiv Gandhi Center of Biotechnology, Thiruvananthapuram, India.
| | - D-Q Li
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China; Key Laboratory of Breast Cancer in Shanghai, Shanghai Medical College, Fudan University, Shanghai, China; Key Laboratory of Epigenetics in Shanghai, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
9
|
Gan J, Zhang Y, Ke X, Tan C, Ren H, Dong H, Jiang J, Chen S, Zhuang Y, Zhang H. Dysregulation of PAK1 Is Associated with DNA Damage and Is of Prognostic Importance in Primary Esophageal Small Cell Carcinoma. Int J Mol Sci 2015; 16:12035-50. [PMID: 26023713 PMCID: PMC4490427 DOI: 10.3390/ijms160612035] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 05/12/2015] [Indexed: 02/05/2023] Open
Abstract
Primary esophageal small cell carcinoma (PESCC) is a rare, but fatal subtype of esophageal carcinoma. No effective therapeutic regimen for it. P21-activated kinase 1 (PAK1) is known to function as an integrator and an indispensable node of major growth factor signaling and the molecular therapy targeting PAK1 has been clinical in pipeline. We thus set to examine the expression and clinical impact of PAK1 in PESCC. The expression of PAK1 was detected in a semi-quantitative manner by performing immunohistochemistry. PAK1 was overexpressed in 22 of 34 PESCC tumors, but in only 2 of 18 adjacent non-cancerous tissues. Overexpression of PAK1 was significantly associated with tumor location (p = 0.011), lymph node metastasis (p = 0.026) and patient survival (p = 0.032). We also investigated the association of PAK1 with DNA damage, a driven cause for malignancy progression. γH2AX, a DNA damage marker, was detectable in 18 of 24 (75.0%) cases, and PAK1 expression was associated with γH2AX (p = 0.027). Together, PAK1 is important in metastasis and progression of PESCC. The contribution of PAK1 to clinical outcomes may be involved in its regulating DNA damage pathway. Further studies are worth determining the potentials of PAK1 as prognostic indicator and therapeutic target for PESCC.
Collapse
Affiliation(s)
- Jinfeng Gan
- Cancer Research Centre, Shantou University Medical College, Shantou 515063, China.
| | - Yuling Zhang
- Department of Information, Affiliated Cancer Hospital of Shantou University Medical College, Shantou 515031, China.
| | - Xiurong Ke
- Cancer Research Centre, Shantou University Medical College, Shantou 515063, China.
- Department of Biotherapy, Affiliated Cancer Hospital of Shantou University Medical College, Shantou 515031, China.
| | - Chong Tan
- Department of General Surgery, the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China.
| | - Hongzheng Ren
- Department of Pathology, Central Hospital of Kaifeng, Kaifeng 475000, China.
| | - Hongmei Dong
- Cancer Research Centre, Shantou University Medical College, Shantou 515063, China.
| | - Jiali Jiang
- Cancer Research Centre, Shantou University Medical College, Shantou 515063, China.
- Department of Biotherapy, Affiliated Cancer Hospital of Shantou University Medical College, Shantou 515031, China.
| | - Shaobin Chen
- Thoracic Surgery, Affiliated Cancer Hospital of Shantou University Medical College, Shantou 515031, China.
| | - Yixuan Zhuang
- Tumor Tissue Bank, Affiliated Cancer Hospital of Shantou University Medical College, Shantou 515031, China.
| | - Hao Zhang
- Cancer Research Centre, Shantou University Medical College, Shantou 515063, China.
- Department of Biotherapy, Affiliated Cancer Hospital of Shantou University Medical College, Shantou 515031, China.
- Tumor Tissue Bank, Affiliated Cancer Hospital of Shantou University Medical College, Shantou 515031, China.
| |
Collapse
|
10
|
Li Z, Zou X, Xie L, Chen H, Chen Y, Yeung SCJ, Zhang H. Personalizing risk stratification by addition of PAK1 expression to TNM staging: improving the accuracy of clinical decision for gastroesophageal junction adenocarcinoma. Int J Cancer 2015; 136:1636-45. [PMID: 25159681 DOI: 10.1002/ijc.29167] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 08/01/2014] [Accepted: 08/19/2014] [Indexed: 02/05/2023]
Abstract
Gastroesophageal junction adenocarcinoma (GEJA) is an aggressive malignancy with an alarmingly rising incidence. TNM staging is widely used by oncologists to stratify prognosis as well as direct therapeutic strategies. However, inadequate lymphadenectomy is frequently encountered for GEJA and largely confounds prognosis resulting from TNM staging. Thus, a molecular biomarker, which can accurately forecast the risk of nodal metastasis in patients with inadequate lymphadenectomy, is required to guide precisely clinical decision. In this study, bioinformatics and pathological analysis identified that p21 protein-activated kinase 1 (PAK1) is associated with lymph nodal metastasis of GEJA. The PAK1 H-score was lower in the patients with negative lymph nodes than that in patients with positive (metastatic) lymph nodes (6.865 ± 3.376, 9.370 ± 2.530, respectively; p < 0.001). The PAK1 H-score in lymph nodes was positively correlated with that in primary tumors (PTs; p < 0.001; r = 0.475). PAK1 H-scores in PTs had the best performance based on its area under the receiver-operating characteristic (ROC) curve compared with PAK1 H-scores in lymph nodes, histological grade, lymph nodal metastasis status, tumor size, depth of tumor, TNM stage and number of resected lymph nodes. Multivariate Cox proportional hazard and Fine and Gray models showed that histological grade 3, Charlson comorbidity index > 7 and high PAK1 expression in PTs were associated with significantly increased risk of recurrence and cancer-related death. In conclusion, high PAK1 expression in PTs is predictive of node metastasis and can be easily integrated in the clinical decision process for personalized therapeutics of GEJA.
Collapse
Affiliation(s)
- Zongtai Li
- Department of Biotherapy and Gastrointestinal Medical Oncology, Affiliated Cancer Hospital of Shantou University Medical College, Shantou, China; Department of Oncological Radiotherapy, The People's Hospital of Gaozhou, Gaozhou, Guangdong, China; Cancer Research Center, Shantou University Medical College, Shantou, China
| | | | | | | | | | | | | |
Collapse
|
11
|
You Y, Yang W, Qin X, Wang F, Li H, Lin C, Li W, Gu C, Zhang Y, Ran Y. ECRG4 acts as a tumor suppressor and as a determinant of chemotherapy resistance in human nasopharyngeal carcinoma. Cell Oncol (Dordr) 2015; 38:205-14. [PMID: 25707757 DOI: 10.1007/s13402-015-0223-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/09/2015] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Human nasopharyngeal carcinoma (NPC) is a malignant type of cancer with an increasing incidence. As yet, however, molecular biomarkers with a strong diagnostic impact and a major therapeutic promise have remained elusive. Here, we identified the esophageal carcinoma related gene 4 (ECRG4) as a novel candidate tumor suppressor gene and a promising therapeutic target for NPC. METHODS RT-PCR, Western blotting, methylation-specific PCR and bisulfite sequencing were performed to assess the expression and methylation status of the ECRG4 gene in primary NPC samples, NPC-derived cell lines and patient-derived peripheral blood samples. The NPC-derived cell line CNE1 was selected for treatment with a methylation inhibitor to restore ECRG4 expression. In addition, cell proliferation, invasion and colony formation assays were performed to assess the inhibitory effects of exogenous ECRG4 expression in CNE1 cells. RESULTS Down-regulated ECRG4 expression was found to occur in 82.5% (33/40) of the primary NPC biopsies tested. This down-regulation was significantly correlated with its tumor-specific promoter methylation status (72.5%, 29/40) and was also observed in the matching peripheral blood samples from the NPC patients (57.5%, 23/40). Pharmacologic demethylation through 5-aza-dC treatment led to gene reactivation in ECRG4 methylated and silenced NPC cell lines. Moreover, exogenous expression of ECRG4 in the CNE1 cell line strongly inhibited its growth and invasive capacities, as well as its enhanced chemosensitivity to cisplatin through autophagy induction. CONCLUSION Our data suggest that methylation-mediated suppression of the ECRG4 gene occurs frequently in NPC and that restoration of its expression may have therapeutic benefits.
Collapse
Affiliation(s)
- Yanjie You
- Department of Pharmacy, Luohe Medical College, 148 Daxue-Road, Luohe, 462002, China,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Feng Y, Ke C, Tang Q, Dong H, Zheng X, Lin W, Ke J, Huang J, Yeung SCJ, Zhang H. Metformin promotes autophagy and apoptosis in esophageal squamous cell carcinoma by downregulating Stat3 signaling. Cell Death Dis 2014; 5:e1088. [PMID: 24577086 PMCID: PMC3944271 DOI: 10.1038/cddis.2014.59] [Citation(s) in RCA: 195] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 12/31/2013] [Accepted: 01/22/2014] [Indexed: 02/05/2023]
Abstract
The antidiabetic drug metformin exerts chemopreventive and antineoplastic effects in many types of malignancies. However, the mechanisms responsible for metformin actions appear diverse and may differ in different types of cancer. Understanding the molecular and cellular mechanisms specific for different cancers is important to optimize strategy for metformin treatment in different cancer types. Here, we investigate the in vitro and in vivo effects of metformin on esophageal squamous cell carcinoma (ESCC) cells. Metformin selectively inhibited cell growth in ESCC tumor cells but not immortalized noncancerous esophageal epithelial cells. In addition to apoptosis, metformin triggered autophagy. Pharmacological or genetic inhibition of autophagy sensitized ESCC cells to metformin-induced apoptotic cell death. Mechanistically, signal transducer and activator of transcription 3 (Stat3) and its downstream target Bcl-2 was inactivated by metformin treatment. Accordingly, small interfering RNA (siRNA)-mediated Stat3 knockdown enhanced metformin-induced autophagy and apoptosis, and concomitantly enhanced the inhibitory effect of metformin on cell viability. Similarly, the Bcl-2 proto-oncogene, an inhibitor of both apoptosis and autophagy, was repressed by metformin. Ectopic expression of Bcl-2 protected cells from metformin-mediated autophagy and apoptosis. In vivo, metformin downregulated Stat3 activity and Bcl-2 expression, induced apoptosis and autophagy, and inhibited tumor growth. Together, inactivation of Stat3-Bcl-2 pathway contributes to metformin-induced growth inhibition of ESCC by facilitating crosstalk between apoptosis and autophagy.
Collapse
Affiliation(s)
- Y Feng
- Department of Integrative Oncology, Affiliated Cancer Hospital of Shantou University Medical College, Shantou, China
- Cancer Research Center, Shantou University Medical College, Shantou, China
| | - C Ke
- Cancer Research Center, Shantou University Medical College, Shantou, China
| | - Q Tang
- Department of Integrative Oncology, Affiliated Cancer Hospital of Shantou University Medical College, Shantou, China
- Cancer Research Center, Shantou University Medical College, Shantou, China
| | - H Dong
- Cancer Research Center, Shantou University Medical College, Shantou, China
| | - X Zheng
- Cancer Research Center, Shantou University Medical College, Shantou, China
| | - W Lin
- Cancer Research Center, Shantou University Medical College, Shantou, China
| | - J Ke
- Department of Integrative Oncology, Affiliated Cancer Hospital of Shantou University Medical College, Shantou, China
- Cancer Research Center, Shantou University Medical College, Shantou, China
| | - J Huang
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, China
| | - S-CJ Yeung
- Department of Endocrine Neoplasia and Hormonal Disorders, University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Emergency Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - H Zhang
- Department of Integrative Oncology, Affiliated Cancer Hospital of Shantou University Medical College, Shantou, China
- Cancer Research Center, Shantou University Medical College, Shantou, China
- Tumor Tissue Bank, Affiliated Cancer Hospital of Shantou University Medical College, Shantou, China
- Cancer Research Center, Shantou University Medical College, 22 Xinling Road, Shantou, 515041, China. Tel: +86 754 88900406; Fax: +86 754 88900406; E-mail:
| |
Collapse
|