1
|
Kobayashi-Ooka Y, Akagi T, Sukezane T, Yanagita E, Itoh T, Sasai K. Cultures derived from pancreatic cancer xenografts with long-term gemcitabine treatment produce chemoresistant secondary xenografts: Establishment of isogenic gemcitabine-sensitive and -resistant models. Pathol Res Pract 2024; 263:155632. [PMID: 39393265 DOI: 10.1016/j.prp.2024.155632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 09/30/2024] [Accepted: 10/02/2024] [Indexed: 10/13/2024]
Abstract
In attempts to establish sophisticated models to reproduce the process of acquired drug resistance, we transformed normal human pancreatic ductal epithelial cells by introducing genes for multiple cellular factors. We also created isogenic gemcitabine-sensitive and -resistant models by short- and long-term gemcitabine treatment, respectively. These models demonstrated differences in drug resistance in vivo, but not in vitro. Gemcitabine treatment also induced squamous transdifferentiation in xenografts in mice. The transcription factor p63 was identified as a possible resistance-determining factor but was unlikely to be solely responsible for the resistance to gemcitabine. This system would prove useful to discover novel molecular targets to overcome chemotherapy resistance, by allowing the evaluation of molecules of interest in xenograft models after in vitro genetic ablation.
Collapse
Affiliation(s)
| | | | | | - Emmy Yanagita
- Division of Diagnostic Pathology, Kobe University Graduate School Medicine, Kobe, Hyogo, Japan
| | - Tomoo Itoh
- Division of Diagnostic Pathology, Kobe University Graduate School Medicine, Kobe, Hyogo, Japan
| | - Ken Sasai
- KAN Research Institute, Inc., Kobe, Hyogo, Japan.
| |
Collapse
|
2
|
Kimoto A, Kadoi Y, Tsuruda T, Kim YS, Miyoshi M, Nomoto Y, Nakata Y, Miyake M, Miyashita K, Shimizu K, Ajiki T, Hori Y. Exosomes in ascites from patients with human pancreatic cancer enhance remote metastasis partially through endothelial-mesenchymal transition. Pancreatology 2023:S1424-3903(23)00096-0. [PMID: 37088585 DOI: 10.1016/j.pan.2023.04.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/30/2023] [Accepted: 04/07/2023] [Indexed: 04/25/2023]
Abstract
BACKGROUND Despite advances in multidisciplinary treatment, the prognosis of pancreatic cancer remains poor. Since distant metastasis defines prognosis, elucidation of the mechanism of metastasis is important for improving survival. Exosomes are extracellular secretory vesicles and are responsible for intercellular communication. In this study, we investigated whether exosomes secreted by human pancreatic cancer cells are involved in promoting distant metastasis of cancer and the mechanism that underlies the promotion of metastasis. METHODS Exosomes were isolated from ascites of a patient with pancreatic cancer and a patient with liver cirrhosis as a control. Three days after the administration of exosomes to nude mice, GFP-labeled human pancreatic cancer cells were injected via the spleen or tail vein, and then the liver and lungs were histologically analyzed. To elucidate the mechanism, vascular permeability was estimated using FITC-dextran in place of pancreatic cancer cells in vivo and human umbilical vascular endothelial cells (HUVECs) were used to analyze vascular permeability and the induction of endothelial-mesenchymal transition (EndMT) in vitro. RESULTS Distant metastasis and vascular permeability were significantly enhanced in mice treated with exosomes from pancreatic cancer patients in comparison to exosomes from a control patient in vivo. In addition, exosomes from pancreatic cancer patients significantly enhanced vascular permeability and the induction of EndMT in HUVECs in vitro. CONCLUSION Exosomes derived from pancreatic cancer cells form a pre-metastatic niche and promote the extravasation and colonization of pancreatic cancer cells to remote organs, partially through endothelial-mesenchymal transition.
Collapse
Affiliation(s)
- Ai Kimoto
- Department of Biophysics, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - Yusuke Kadoi
- Department of Biophysics, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - Taisei Tsuruda
- Department of Biophysics, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | | | - Makoto Miyoshi
- Department of Biophysics, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - Yuna Nomoto
- Department of Biophysics, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - Yuna Nakata
- Department of Biophysics, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - Mutsumi Miyake
- Department of Biophysics, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - Kumiko Miyashita
- Department of Biophysics, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - Kazuya Shimizu
- Department of Biophysics, Kobe University Graduate School of Health Sciences, Kobe, Japan; Department of Internal Medicine, Kobe Medical Center, Kobe, Japan
| | - Tetsuo Ajiki
- International Clinical Cancer Research Center, Kobe University School of Medicine, Kobe, Japan
| | - Yuichi Hori
- Department of Biophysics, Kobe University Graduate School of Health Sciences, Kobe, Japan.
| |
Collapse
|
3
|
Nakayama F, Miyoshi M, Kimoto A, Kawano A, Miyashita K, Kamoshida S, Shimizu K, Hori Y. Pancreatic cancer cell-derived exosomes induce epithelial-mesenchymal transition in human pancreatic cancer cells themselves partially via transforming growth factor β1. Med Mol Morphol 2022; 55:227-235. [PMID: 35475918 PMCID: PMC9043512 DOI: 10.1007/s00795-022-00321-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 04/10/2022] [Indexed: 12/03/2022]
Abstract
Distant metastasis is a dismal prognostic factor of pancreatic cancer. Metastasis is established in several steps, but the mechanism underlying the very early stages remains unclear. Epithelial-mesenchymal transition (EMT) is involved in these stages. Although signaling molecules have been reported to induce EMT, the mechanism underlying their origin is unclear. In this study, we hypothesized that pancreatic cancer cell-derived exosomes induce EMT in cancer cells themselves, a notion we entertained because we found EMT in in vitro three-dimensional colonies of cancer cells, with vimentin-positive cells observed in some of the budding pancreatic cancer cells and in single cells outside the colony as well. First, we clarified that pancreatic cancer cell-derived exosomes induce EMT in cancer cells themselves. Next, we examined the involvement of transforming growth factor-β1 (TGF-β1), and TGF-β1 knock-down in pancreatic cancer cells with TGF-β1 siRNA significantly suppressed TGF-β1 gene expression in cancer cells, and exosomal TGF-β1 was significantly reduced in the secretory exosomes. Exosomes from TGF-β1 knock-down cells suppressed EMT induction in cancer cells themselves and TGF-β1 protein expression in target cells. Taken together, these findings suggest that TGF-β1 is involved in EMT induction via exosomes, results that may support the production of effective metastasis inhibitors.
Collapse
Affiliation(s)
- Fumiya Nakayama
- Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Suma-ku, Kobe, 654-0142, Japan
| | - Makoto Miyoshi
- Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Suma-ku, Kobe, 654-0142, Japan
| | - Ai Kimoto
- Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Suma-ku, Kobe, 654-0142, Japan
| | - Akari Kawano
- Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Suma-ku, Kobe, 654-0142, Japan
| | - Kumiko Miyashita
- Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Suma-ku, Kobe, 654-0142, Japan
| | - Shingo Kamoshida
- Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Suma-ku, Kobe, 654-0142, Japan
| | - Kazuya Shimizu
- Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Suma-ku, Kobe, 654-0142, Japan
- Department of Internal Medicine, National Hospital Organization Kobe Medical Center, 3-1-1 Nishiochiai, Suma-ku, Kobe, 654-0155, Japan
| | - Yuichi Hori
- Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Suma-ku, Kobe, 654-0142, Japan.
| |
Collapse
|
4
|
Lai X, Guo Y, Chen M, Wei Y, Yi W, Shi Y, Xiong L. Caveolin1: its roles in normal and cancer stem cells. J Cancer Res Clin Oncol 2021; 147:3459-3475. [PMID: 34498146 DOI: 10.1007/s00432-021-03793-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 09/03/2021] [Indexed: 12/09/2022]
Abstract
PURPOSE Stem cells are characterized by the capability of self-renewal and multi-differentiation. Normal stem cells, which are important for tissue repair and tissue regeneration, can be divided into embryonic stem cells (ESCs) and somatic stem cells (SSCs) depending on their origin. As a subpopulation of cells within cancer, cancer stem cells (CSCs) are at the root of therapeutic resistance. Tumor-initiating cells (TICs) are necessary for tumor initiation. Caveolin1 (Cav1), a membrane protein located at the caveolae, participates in cell lipid transport, cell migration, cell proliferation, and cell signal transduction. The purpose of this review was to explore the relationship between Cav1 and stem cells. RESULTS In ESCs, Cav1 is beneficial for self-renewal, proliferation, and migration. In SSCs, Cav1 exhibits positive or/and negative effects on stem cell self-renewal, differentiation, proliferation, migration, and angiogenic capacity. Cav1 deficiency impairs normal stem cell-based tissue repair. In CSCs, Cav1 inhibits or/and promotes CSC self-renewal, differentiation, invasion, migration, tumorigenicity ability, and CSC formation. And suppressing Cav1 promotes chemo-sensitivity in CSCs and TICs. CONCLUSION Cav1 shows dual roles in stem cell biology. Targeting the Cav1-stem cell axis would be a new way for tissue repair and cancer drug resistance.
Collapse
Affiliation(s)
- Xingning Lai
- Department of Pathophysiology, Medical College, Nanchang University, 461 Bayi Road, Nanchang, China.,Second Clinical Medical College, Nanchang University, Nanchang, 330006, China
| | - Yiling Guo
- Department of Pathophysiology, Medical College, Nanchang University, 461 Bayi Road, Nanchang, China.,Second Clinical Medical College, Nanchang University, Nanchang, 330006, China
| | - Miaomiao Chen
- Department of Pathophysiology, Medical College, Nanchang University, 461 Bayi Road, Nanchang, China.,First Clinical Medical College, Nanchang University, Nanchang, 330006, China
| | - Yuxuan Wei
- Department of Pathophysiology, Medical College, Nanchang University, 461 Bayi Road, Nanchang, China.,Queen Mary School, Jiangxi Medical College of Nanchang University, Nanchang, 330006, China
| | - Wanting Yi
- Department of Pathophysiology, Medical College, Nanchang University, 461 Bayi Road, Nanchang, China.,First Clinical Medical College, Nanchang University, Nanchang, 330006, China
| | - Yubo Shi
- Department of Pathophysiology, Medical College, Nanchang University, 461 Bayi Road, Nanchang, China.,Queen Mary School, Jiangxi Medical College of Nanchang University, Nanchang, 330006, China
| | - Lixia Xiong
- Department of Pathophysiology, Medical College, Nanchang University, 461 Bayi Road, Nanchang, China. .,Jiangxi Province Key Laboratory of Tumor Pathogenesis and Molecular Pathology, Nanchang, 330006, China.
| |
Collapse
|
5
|
Xenografts Derived From Patients' Ascites Recapitulate the Gemcitabine Resistance Observed in Pancreatic Cancer Patients. Pancreas 2019; 48:1294-1302. [PMID: 31688592 DOI: 10.1097/mpa.0000000000001438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVES Most patient-derived pancreatic ductal adenocarcinoma (PDAC) xenografts have been established from surgical specimens of patients who have not received chemotherapy. However, xenografts have rarely been established from chemotherapy-resistant, advanced PDACs, because such cases are usually inoperable. The purpose of this study is to establish patient-derived xenografts using PDAC cells refractory to chemotherapy. METHODS Clinical PDAC cells obtained from ascites of patients who had received continuous chemotherapy were implanted into the flanks of immunocompromised mice. Growth and histological features of the xenografts with and without gemcitabine treatment were then analyzed. RESULTS Ascites-derived PDAC cells were successfully expanded through serial xenograft passage without changes in histological appearance. While treatment with gemcitabine substantially inhibited the growth of all PDAC xenografts tested, the tumor volume gradually increased, and the tumors showed marked regrowth even under continued gemcitabine treatment. These findings are consistent with the actual clinical course of the corresponding patients for each xenograft. CONCLUSIONS Ascites-derived xenograft models represent a valuable experimental system for testing the efficacy of currently available therapeutic compounds on chemotherapy-resistant PDAC cells and for elucidation of the mechanisms underlying chemotherapy resistance.
Collapse
|
6
|
Huang R, Nie W, Yao K, Chou J. Depletion of the lncRNA RP11-567G11.1 inhibits pancreatic cancer progression. Biomed Pharmacother 2019; 112:108685. [PMID: 30802827 DOI: 10.1016/j.biopha.2019.108685] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 02/12/2019] [Accepted: 02/12/2019] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Pancreatic cancer is one of the most lethal malignancies, as demonstrated by its 5-year survival rate of less than 10%. The poor response of pancreatic cancer to conventional therapeutics, especially against cancer stem cells (CSCs), is the primary obstacle to improving patient survival. Emerging evidence indicates that the long non-coding RNA (lncRNA) RP11-567G11.1 is up-regulated in pancreatic cancer tissues and that its expression is associated with poor prognosis. This study aimed to elucidate the mechanism by which RP11-567G11.1 influences survival in pancreatic cancer. METHODS We evaluated the expression of RP11-567G11.1 in pancreatic cancer tissues via in situ hybridization. We also constructed RP11-567G11.1 knockdown cell models and used CCK8 and flow cytometry to detect the function of this lncRNA. Western blotting and qPCR were used to detect the expression levels of factors related to RP11-567G11.1. RESULTS The results illustrated that RP11-567G11.1 was significantly up-regulated in poorly differentiated pancreatic cancer tissues as compared to its expression in non-tumor tissues. Additionally, depletion of RP11-567G11.1 in pancreatic cancer cells inhibited proliferation and cell cycle progression, induced apoptosis, suppressed the stem cell-like phenotype, and increased sensitivity to gemcitabine. Also depletion of RP11-567G11.1 in pancreatic cancer cells inhibited factors downstream of the NOTCH signaling pathway. CONCLUSION RP11-567G11.1 plays a crucial role in pancreatic cancer. Importantly, depletion of RP11-567G11.1 boosts the sensitivity of pancreatic cancer cells to gemcitabine, suggesting that this lncRNA is a promising target for pancreatic cancer treatment.
Collapse
Affiliation(s)
- Ranglang Huang
- Department of General Surgery, The Third Xiangya Hospital of Central South University, China; Department of Anesthesia, The Third Xiangya Hospital of Central South University, China
| | - Wanpin Nie
- Department of General Surgery, The Third Xiangya Hospital of Central South University, China; Department of Anesthesia, The Third Xiangya Hospital of Central South University, China
| | - Kai Yao
- Department of General Surgery, The Third Xiangya Hospital of Central South University, China; Department of Anesthesia, The Third Xiangya Hospital of Central South University, China
| | - Jing Chou
- Department of General Surgery, The Third Xiangya Hospital of Central South University, China; Department of Anesthesia, The Third Xiangya Hospital of Central South University, China.
| |
Collapse
|
7
|
The Ever-Evolving Concept of the Cancer Stem Cell in Pancreatic Cancer. Cancers (Basel) 2018; 10:cancers10020033. [PMID: 29373514 PMCID: PMC5836065 DOI: 10.3390/cancers10020033] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 01/15/2018] [Accepted: 01/23/2018] [Indexed: 12/12/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC), the most common type of pancreatic cancer, is the 4th most frequent cause of cancer-related death worldwide, primarily due to the inherent chemoresistant nature and metastatic capacity of this tumor. The latter is believed to be mainly due to the existence of a subpopulation of highly plastic “stem”-like cells within the tumor, known as cancer stem cells (CSCs), which have been shown to have unique metabolic, autophagic, invasive, and chemoresistance properties that allow them to continuously self-renew and escape chemo-therapeutic elimination. As such, current treatments for the majority of PDAC patients are not effective and do not significantly impact overall patient survival (<7 months) as they do not affect the pancreatic CSC (PaCSC) population. In this context, it is important to highlight the need to better understand the characteristics of the PaCSC population in order to develop new therapies to target these cells. In this review, we will provide the latest updates and knowledge on the inherent characteristics of PaCSCs, particularly their unique biological properties including chemoresistance, epithelial to mesenchymal transition, plasticity, metabolism and autophagy.
Collapse
|
8
|
Zhao H, Duan Q, Zhang Z, Li H, Wu H, Shen Q, Wang C, Yin T. Up-regulation of glycolysis promotes the stemness and EMT phenotypes in gemcitabine-resistant pancreatic cancer cells. J Cell Mol Med 2017; 21:2055-2067. [PMID: 28244691 PMCID: PMC5571518 DOI: 10.1111/jcmm.13126] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 01/01/2017] [Indexed: 02/06/2023] Open
Abstract
Cancer stem cells (CSCs) and epithelial–mesenchymal transition (EMT)‐type cells are considered as underlying causes of chemoresistance, tumour recurrence and metastasis in pancreatic cancer. We aimed to describe the mechanisms – particularly glycolysis – involved in the regulation of the CSC and EMT phenotypes. We used a gemcitabine‐resistant (GR) Patu8988 cell line, which exhibited clear CSC and EMT phenotypes and showed reliance on glycolysis. Inhibition of glycolysis using 2‐deoxy‐D‐glucose (2‐DG) significantly enhanced the cytotoxicity of gemcitabine and inhibited the CSC and EMT phenotypes in GR cells both in vitro and in vivo. Intriguingly, the use of the reactive oxygen species (ROS) scavenger N‐acetylcysteine (NAC) restored the CSC and EMT phenotypes. H2O2 produced changes similar to those of 2‐DG, indicating that ROS were involved in the acquired cancer stemness and EMT phenotypes of GR cells. Moreover, doublecortin‐like kinase 1 (DCLK1), a pancreatic CSC marker, was highly expressed and regulated the stemness and EMT phenotypes in GR cell. Both 2‐DG and H2O2 treatment suppressed DCLK1 expression, which was also rescued by NAC. Together, these findings revealed that glycolysis promotes the expression of DCLK1 and maintains the CSC and EMT phenotypes via maintenance of low ROS levels in chemoresistant GR cells. The glycolysis‐ROS‐DCLK1 pathway may be potential targets for reversing the malignant behaviour of pancreatic cancer.
Collapse
Affiliation(s)
- Hengqiang Zhao
- Department of Pancreatic surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qingke Duan
- Department of Pancreatic surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhengle Zhang
- Department of Pancreatic surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hehe Li
- Department of Pancreatic surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Heshui Wu
- Department of Pancreatic surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiang Shen
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Chunyou Wang
- Department of Pancreatic surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Yin
- Department of Pancreatic surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
9
|
Gemcitabine Enhances Kras-MEK-Induced Matrix Metalloproteinase-10 Expression Via Histone Acetylation in Gemcitabine-Resistant Pancreatic Tumor-initiating Cells. Pancreas 2017; 46:268-275. [PMID: 28060183 DOI: 10.1097/mpa.0000000000000744] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
OBJECTIVES Advanced pancreatic ductal adenocarcinoma is resistant to systemic chemotherapy, resulting in a poor prognosis. We previously isolated a human pancreatic tumor-initiating cell line, KMC07, from a patient with acquired resistance to gemcitabine chemotherapy. To improve the anticancer effects of gemcitabine, we investigated the molecular mechanism of KMC07 cells' resistance to gemcitabine. METHODS KMC07 cells were treated with gemcitabine, then gene expression and functional analyses performed using microarray, the quantitative polymerase chain reaction, immunoblotting, immunohistochemistry, chromatin immunoprecipitation, and cell transplantation into nude mice. RESULTS KMC07 cells, but not BxPC-3, PANC-1, MIA PaCa-2, or AsPC-1 cells, expressed matrix metalloproteinase-10 mRNA, the expression level of which was enhanced by gemcitabine. KMC07 cells were shown to carry a constitutively active Kras mutation, and a MEK inhibitor suppressed matrix metalloproteinase-10 mRNA expression. Gemcitabine enhanced histone H3 acetylation at the matrix metalloproteinase-10 promoter, and a histone acetyltransferase inhibitor reduced gemcitabine-enhanced matrix metalloproteinase-10 mRNA expression. Gemcitabine induced expression of matrix metalloproteinase-10 protein in KMC07-derived pancreatic tumors in vivo. CONCLUSIONS We demonstrated constitutive activation of the Kras-MEK matrix metalloproteinase-10 signaling pathway in KMC07 cells that was enhanced by gemcitabine through histone acetylation. Our results may provide novel insights into gemcitabine-based treatment for gemcitabine-resistant pancreatic ductal adenocarcinoma.
Collapse
|