1
|
Wippel HH, Malgarin JS, Inoue AH, Leprevost FDV, Carvalho PC, Goldenberg S, Alves LR. Unveiling the partners of the DRBD2-mRNP complex, an RBP in Trypanosoma cruzi and ortholog to the yeast SR-protein Gbp2. BMC Microbiol 2019; 19:128. [PMID: 31185899 PMCID: PMC6560856 DOI: 10.1186/s12866-019-1505-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Accepted: 05/31/2019] [Indexed: 12/12/2022] Open
Abstract
Background RNA-binding proteins (RBPs) are well known as key factors in gene expression regulation in eukaryotes. These proteins associate with mRNAs and other proteins to form mRNP complexes that ultimately determine the fate of target transcripts in the cell. This association is usually mediated by an RNA-recognition motif (RRM). In the case of trypanosomatids, these proteins play a paramount role, as gene expression regulation is mostly posttranscriptional. Despite their relevance in the life cycle of Trypanosoma cruzi, the causative agent of Chagas’ disease, to date, few RBPs have been characterized in this parasite. Results We investigated the role of DRBD2 in T. cruzi, an RBP with two RRM domains that is associated with cytoplasmic translational complexes. We show that DRBD2 is an ortholog of the Gbp2 in yeast, an SR-rich protein involved in mRNA quality control and export. We used an immunoprecipitation assay followed by shotgun proteomics and RNA-seq to assess the interaction partners of the DRBD2-mRNP complex in epimastigotes. The analysis identified mostly proteins involved in RNA metabolism and regulation, such as ALBA1, ALBA3, ALBA4, UBP1, UBP2, DRBD3, and PABP2. The RNA-seq results showed that most of the transcripts regulated by the DRBD2 complex mapped to hypothetical proteins related to multiple processes, such as to biosynthetic process, DNA metabolic process, protein modification, and response to stress. Conclusions The identification of regulatory proteins in the DRBD2-mRNP complex corroborates the important role of DRBD2 in gene expression regulation in T. cruzi. We consider these results an important contribution to future studies regarding gene expression regulation in T. cruzi, especially in the field of RNA-binding proteins. Electronic supplementary material The online version of this article (10.1186/s12866-019-1505-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Helisa Helena Wippel
- Carlos Chagas Institute-Fiocruz, Professor Algacyr Munhoz Mader, 3775, Curitiba, Paraná, Brazil
| | | | - Alexandre Haruo Inoue
- Carlos Chagas Institute-Fiocruz, Professor Algacyr Munhoz Mader, 3775, Curitiba, Paraná, Brazil.,Molecular Biology Institute-Paraná, Curitiba, Brazil
| | - Felipe da Veiga Leprevost
- Medical Science Unit I, Department of Pathology, University of Michigan, EUA, 1301 Catherine St, Ann Arbor, MI, 48109, USA
| | - Paulo Costa Carvalho
- Carlos Chagas Institute-Fiocruz, Professor Algacyr Munhoz Mader, 3775, Curitiba, Paraná, Brazil
| | - Samuel Goldenberg
- Carlos Chagas Institute-Fiocruz, Professor Algacyr Munhoz Mader, 3775, Curitiba, Paraná, Brazil
| | - Lysangela Ronalte Alves
- Carlos Chagas Institute-Fiocruz, Professor Algacyr Munhoz Mader, 3775, Curitiba, Paraná, Brazil.
| |
Collapse
|
2
|
Sabalette KB, Romaniuk MA, Noé G, Cassola A, Campo VA, De Gaudenzi JG. The RNA-binding protein TcUBP1 up-regulates an RNA regulon for a cell surface-associated Trypanosoma cruzi glycoprotein and promotes parasite infectivity. J Biol Chem 2019; 294:10349-10364. [PMID: 31113862 DOI: 10.1074/jbc.ra118.007123] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 05/06/2019] [Indexed: 11/06/2022] Open
Abstract
The regulation of transcription in trypanosomes is unusual. To modulate protein synthesis during their complex developmental stages, these unicellular microorganisms rely largely on post-transcriptional gene expression pathways. These pathways include a plethora of RNA-binding proteins (RBPs) that modulate all steps of the mRNA life cycle in trypanosomes and help organize transcriptomes into clusters of post-transcriptional regulons. The aim of this work was to characterize an RNA regulon comprising numerous transcripts of trypomastigote-associated cell-surface glycoproteins that are preferentially expressed in the infective stages of the human parasite Trypanosoma cruzi. In vitro and in vivo RNA-binding assays disclosed that these glycoprotein mRNAs are targeted by the small trypanosomatid-exclusive RBP in T. cruzi, U-rich RBP 1 (TcUBP1). Overexpression of a GFP-tagged TcUBP1 in replicative parasites resulted in >10 times up-regulated expression of transcripts encoding surface proteins and in changes in their subcellular localization from the posterior region to the perinuclear region of the cytoplasm, as is typically observed in the infective parasite stages. Moreover, RT-quantitative PCR analysis of actively translated mRNAs by sucrose cushion fractionation revealed an increased abundance of these target transcripts in the polysome fraction of TcUBP1-induced samples. Because these surface proteins are involved in cell adherence or invasion during host infection, we also carried out in vitro infections with TcUBP1-transgenic trypomastigotes and observed that TcUBP1 overexpression significantly increases parasite infectivity. Our findings provide evidence for a role of TcUBP1 in trypomastigote stage-specific gene regulation important for T. cruzi virulence.
Collapse
Affiliation(s)
- Karina B Sabalette
- From the Instituto de Investigaciones Biotecnológicas, UNSAM-CONICET, 1650 San Martín, Buenos Aires, Argentina
| | - María Albertina Romaniuk
- From the Instituto de Investigaciones Biotecnológicas, UNSAM-CONICET, 1650 San Martín, Buenos Aires, Argentina
| | - Griselda Noé
- From the Instituto de Investigaciones Biotecnológicas, UNSAM-CONICET, 1650 San Martín, Buenos Aires, Argentina
| | - Alejandro Cassola
- From the Instituto de Investigaciones Biotecnológicas, UNSAM-CONICET, 1650 San Martín, Buenos Aires, Argentina
| | - Vanina A Campo
- From the Instituto de Investigaciones Biotecnológicas, UNSAM-CONICET, 1650 San Martín, Buenos Aires, Argentina
| | - Javier G De Gaudenzi
- From the Instituto de Investigaciones Biotecnológicas, UNSAM-CONICET, 1650 San Martín, Buenos Aires, Argentina
| |
Collapse
|
3
|
Conserved motifs in nuclear genes encoding predicted mitochondrial proteins in Trypanosoma cruzi. PLoS One 2019; 14:e0215160. [PMID: 30964924 PMCID: PMC6456187 DOI: 10.1371/journal.pone.0215160] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 03/27/2019] [Indexed: 11/19/2022] Open
Abstract
Trypanosoma cruzi, the protozoan parasite that causes Chagas’ disease, exhibits peculiar biological features. Among them, the presence of a unique mitochondrion is remarkable. Even though the mitochondrial DNA constitutes up to 25% of total cellular DNA, the structure and functionality of the mitochondrion are dependent on the expression of the nuclear genome. As in other eukaryotes, specific peptide signals have been proposed to drive the mitochondrial localization of a subset of trypanosomatid proteins. However, there are mitochondrial proteins encoded in the nuclear genome that lack of a peptide signal. In other eukaryotes, alternative protein targeting to subcellular organelles via mRNA localization has also been recognized and specific mRNA localization towards the mitochondria has been described. With the aim of seeking for mitochondrial localization signals in T. cruzi, we developed a strategy to build a comprehensive database of nuclear genes encoding predicted mitochondrial proteins (MiNT) in the TriTryps (T. cruzi, T. brucei and L. major). We found that approximately 15% of their nuclear genome encodes mitochondrial products. In T. cruzi the MiNT database reaches 1438 genes and a conserved peptide signal, M(L/F) R (R/S) SS, named TryM-TaPe is found in 60% of these genes, suggesting that the canonical mRNA guidance mechanism is present. In addition, the search for compositional signals in the transcripts of T. cruzi MiNT genes produce a list, being worth to note a conserved non-translated element represented by the consensus sequence DARRVSG. Taking into account its reported interaction with the T. brucei TRRM3 protein which is enriched in the mitochondrial membrane fraction, we here suggest a putative zip code role for this element. Globally, here we provide an inventory of the mitochondrial proteins in T. cruzi and give evidence for the existence of both peptide and mRNA signals specific to nuclear encoded mitochondrial proteins.
Collapse
|
4
|
Wippel HH, Malgarin JS, Martins SDT, Vidal NM, Marcon BH, Miot HT, Marchini FK, Goldenberg S, Alves LR. The Nuclear RNA-binding Protein RBSR1 Interactome in Trypanosoma cruzi. J Eukaryot Microbiol 2018; 66:244-253. [PMID: 29984450 DOI: 10.1111/jeu.12666] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 07/01/2018] [Accepted: 07/03/2018] [Indexed: 12/18/2022]
Abstract
Trypanosoma cruzi, the etiological agent of Chagas disease, has been widely studied, reflecting both its medical importance and the particular features that make this pathogen an attractive model for basic biological studies. The repression of transcripts by messenger ribonucleoprotein (mRNP) complexes is an important pathway of post-transcriptional regulation in eukaryotes, including T. cruzi. RBSR1 is a serine-arginine (SR)-rich RNA-binding protein (RBP) in T. cruzi that contains one RNA-recognition motif (RRM); this protein has a primarily nuclear localization and is developmentally regulated, not being detected in metacyclic trypomastigotes. RBSR1 interacts with other RBPs, such as UBP1 and UBP2, and the nuclear SR-protein TRRM1. Phylogenetic analysis indicated that RBSR1 is orthologous to the human splicing factor SRSF7, what might indicate its possible involvement in pre-RNA processing. Accordingly, ribonomics data showed the enrichment of snoRNAs and snRNAs in the RBSR1 immunoprecipiatation complex, hence reinforcing the supposition that this protein might be involved in RNA processing in the nucleus.
Collapse
Affiliation(s)
- Helisa H Wippel
- Carlos Chagas Institute, FIOCRUZ, Rua Professor Algacyr Munhoz Mader 3775, Curitiba, Paraná, Brazil
| | - Juliane S Malgarin
- Molecular Biology Institute of Paraná, IBMP, Rua Professor Algacyr Munhoz Mader 3775, Curitiba, Paraná, Brazil
| | - Sharon de Toledo Martins
- Carlos Chagas Institute, FIOCRUZ, Rua Professor Algacyr Munhoz Mader 3775, Curitiba, Paraná, Brazil
| | - Newton M Vidal
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 8600 Rockville Pike, Bethesda, Maryland, 20894
| | - Bruna H Marcon
- Carlos Chagas Institute, FIOCRUZ, Rua Professor Algacyr Munhoz Mader 3775, Curitiba, Paraná, Brazil
| | - Hálisson T Miot
- Carlos Chagas Institute, FIOCRUZ, Rua Professor Algacyr Munhoz Mader 3775, Curitiba, Paraná, Brazil
| | - Fabricio K Marchini
- Carlos Chagas Institute, FIOCRUZ, Rua Professor Algacyr Munhoz Mader 3775, Curitiba, Paraná, Brazil
| | - Samuel Goldenberg
- Carlos Chagas Institute, FIOCRUZ, Rua Professor Algacyr Munhoz Mader 3775, Curitiba, Paraná, Brazil
| | - Lysangela R Alves
- Carlos Chagas Institute, FIOCRUZ, Rua Professor Algacyr Munhoz Mader 3775, Curitiba, Paraná, Brazil
| |
Collapse
|
5
|
Oliveira C, Carvalho PC, Alves LR, Goldenberg S. The Role of the Trypanosoma cruzi TcNRBD1 Protein in Translation. PLoS One 2016; 11:e0164650. [PMID: 27760165 PMCID: PMC5070865 DOI: 10.1371/journal.pone.0164650] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 09/28/2016] [Indexed: 11/28/2022] Open
Abstract
The regulation of gene expression in trypanosomatids occurs mainly at the post-transcriptional level. Despite the importance of this type of control in Trypanosoma cruzi, few RNA binding proteins have been characterized. The RRM domain (RNA Recognition Motif) is one of the most abundant domains found in RNA-binding proteins in higher eukaryotes. Proteins containing the RRM domain are involved in the majority of post-transcriptional processes regulating gene expression. In this work, we aimed to characterize the protein TcNRBD1 from T. cruzi. TcNRBD1 is an RNA-binding protein that contains 2 RRM domains and is the ortholog of the P34 and P37 proteins from Trypanosoma brucei. The TcNRBD1 protein is expressed in all developmental stages of T. cruzi, and its localization pattern is concentrated at the perinuclear region. TcNRBD1 is associated with polysomes and with the 80S monosomes. Furthermore, sequencing of the mRNAs bound to TcNRBD1 allowed the identification of several transcripts that encode ribosomal proteins. Immunoprecipitation assays followed by mass spectrometry showed that the protein complexes with several ribosomal proteins from both the 40S and 60S subunits. In summary, the results indicate that TcNRBD1 is associated with different parts of the translation process, either by regulating mRNAs that encode ribosomal proteins or by acting in some step of ribosome assembly in T. cruzi.
Collapse
Affiliation(s)
- Camila Oliveira
- Instituto Carlos Chagas, Fiocruz-Paraná, Rua Professor Algacyr Munhoz Mader, 3775, Cidade Industrial de Curitiba–CIC, 81350–010, Curitiba, Brasil
| | - Paulo Costa Carvalho
- Instituto Carlos Chagas, Fiocruz-Paraná, Rua Professor Algacyr Munhoz Mader, 3775, Cidade Industrial de Curitiba–CIC, 81350–010, Curitiba, Brasil
| | - Lysangela Ronalte Alves
- Instituto Carlos Chagas, Fiocruz-Paraná, Rua Professor Algacyr Munhoz Mader, 3775, Cidade Industrial de Curitiba–CIC, 81350–010, Curitiba, Brasil
- * E-mail: (SG); (LRA)
| | - Samuel Goldenberg
- Instituto Carlos Chagas, Fiocruz-Paraná, Rua Professor Algacyr Munhoz Mader, 3775, Cidade Industrial de Curitiba–CIC, 81350–010, Curitiba, Brasil
- * E-mail: (SG); (LRA)
| |
Collapse
|
6
|
Alves LR, Goldenberg S. RNA-binding proteins related to stress response and differentiation in protozoa. World J Biol Chem 2016; 7:78-87. [PMID: 26981197 PMCID: PMC4768126 DOI: 10.4331/wjbc.v7.i1.78] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2015] [Revised: 09/23/2015] [Accepted: 11/17/2015] [Indexed: 02/05/2023] Open
Abstract
RNA-binding proteins (RBPs) are key regulators of gene expression. There are several distinct families of RBPs and they are involved in the cellular response to environmental changes, cell differentiation and cell death. The RBPs can differentially combine with RNA molecules and form ribonucleoprotein (RNP) complexes, defining the function and fate of RNA molecules in the cell. RBPs display diverse domains that allow them to be categorized into distinct families. They play important roles in the cellular response to physiological stress, in cell differentiation, and, it is believed, in the cellular localization of certain mRNAs. In several protozoa, a physiological stress (nutritional, temperature or pH) triggers differentiation to a distinct developmental stage. Most of the RBPs characterized in protozoa arise from trypanosomatids. In these protozoa gene expression regulation is mostly post-transcriptional, which suggests that some RBPs might display regulatory functions distinct from those described for other eukaryotes. mRNA stability can be altered as a response to stress. Transcripts are sequestered to RNA granules that ultimately modulate their availability to the translation machinery, storage or degradation, depending on the associated proteins. These aggregates of mRNPs containing mRNAs that are not being translated colocalize in cytoplasmic foci, and their numbers and size vary according to cell conditions such as oxidative stress, nutritional status and treatment with drugs that inhibit translation.
Collapse
|
7
|
De Gaudenzi JG, Jäger AV, Izcovich R, Campo VA. Insights into the Regulation of mRNA Processing of Polycistronic Transcripts Mediated by DRBD4/PTB2, a Trypanosome Homolog of the Polypyrimidine Tract-Binding Protein. J Eukaryot Microbiol 2016; 63:440-52. [PMID: 26663092 DOI: 10.1111/jeu.12288] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 11/11/2015] [Accepted: 12/02/2015] [Indexed: 12/13/2022]
Abstract
Trypanosomes regulate gene expression mostly by posttranscriptional mechanisms, including control of mRNA turnover and translation efficiency. This regulation is carried out via certain elements located at the 3'-untranslated regions of mRNAs, which are recognized by RNA-binding proteins. In trypanosomes, trans-splicing is of central importance to control mRNA maturation. We have previously shown that TcDRBD4/PTB2, a trypanosome homolog of the human polypyrimidine tract-binding protein splicing regulator, interacts with the intergenic region of one specific dicistronic transcript, referred to as TcUBP (and encoding for TcUBP1 and TcUBP2, two closely kinetoplastid-specific proteins). In this work, a survey of TcUBP RNA processing revealed certain TcDRBD4/PTB2-regulatory elements within its intercistronic region, which are likely to influence the trans-splicing rate of monocistronic-derived transcripts. Furthermore, TcDRBD4/PTB2 overexpression in epimastigote cells notably decreased both UBP1 and UBP2 protein expression. This type of posttranscriptional gene regulatory mechanism could be extended to other transcripts as well, as we identified several other RNA precursor molecules that specifically bind to TcDRBD4/PTB2. Altogether, these findings support a model in which TcDRBD4/PTB2-containing ribonucleoprotein complexes can prevent trans-splicing. This could represent another stage of gene expression regulation mediated by the masking of trans-splicing/polyadenylation signals.
Collapse
Affiliation(s)
- Javier G De Gaudenzi
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús, UNSAM-CONICET, Sede San Martín, Prov. de Buenos Aires, Argentina
| | - Adriana V Jäger
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús, UNSAM-CONICET, Sede San Martín, Prov. de Buenos Aires, Argentina
| | - Ronan Izcovich
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús, UNSAM-CONICET, Sede San Martín, Prov. de Buenos Aires, Argentina
| | - Vanina A Campo
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús, UNSAM-CONICET, Sede San Martín, Prov. de Buenos Aires, Argentina
| |
Collapse
|
8
|
Alves LR, Oliveira C, Goldenberg S. Eukaryotic translation elongation factor-1 alpha is associated with a specific subset of mRNAs in Trypanosoma cruzi. BMC Microbiol 2015; 15:104. [PMID: 25986694 PMCID: PMC4436862 DOI: 10.1186/s12866-015-0436-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 05/05/2015] [Indexed: 11/17/2022] Open
Abstract
Background Regulation of gene expression in trypanosomatids is mainly posttranscriptional. Tight regulation of mRNA stability and access to polysomes allows Trypanosoma cruzi to adapt to different environmental conditions during its life cycle. Posttranscriptional regulation requires association between mRNAs and specific proteins to form mRNP complexes. Proteins that lack a canonical RNA-binding domain, such as eukaryotic elongation factor-1α (EF-1α), may also associate with mRNPs. EF-1α is conserved in many organisms, and it plays roles in many cellular processes other than translation, including RNA transport, the cell cycle, and apoptosis. Results In a previous study, EF-1α was found associated with mRNP-forming mRNAs in polysome-free fractions both in epimastigotes growing under normal conditions and in nutritionally stressed parasites. This finding suggested the possibility that EF-1α has a non-canonical function. Thus, we investigated the dynamics of EF-1α in association with T. cruzi epimastigote mRNAs under normal and stressed nutritional conditions. EF-1α is expressed throughout the parasite life cycle, but it shows a slight decrease in protein levels in the metacyclic trypomastigote form. The protein is cytoplasmically localized with a granular pattern in all forms analyzed. Following puromycin treatment, EF-1α migrated with the heaviest gradient fractions in a sucrose polysome profile, indicating that its association with large protein complexes was independent of the translation machinery. We next characterized the EF-1α-associated mRNAs in unstressed and stressed epimastigotes. We observed that specific subsets of mRNAs were associated with EF-1α-mRNPs in unstressed or stressed epimastigotes. Some mRNAs were identified in both physiological conditions, whereas others were condition-specific. Gene ontology analysis identified enrichment of gene sets involved in single-organism metabolic processes, amino acid metabolic processes, ATP and metal ion binding, glycolysis, glutamine metabolic processes, and cobalt and iron ion binding. Conclusion These results indicate that in T. cruzi, as in other eukaryotes, EF-1α may play a non-canonical cellular role. We observed the enrichment of functionally related transcripts bound to EF-1α in normal growth conditions as well as in nutritionally stressed cell indicating a potential role of EF-1α mRNP in stress response. Electronic supplementary material The online version of this article (doi:10.1186/s12866-015-0436-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Camila Oliveira
- Instituto Carlos Chagas, Fiocruz - PR, Curitiba, Parana, Brazil
| | | |
Collapse
|