3
|
Lopes-Oliveira PJ, Oliveira HC, Kolbert Z, Freschi L. The light and dark sides of nitric oxide: multifaceted roles of nitric oxide in plant responses to light. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:885-903. [PMID: 33245760 DOI: 10.1093/jxb/eraa504] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 10/26/2020] [Indexed: 06/11/2023]
Abstract
Light drives photosynthesis and informs plants about their surroundings. Regarded as a multifunctional signaling molecule in plants, nitric oxide (NO) has been repeatedly demonstrated to interact with light signaling cascades to control plant growth, development and metabolism. During early plant development, light-triggered NO accumulation counteracts negative regulators of photomorphogenesis and modulates the abundance of, and sensitivity to, plant hormones to promote seed germination and de-etiolation. In photosynthetically active tissues, NO is generated at distinct rates under light or dark conditions and acts at multiple target sites within chloroplasts to regulate photosynthetic reactions. Moreover, changes in NO concentrations in response to light stress promote plant defenses against oxidative stress under high light or ultraviolet-B radiation. Here we review the literature on the interaction of NO with the complicated light and hormonal signaling cascades controlling plant photomorphogenesis and light stress responses, focusing on the recently identified molecular partners and action mechanisms of NO in these events. We also discuss the versatile role of NO in regulating both photosynthesis and light-dependent stomatal movements, two key determinants of plant carbon gain. The regulation of nitrate reductase (NR) by light is highlighted as vital to adjust NO production in plants living under natural light conditions.
Collapse
Affiliation(s)
| | - Halley Caixeta Oliveira
- Department of Animal and Plant Biology, Universidade Estadual de Londrina (UEL), Londrina, Brazil
| | | | - Luciano Freschi
- Laboratory of Plant Physiology and Biochemistry, Department of Botany, University of Sao Paulo, Brazil
| |
Collapse
|
4
|
Comparative Transcriptome Analysis Reveals Effects of Exogenous Hematin on Anthocyanin Biosynthesis during Strawberry Fruit Ripening. Int J Genomics 2017; 2016:6762731. [PMID: 28074176 PMCID: PMC5198259 DOI: 10.1155/2016/6762731] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 09/30/2016] [Accepted: 10/25/2016] [Indexed: 11/21/2022] Open
Abstract
Anthocyanin in strawberries has a positive effect on fruit coloration. In this study, the role of exogenous hematin on anthocyanin biosynthesis was investigated. Our result showed that the white stage of strawberries treated with exogenous hematin had higher anthocyanin content, compared to the control group. Among all treatments, 5 μM of hematin was the optimal condition to promote color development. In order to explore the molecular mechanism of fruit coloring regulated by hematin, transcriptomes in the hematin- and non-hematin-treated fruit were analyzed. A large number of differentially expressed genes (DEGs) were identified in regulating anthocyanin synthesis, including the DEGs involved in anthocyanin biosynthesis, hormone signaling transduction, phytochrome signaling, starch and sucrose degradation, and transcriptional pathways. These regulatory networks may play an important role in regulating the color process of strawberries treated with hematin. In summary, exogenous hematin could promote fruit coloring by increasing anthocyanin content in the white stage of strawberries. Furthermore, transcriptome analysis suggests that hematin-promoted fruit coloring occurs through multiple related metabolic pathways, which provides valuable information for regulating fruit color via anthocyanin biosynthesis in strawberries.
Collapse
|
5
|
Melo NKG, Bianchetti RE, Lira BS, Oliveira PMR, Zuccarelli R, Dias DLO, Demarco D, Peres LEP, Rossi M, Freschi L. Nitric Oxide, Ethylene, and Auxin Cross Talk Mediates Greening and Plastid Development in Deetiolating Tomato Seedlings. PLANT PHYSIOLOGY 2016; 170:2278-94. [PMID: 26829981 PMCID: PMC4825133 DOI: 10.1104/pp.16.00023] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 01/29/2016] [Indexed: 05/19/2023]
Abstract
The transition from etiolated to green seedlings involves the conversion of etioplasts into mature chloroplasts via a multifaceted, light-driven process comprising multiple, tightly coordinated signaling networks. Here, we demonstrate that light-induced greening and chloroplast differentiation in tomato (Solanum lycopersicum) seedlings are mediated by an intricate cross talk among phytochromes, nitric oxide (NO), ethylene, and auxins. Genetic and pharmacological evidence indicated that either endogenously produced or exogenously applied NO promotes seedling greening by repressing ethylene biosynthesis and inducing auxin accumulation in tomato cotyledons. Analysis performed in hormonal tomato mutants also demonstrated that NO production itself is negatively and positively regulated by ethylene and auxins, respectively. Representing a major biosynthetic source of NO in tomato cotyledons, nitrate reductase was shown to be under strict control of both phytochrome and hormonal signals. A close NO-phytochrome interaction was revealed by the almost complete recovery of the etiolated phenotype of red light-grown seedlings of the tomato phytochrome-deficient aurea mutant upon NO fumigation. In this mutant, NO supplementation induced cotyledon greening, chloroplast differentiation, and hormonal and gene expression alterations similar to those detected in light-exposed wild-type seedlings. NO negatively impacted the transcript accumulation of genes encoding phytochromes, photomorphogenesis-repressor factors, and plastid division proteins, revealing that this free radical can mimic transcriptional changes typically triggered by phytochrome-dependent light perception. Therefore, our data indicate that negative and positive regulatory feedback loops orchestrate ethylene-NO and auxin-NO interactions, respectively, during the conversion of colorless etiolated seedlings into green, photosynthetically competent young plants.
Collapse
Affiliation(s)
- Nielda K G Melo
- Department of Botany, University of São Paulo, Sao Paulo 05508-090, Brazil (N.K.G.M., R.E.B., B.S.L., P.M.R.O., R.Z., D.L.O.D., D.D., M.R., L.F.); andDepartment of Biological Sciences, Escola Superior de Agricultura Luiz de Queiroz, University of São Paulo, Piracicaba 13418-900, Brazil (L.E.P.P.)
| | - Ricardo E Bianchetti
- Department of Botany, University of São Paulo, Sao Paulo 05508-090, Brazil (N.K.G.M., R.E.B., B.S.L., P.M.R.O., R.Z., D.L.O.D., D.D., M.R., L.F.); andDepartment of Biological Sciences, Escola Superior de Agricultura Luiz de Queiroz, University of São Paulo, Piracicaba 13418-900, Brazil (L.E.P.P.)
| | - Bruno S Lira
- Department of Botany, University of São Paulo, Sao Paulo 05508-090, Brazil (N.K.G.M., R.E.B., B.S.L., P.M.R.O., R.Z., D.L.O.D., D.D., M.R., L.F.); andDepartment of Biological Sciences, Escola Superior de Agricultura Luiz de Queiroz, University of São Paulo, Piracicaba 13418-900, Brazil (L.E.P.P.)
| | - Paulo M R Oliveira
- Department of Botany, University of São Paulo, Sao Paulo 05508-090, Brazil (N.K.G.M., R.E.B., B.S.L., P.M.R.O., R.Z., D.L.O.D., D.D., M.R., L.F.); andDepartment of Biological Sciences, Escola Superior de Agricultura Luiz de Queiroz, University of São Paulo, Piracicaba 13418-900, Brazil (L.E.P.P.)
| | - Rafael Zuccarelli
- Department of Botany, University of São Paulo, Sao Paulo 05508-090, Brazil (N.K.G.M., R.E.B., B.S.L., P.M.R.O., R.Z., D.L.O.D., D.D., M.R., L.F.); andDepartment of Biological Sciences, Escola Superior de Agricultura Luiz de Queiroz, University of São Paulo, Piracicaba 13418-900, Brazil (L.E.P.P.)
| | - Devisson L O Dias
- Department of Botany, University of São Paulo, Sao Paulo 05508-090, Brazil (N.K.G.M., R.E.B., B.S.L., P.M.R.O., R.Z., D.L.O.D., D.D., M.R., L.F.); andDepartment of Biological Sciences, Escola Superior de Agricultura Luiz de Queiroz, University of São Paulo, Piracicaba 13418-900, Brazil (L.E.P.P.)
| | - Diego Demarco
- Department of Botany, University of São Paulo, Sao Paulo 05508-090, Brazil (N.K.G.M., R.E.B., B.S.L., P.M.R.O., R.Z., D.L.O.D., D.D., M.R., L.F.); andDepartment of Biological Sciences, Escola Superior de Agricultura Luiz de Queiroz, University of São Paulo, Piracicaba 13418-900, Brazil (L.E.P.P.)
| | - Lazaro E P Peres
- Department of Botany, University of São Paulo, Sao Paulo 05508-090, Brazil (N.K.G.M., R.E.B., B.S.L., P.M.R.O., R.Z., D.L.O.D., D.D., M.R., L.F.); andDepartment of Biological Sciences, Escola Superior de Agricultura Luiz de Queiroz, University of São Paulo, Piracicaba 13418-900, Brazil (L.E.P.P.)
| | - Magdalena Rossi
- Department of Botany, University of São Paulo, Sao Paulo 05508-090, Brazil (N.K.G.M., R.E.B., B.S.L., P.M.R.O., R.Z., D.L.O.D., D.D., M.R., L.F.); andDepartment of Biological Sciences, Escola Superior de Agricultura Luiz de Queiroz, University of São Paulo, Piracicaba 13418-900, Brazil (L.E.P.P.)
| | - Luciano Freschi
- Department of Botany, University of São Paulo, Sao Paulo 05508-090, Brazil (N.K.G.M., R.E.B., B.S.L., P.M.R.O., R.Z., D.L.O.D., D.D., M.R., L.F.); andDepartment of Biological Sciences, Escola Superior de Agricultura Luiz de Queiroz, University of São Paulo, Piracicaba 13418-900, Brazil (L.E.P.P.)
| |
Collapse
|
6
|
Arora D, Jain P, Singh N, Kaur H, Bhatla SC. Mechanisms of nitric oxide crosstalk with reactive oxygen species scavenging enzymes during abiotic stress tolerance in plants. Free Radic Res 2016; 50:291-303. [PMID: 26554526 DOI: 10.3109/10715762.2015.1118473] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Nitric oxide (NO) acts in a concentration and redox-dependent manner to counteract oxidative stress either by directly acting as an antioxidant through scavenging reactive oxygen species (ROS), such as superoxide anions (O(2)(-)*), to form peroxynitrite (ONOO(-)) or by acting as a signaling molecule, thereby altering gene expression. NO can interact with different metal centres in proteins, such as heme-iron, zinc-sulfur clusters, iron-sulfur clusters, and copper, resulting in the formation of a stable metal-nitrosyl complex or production of varied biochemical signals, which ultimately leads to modification of protein structure/function. The thiols (ferrous iron-thiol complex and nitrosothiols) are also involved in the metabolism and mobilization of NO. Thiols bind to NO and transport it to the site of action whereas nitrosothiols release NO after intercellular diffusion and uptake into the target cells. S-nitrosoglutathione (GSNO) also has the ability to transnitrosylate proteins. It is an NO˙ reservoir and a long-distance signaling molecule. Tyrosine nitration of proteins has been suggested as a biomarker of nitrosative stress as it can lead to either activation or inhibition of target proteins. The exact molecular mechanism(s) by which exogenous and endogenously generated NO (or reactive nitrogen species) modulate the induction of various genes affecting redox homeostasis, are being extensively investigated currently by various research groups. Present review provides an in-depth analysis of the mechanisms by which NO interacts with and modulates the activity of various ROS scavenging enzymes, particularly accompanying ROS generation in plants in response to varied abiotic stress.
Collapse
Affiliation(s)
- Dhara Arora
- a Laboratory of Plant Physiology and Biochemistry, Department of Botany , University of Delhi , Delhi , India
| | - Prachi Jain
- a Laboratory of Plant Physiology and Biochemistry, Department of Botany , University of Delhi , Delhi , India
| | - Neha Singh
- a Laboratory of Plant Physiology and Biochemistry, Department of Botany , University of Delhi , Delhi , India
| | - Harmeet Kaur
- a Laboratory of Plant Physiology and Biochemistry, Department of Botany , University of Delhi , Delhi , India
| | - Satish C Bhatla
- a Laboratory of Plant Physiology and Biochemistry, Department of Botany , University of Delhi , Delhi , India
| |
Collapse
|