1
|
Johansson HKL, Svingen T, Fowler PA, Vinggaard AM, Boberg J. Environmental influences on ovarian dysgenesis - developmental windows sensitive to chemical exposures. Nat Rev Endocrinol 2017; 13:400-414. [PMID: 28450750 DOI: 10.1038/nrendo.2017.36] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A woman's reproductive health and ability to have children directly affect numerous aspects of her life, from personal well-being and socioeconomic standing, to morbidity and lifespan. In turn, reproductive health depends on the development of correctly functioning ovaries, a process that starts early during fetal life. Early disruption to ovarian programming can have long-lasting consequences, potentially manifesting as disease much later in adulthood. A growing body of evidence suggests that exposure to chemicals early in life, including endocrine-disrupting chemicals, can cause a range of disorders later in life, such as those described in the ovarian dysgenesis syndrome hypothesis. In this Review, we discuss four specific time windows during which the ovary is particularly sensitive to disruption by exogenous insults: gonadal sex determination, meiotic division, follicle assembly and the first wave of follicle recruitment. To date, most evidence points towards the germ cell lineage being the most vulnerable to chemical exposure, particularly meiotic division and follicle assembly. Environmental chemicals and pharmaceuticals, such as bisphenols or mild analgesics (including paracetamol), can also affect the somatic cell lineages. This Review summarizes our current knowledge pertaining to environmental chemicals and pharmaceuticals, and their potential contributions to the development of ovarian dysgenesis syndrome. We also highlight knowledge gaps that need addressing to safeguard female reproductive health.
Collapse
Affiliation(s)
- Hanna Katarina Lilith Johansson
- Division of Diet, Disease Prevention and Toxicology, National Food Institute, Technical University of Denmark, Kemitorvet, Building 202, DK-2800 Kgs. Lyngby, Denmark
| | - Terje Svingen
- Division of Diet, Disease Prevention and Toxicology, National Food Institute, Technical University of Denmark, Kemitorvet, Building 202, DK-2800 Kgs. Lyngby, Denmark
| | - Paul A Fowler
- Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Anne Marie Vinggaard
- Division of Diet, Disease Prevention and Toxicology, National Food Institute, Technical University of Denmark, Kemitorvet, Building 202, DK-2800 Kgs. Lyngby, Denmark
| | - Julie Boberg
- Division of Diet, Disease Prevention and Toxicology, National Food Institute, Technical University of Denmark, Kemitorvet, Building 202, DK-2800 Kgs. Lyngby, Denmark
| |
Collapse
|
2
|
Embryonic exposure to the widely-used herbicide atrazine disrupts meiosis and normal follicle formation in female mice. Sci Rep 2017; 7:3526. [PMID: 28615648 PMCID: PMC5471253 DOI: 10.1038/s41598-017-03738-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 05/03/2017] [Indexed: 01/28/2023] Open
Abstract
The widely-used herbicide atrazine (ATZ) is detected in ground and surface water in many countries. Several studies in animals have demonstrated that ATZ has endocrine-disrupting effects on male and female reproduction in many vertebrate species. In this study, we investigated the effects of ATZ exposure on meiosis, a key step in gametogenesis in mammals. The treatment was initiated before oocyte entry into meiosis, which occurs during the embryonic period in females. We found that embryonic exposure to ATZ increases the level of 8-oxo-guanine in the nucleus of meiotic cells, reflecting oxidative stress and affecting meiotic double-strand break repair, chromosome synapsis and crossover numbers. Finally, embryonic exposure to ATZ reduces the number of primordial follicles and increases the incidence of multi-oocyte follicles in adult mice. Our data demonstrate that embryonic exposure to ATZ disrupts prophase I of meiosis and affects normal follicle formation in female mice.
Collapse
|
3
|
Dean A, van den Driesche S, Wang Y, McKinnell C, Macpherson S, Eddie SL, Kinnell H, Hurtado-Gonzalez P, Chambers TJ, Stevenson K, Wolfinger E, Hrabalkova L, Calarrao A, Bayne RA, Hagen CP, Mitchell RT, Anderson RA, Sharpe RM. Analgesic exposure in pregnant rats affects fetal germ cell development with inter-generational reproductive consequences. Sci Rep 2016; 6:19789. [PMID: 26813099 PMCID: PMC4728385 DOI: 10.1038/srep19789] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 12/18/2015] [Indexed: 02/06/2023] Open
Abstract
Analgesics which affect prostaglandin (PG) pathways are used by most pregnant women. As germ cells (GC) undergo developmental and epigenetic changes in fetal life and are PG targets, we investigated if exposure of pregnant rats to analgesics (indomethacin or acetaminophen) affected GC development and reproductive function in resulting offspring (F1) or in the F2 generation. Exposure to either analgesic reduced F1 fetal GC number in both sexes and altered the tempo of fetal GC development sex-dependently, with delayed meiotic entry in oogonia but accelerated GC differentiation in males. These effects persisted in adult F1 females as reduced ovarian and litter size, whereas F1 males recovered normal GC numbers and fertility by adulthood. F2 offspring deriving from an analgesic-exposed F1 parent also exhibited sex-specific changes. F2 males exhibited normal reproductive development whereas F2 females had smaller ovaries and reduced follicle numbers during puberty/adulthood; as similar changes were found for F2 offspring of analgesic-exposed F1 fathers or mothers, we interpret this as potentially indicating an analgesic-induced change to GC in F1. Assuming our results are translatable to humans, they raise concerns that analgesic use in pregnancy could potentially affect fertility of resulting daughters and grand-daughters.
Collapse
Affiliation(s)
- Afshan Dean
- MRC Centre for Reproductive Health, The Queen's Medical Research Institute University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Sander van den Driesche
- MRC Centre for Reproductive Health, The Queen's Medical Research Institute University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Yili Wang
- MRC Centre for Reproductive Health, The Queen's Medical Research Institute University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Chris McKinnell
- MRC Centre for Reproductive Health, The Queen's Medical Research Institute University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Sheila Macpherson
- MRC Centre for Reproductive Health, The Queen's Medical Research Institute University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Sharon L Eddie
- MRC Centre for Reproductive Health, The Queen's Medical Research Institute University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Hazel Kinnell
- MRC Centre for Reproductive Health, The Queen's Medical Research Institute University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Pablo Hurtado-Gonzalez
- MRC Centre for Reproductive Health, The Queen's Medical Research Institute University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Tom J Chambers
- MRC Centre for Reproductive Health, The Queen's Medical Research Institute University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Kerrie Stevenson
- MRC Centre for Reproductive Health, The Queen's Medical Research Institute University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Elke Wolfinger
- MRC Centre for Reproductive Health, The Queen's Medical Research Institute University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Lenka Hrabalkova
- MRC Centre for Reproductive Health, The Queen's Medical Research Institute University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Ana Calarrao
- MRC Centre for Reproductive Health, The Queen's Medical Research Institute University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Rosey Al Bayne
- MRC Centre for Reproductive Health, The Queen's Medical Research Institute University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Casper P Hagen
- MRC Centre for Reproductive Health, The Queen's Medical Research Institute University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Rod T Mitchell
- MRC Centre for Reproductive Health, The Queen's Medical Research Institute University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Richard A Anderson
- MRC Centre for Reproductive Health, The Queen's Medical Research Institute University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Richard M Sharpe
- MRC Centre for Reproductive Health, The Queen's Medical Research Institute University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| |
Collapse
|