1
|
Mo Y, Lai W, Zhong Y, Hu Z, You M, Du M, Wang P, Wu X, Chen C, He H, Gao Z, Xu Y, Wang D, Cui L, Yang Y. TXNIP contributes to bone loss via promoting the mitochondrial oxidative phosphorylation during glucocorticoid-induced osteoporosis. Life Sci 2020; 266:118938. [PMID: 33347878 DOI: 10.1016/j.lfs.2020.118938] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 12/06/2020] [Accepted: 12/14/2020] [Indexed: 01/26/2023]
Abstract
Oxidative stress is a promoting factor in the pathologic process of glucocorticoid - induced osteoporosis (GIO), while the mechanism is still unclear. Thioredoxin-interacting protein (TXNIP) is a vital protein responsible for regulation of cellular reactive oxygen species (ROS) generation elicited by mitochondrial oxidative stress, and which may activate oxidative phosphorylation under the pathogenic status. In this research, the results showed that signaling pathway associated with the mitochondrial oxidative phosphorylation (MOP) down-regulated under conditions of TXNIP siRNA in MG63 cells. Furthermore, the evidence revealed that the expression level of TXNIP in serum and bone was elevated in a rat of GIO. Moreover, the differential proteins (Ndufs3, SDHD, Cyt B, COX IV, and ATP B) related to MOP pathway were identified to down-regulate in the proteomics of bone tissues by using isobaric Tags for Relative and Absolute Quantification (iTRAQ) method in TXNIP knockout mice treated with glucocorticoid, and the proteins were also verified by simple western blot. Taken together, the present findings highlights that TXNIP involves in triggering the process of bone loss via up-regulation of the MOP pathway, resulting to GIO, while TXNIP knockout can prevent the pathogenesis of GIO to some extent.
Collapse
Affiliation(s)
- Yulin Mo
- Department of Pharmacology, Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang, Guangdong, China; Department of Orthopedics and Traumatology, Nanning Hospital of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Wenxiu Lai
- Department of Pharmacology, Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang, Guangdong, China; Department of Phamacy, Yuebei people's Hospital, Shaoguan, Guangdong, China
| | - Ying Zhong
- Department of Pharmacology, Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Zhuoqing Hu
- Department of Endocrinology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Meigui You
- Xiamen Medical College, Xiamen, Fujian, China
| | - Minqun Du
- Department of Pharmacology, Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Pan Wang
- Department of Pharmacology, Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Xinyou Wu
- Department of Pharmacology, Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Cailing Chen
- Department of Pharmacology, Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Huanmin He
- Department of Orthopedics and Traumatology, Nanning Hospital of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Zhimin Gao
- Department of Orthopedics and Traumatology, Nanning Hospital of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Yaping Xu
- Xiamen Medical College, Xiamen, Fujian, China
| | - Dongtao Wang
- Department of Traditional Chinese Medicine, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China; Department of the Ministry of Science and Technology, Guangxi International Zhuang Medicine Hospital, Nanning, Guangxi 530201, China.
| | - Liao Cui
- Department of Pharmacology, Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang, Guangdong, China.
| | - Yajun Yang
- Department of Pharmacology, Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang, Guangdong, China.
| |
Collapse
|
2
|
Natural products and other inhibitors of F 1F O ATP synthase. Eur J Med Chem 2020; 207:112779. [PMID: 32942072 DOI: 10.1016/j.ejmech.2020.112779] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/20/2020] [Accepted: 08/21/2020] [Indexed: 12/19/2022]
Abstract
F1FO ATP synthase is responsible for the production of >95% of all ATP synthesis within the cell. Dysregulation of its expression, activity or localization is linked to various human diseases including cancer, diabetes, and Alzheimer's and Parkinson's disease. In addition, ATP synthase is a novel and viable drug target for the development of antimicrobials as evidenced by bedaquiline, which was approved in 2012 for the treatment of tuberculosis. Historically, natural products have been a rich source of ATP synthase inhibitors that help unravel the role of F1FO ATP synthase in cellular bioenergetics. During the last decade, new modulators of ATP synthase have been discovered through the isolation of novel natural products as well as through a ligand-based drug design process. In addition, new data has been obtained with regards to the structure and function of ATP synthase under physiological and pathological conditions. Crystal structure studies have provided a significant insight into the rotary function of the enzyme and may provide additional opportunities to design a new generation of inhibitors. This review provides an update on recently discovered ATP synthase modulators as well as an update on existing scaffolds.
Collapse
|
3
|
Lee JY, Lim W, Song G. Bavachin suppresses human placental choriocarcinoma cells by targeting electron transport chain complexes and mitochondrial dysfunction. Free Radic Biol Med 2020; 156:26-35. [PMID: 32505737 DOI: 10.1016/j.freeradbiomed.2020.05.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/05/2020] [Accepted: 05/26/2020] [Indexed: 12/28/2022]
Abstract
Phytoestrogens are naturally derived estrogen-like therapeutic compounds that have long been studied for their role as anti-cancer agents and supplements during chemotherapy. Bavachin is a therapeutic phytoestrogen used to treat cancer, inflammation, and diabetes mellitus. Though the therapeutic effects of bavachin on various diseases have been explored, its anti-cancer effects and related mechanisms in human placental choriocarcinoma remain unknown. This is the first study to identify the anti-cancer potential of bavachin on human placental choriocarcinoma cell lines JEG3 and JAR. Placental mitochondria support the elevated energy production required for placental development, through oxidative phosphorylation (OXPHOS). Based on this concept, we hypothesized that mitochondrial targeting by bavachin may contribute to anti-cancer activities in high-OXPHOS subtypes of cancer such as placental choriocarcinoma. Apoptosis and caspase activities were increased by bavachin in placental choriocarcinoma cells. Bavachin altered metabolic phenotypes by regulating electron transport chain complex and OXPHOS to suppress choriocarcinoma cell proliferation. It also led to calcium disruption and endoplasmic reticulum stress accompanied by mitochondrial membrane potential depolarization. It showed synergistic anti-cancer effects with paclitaxel on placental choriocarcinoma cells. Taken together, we suggest that bavachin has therapeutic potential against placental choriocarcinoma and may be used to counter paclitaxel-induced toxicity.
Collapse
Affiliation(s)
- Jin-Young Lee
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Whasun Lim
- Department of Food and Nutrition, Kookmin University, Seoul, 02707, Republic of Korea
| | - Gwonhwa Song
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
4
|
A diversity-oriented rhodamine library for wide-spectrum bactericidal agents with low inducible resistance against resistant pathogens. Nat Commun 2019; 10:258. [PMID: 30651565 PMCID: PMC6335415 DOI: 10.1038/s41467-018-08241-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Accepted: 12/21/2018] [Indexed: 12/11/2022] Open
Abstract
Antimicrobial resistance is a public health emergency and warrants coordinated global efforts. Challenge is that no alternative molecular platform has been identified for discovery of abundant antimicrobial hit compounds. Xanthene libraries have been screened for bioactive compounds. However, the potentially accessible chemistry space of xanthene dyes is limited by the existing xanthene synthesis. Herein we report a mild one-step synthesis, which permits late-stage introduction of a xanthene moiety onto i.e. natural products, pharmaceuticals, and bioactive compounds and construction of a focused library of rhodamine dyes exhibiting facile functional, topographical and stereochemical diversity. In vitro screening yields 37 analogs with mid-to-high bactericidal activity against WHO priority drug-resistant pathogens. These findings suggest that synthetic dye libraries exhibiting high structural diversity is a feasible chemical space combating antibacterial resistance, to complement the natural sources. Preparation of xanthene-containing compounds has been limited due to structural bias existing methods pose. Here, the authors developed a mild, diversity-oriented method for rhodamines synthesis, leading to the finding of compounds with antibacterial potency against a variety of bacterial species.
Collapse
|
5
|
Shahruzaman SH, Fakurazi S, Maniam S. Targeting energy metabolism to eliminate cancer cells. Cancer Manag Res 2018; 10:2325-2335. [PMID: 30104901 PMCID: PMC6074761 DOI: 10.2147/cmar.s167424] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Adaptive metabolic responses toward a low oxygen environment are essential to maintain rapid proliferation and are relevant for tumorigenesis. Reprogramming of core metabolism in tumors confers a selective growth advantage such as the ability to evade apoptosis and/or enhance cell proliferation and promotes tumor growth and progression. One of the mechanisms that contributes to tumor growth is the impairment of cancer cell metabolism. In this review, we outline the small-molecule inhibitors identified over the past decade in targeting cancer cell metabolism and the usage of some of these molecules in clinical trials.
Collapse
Affiliation(s)
- Shazwin Hani Shahruzaman
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor Darul Ehsan, Malaysia,
| | - Sharida Fakurazi
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor Darul Ehsan, Malaysia,
| | - Sandra Maniam
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor Darul Ehsan, Malaysia,
| |
Collapse
|
6
|
Errichiello E, Venesio T. Mitochondrial DNA variants in colorectal carcinogenesis: Drivers or passengers? J Cancer Res Clin Oncol 2017; 143:1905-1914. [PMID: 28393270 DOI: 10.1007/s00432-017-2418-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 04/03/2017] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Mitochondrial DNA alterations have widely been reported in many age-related degenerative diseases and tumors, including colorectal cancer. In the past few years, the discovery of inter-genomic crosstalk between nucleus and mitochondria has reinforced the role of mitochondrial DNA variants in perturbing this essential signaling pathway and thus indirectly targeting nuclear genes involved in tumorigenic and invasive phenotype. FINDINGS Mitochondrial dysfunction is currently considered a crucial hallmark of carcinogenesis as well as a promising target for anticancer therapy. Mitochondrial DNA alterations include point mutations, deletions, inversions, and copy number variations, but numerous studies investigating their pathogenic role in cancer have provided inconsistent evidence. Furthermore, the biological impact of mitochondrial DNA variants may vary tremendously, depending on the proportion of mutant DNA molecules carried by the neoplastic cells (heteroplasmy). CONCLUSIONS In this review, we discuss the role of different type of mitochondrial DNA alterations in colorectal carcinogenesis and, in particular, we revisit the issue of whether they may be considered as causative driver or simply genuine passenger events. The advent of high-throughput techniques as well as the development of genetic and pharmaceutical interventions for the treatment of mitochondrial dysfunction in colorectal cancer are also explored.
Collapse
Affiliation(s)
- Edoardo Errichiello
- Department of Molecular Medicine, University of Pavia, Via Forlanini 14, 27100, Pavia, Italy.
- Molecular Pathology Laboratory, Unit of Pathology, Candiolo Cancer Institute, FPO-IRCCS, Starda Provinciale 142, Candiolo, 10060, Turin, Italy.
| | - Tiziana Venesio
- Molecular Pathology Laboratory, Unit of Pathology, Candiolo Cancer Institute, FPO-IRCCS, Starda Provinciale 142, Candiolo, 10060, Turin, Italy
| |
Collapse
|
7
|
ATP5A1 and ATP5B are highly expressed in glioblastoma tumor cells and endothelial cells of microvascular proliferation. J Neurooncol 2015; 126:405-13. [PMID: 26526033 DOI: 10.1007/s11060-015-1984-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 10/25/2015] [Indexed: 10/22/2022]
Abstract
Glioblastoma (GBM) is the most common primary malignant brain tumor. Microvascular proliferation is one of the characteristic pathologic features of GBM. Mitochondrial dysfunction plays an important role in the pathogenesis of GBM. In this study, microvascular proliferation from GBM and normal brain blood vessels were laser microdissected and total RNA was isolated from these microvasculatures. The difference of mRNA expression profiles among GBM microvasculature, normal brain blood vessels and GBM tumor cells was evaluated by mitochondria and metabolism PCR gene arrays. It was found that the mRNA levels of ATP5A1 and ATP5B in GBM tumor cells as well as microvascular proliferation were significantly higher compared with normal brain blood vessels. Immunohistochemical stains with anti-ATP5A1 antibody or anti-ATP5B antibody were performed on tissue microarray, which demonstrated strongly positive expression of ATP5A1 and ATP5B in GBM tumor cells and GBM microvascular proliferation while normal blood vessels were negative. By analyzing The Cancer Genome Atlas data sets for GBM and other cancers, genomic DNA alterations (mutation, amplification or deletion) were less likely the reason for the high expression of ATP5A1 and ATP5B in GBM. Our miRNA microarray data showed that miRNAs that target ATP5A1 or ATP5B were down-regulated, which might be the most likely reason for the high expression of ATP5A1 and ATP5B in GBM tumor cells and microvascular proliferation. These findings help us better understand the pathogenesis of GBM, and agents against ATP5A1 and/or ATP5B might effectively kill both tumor cells and microvascular proliferation in GBM. MiRNAs, such as Let-7f, miR-16, miR-23, miR-100 and miR-101, that target ATP5A1 or ATP5B, might be potential therapeutic agents for GBM.
Collapse
|
8
|
Gao J, Wen S, Zhou H, Feng S. De-methylation of displacement loop of mitochondrial DNA is associated with increased mitochondrial copy number and nicotinamide adenine dinucleotide subunit 2 expression in colorectal cancer. Mol Med Rep 2015; 12:7033-8. [PMID: 26323487 DOI: 10.3892/mmr.2015.4256] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 07/28/2015] [Indexed: 11/06/2022] Open
Abstract
DNA methylation occurs in the displacement loop (D-loop) region of mammals; however, D-loop regions of certain tumor tissue types were found to be de‑methylated. Whether hypomethylation of the D‑loop region is involved in the regulation of the mitochondrial DNA (mtDNA) copy number and nicotinamide adenine dinucleotide subunit 2 (ND‑2) expressions in colorectal cancer has remained elusive. In the present study, the association between methylation status of the D‑loop region, mtDNA copy number and ND‑2 expression was investigated in 65 colorectal cancer specimens and their corresponding non‑cancerous tissues. In addition, a de‑methylation experiment was performed on the Caco‑2 colorectal cancer cell line by using 5‑aza-2'-deoxycytidine (5‑Aza). The methylation rate of the D‑loop region in all 65 colorectal cancer tissues was markedly reduced when compared with that of their corresponding non‑cancerous tissues (13.8 vs. 81.5%; P<0.05). Furthermore, the methylation rate of the D‑loop region in colorectal cancer tissues was markedly decreased in clinicopathological stages III and IV compared with that in clinicopathological stages I and II (7.1 and 0% vs. 25 and 16%; P<0.05). In addition, the mean relative mtDNA copy number and ND‑2 expression in colorectal cancer tissues were increased compared with those in the corresponding non‑cancerous tissues. De‑methylation of the D‑loop region was associated with an elevated mtDNA copy number and an increased ND‑2 expression. Furthermore, the mtDNA copy number and ND‑2 expression in Caco‑2 cells were significantly increased after 5‑Aza treatment. In conclusion, de‑methylation of the D‑loop region is likely to be involved in the regulation of the mtDNA copy number and ND-2 expression.
Collapse
Affiliation(s)
- Jinhang Gao
- Department of Human Anatomy, Academy of Preclinical and Forensic Medicine, West China Medicine College, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Shilei Wen
- Department of Human Anatomy, Academy of Preclinical and Forensic Medicine, West China Medicine College, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Hongying Zhou
- Department of Human Anatomy, Academy of Preclinical and Forensic Medicine, West China Medicine College, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Shi Feng
- Department of Human Anatomy, Academy of Preclinical and Forensic Medicine, West China Medicine College, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
9
|
Bhat TA, Kumar S, Chaudhary AK, Yadav N, Chandra D. Restoration of mitochondria function as a target for cancer therapy. Drug Discov Today 2015; 20:635-43. [PMID: 25766095 DOI: 10.1016/j.drudis.2015.03.001] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 02/16/2015] [Accepted: 03/03/2015] [Indexed: 12/15/2022]
Abstract
Defective oxidative phosphorylation has a crucial role in the attenuation of mitochondrial function, which confers therapy resistance in cancer. Various factors, including endogenous heat shock proteins (HSPs) and exogenous agents such as dichloroacetate, restore respiratory and other physiological functions of mitochondria in cancer cells. Functional mitochondria might ultimately lead to the restoration of apoptosis in cancer cells that are refractory to current anticancer agents. Here, we summarize the key reasons contributing to mitochondria dysfunction in cancer cells and how restoration of mitochondrial function could be exploited for cancer therapeutics.
Collapse
Affiliation(s)
- Tariq A Bhat
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA
| | - Sandeep Kumar
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA
| | - Ajay K Chaudhary
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA
| | - Neelu Yadav
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA
| | - Dhyan Chandra
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA.
| |
Collapse
|