1
|
Wang Y, Peng L, Wang F. M6A-mediated molecular patterns and tumor microenvironment infiltration characterization in nasopharyngeal carcinoma. Cancer Biol Ther 2024; 25:2333590. [PMID: 38532632 DOI: 10.1080/15384047.2024.2333590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 03/18/2024] [Indexed: 03/28/2024] Open
Abstract
N6-methyladenosine (m6A) is the most predominant RNA epigenetic regulation in eukaryotic cells. Numerous evidence revealed that m6A modification exerts a crucial role in the regulation of tumor microenvironment (TME) cell infiltration in several tumors. Nevertheless, the potential role and mechanism of m6A modification in nasopharyngeal carcinoma (NPC) remains unknown. mRNA expression data and clinical information from GSE102349, and GSE53819 datasets obtained from Gene Expression Omnibus (GEO) was used for differential gene expression and subsequent analysis. Consensus clustering was used to identify m6A-related molecular patterns of 88 NPC samples based on prognostic m6A regulators using Univariate Cox analysis. The TME cell-infiltrating characteristics of each m6A-related subclass were explored using single-sample gene set enrichment (ssGSEA) algorithm and CIBERSORT algotithm. DEGs between two m6A-related subclasses were screened using edgeR package. The prognostic signature and predicated nomogram were constructed based on the m6A-related DEGs. The cell infiltration and expression of prognostic signature in NPC was determined using immunohistochemistry (IHC) analysis. Chi-square test was used to analysis the significance of difference of the categorical variables. And survival analysis was performed using Kaplan-Meier plots and log-rank tests. The NPC samples were divided into two m6A-related subclasses. The TME cell-infiltrating characteristics analyses indicated that cluster 1 is characterized by immune-related and metabolism pathways activation, better response to anit-PD1 and anti-CTLA4 treatment and chemotherapy. And cluster 2 is characterized by stromal activation, low expression of HLA family and immune checkpoints, and a worse response to anti-PD1 and anti-CTLA4 treatment and chemotherapy. Furthermore, we identified 1558 DEGs between two m6A-related subclasses and constructed prognostic signatures to predicate the progression-free survival (PFS) for NPC patients. Compared to non-tumor samples, REEP2, TMSB15A, DSEL, and ID4 were upregulated in NPC samples. High expression of REEP2 and TMSB15A showed poor survival in NPC patients. The interaction between REEP2, TMSB15A, DSEL, ID4, and m6A regulators was detected. Our finding indicated that m6A modification plays an important role in the regulation of TME heterogeneity and complexity.
Collapse
Affiliation(s)
- Yong Wang
- Department of Radiotherapy, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Lisha Peng
- Department of Radiotherapy, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Feng Wang
- Department of Radiotherapy, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| |
Collapse
|
2
|
Kot M, Simiczyjew A, Wądzyńska J, Ziętek M, Matkowski R, Nowak D. Characterization of two melanoma cell lines resistant to BRAF/MEK inhibitors (vemurafenib and cobimetinib). Cell Commun Signal 2024; 22:410. [PMID: 39175042 PMCID: PMC11342534 DOI: 10.1186/s12964-024-01788-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 08/12/2024] [Indexed: 08/24/2024] Open
Abstract
BACKGROUND BRAF (v-raf murine sarcoma viral oncogene homolog B1)/MEK (mitogen-activated protein kinase kinase) inhibitors are used for melanoma treatment. Unfortunately, patients treated with this combined therapy develop resistance to treatment quite quickly, but the mechanisms underlying this phenomenon are not yet fully understood. Here, we report and characterize two melanoma cell lines (WM9 and Hs294T) resistant to BRAF (vemurafenib) and MEK (cobimetinib) inhibitors. METHODS Cell viability was assessed via the XTT test. The level of selected proteins as well as activation of signaling pathways were evaluated using Western blotting. The expression of the chosen genes was assessed by RT-PCR. The distribution of cell cycle phases was analyzed by flow cytometry, and confocal microscopy was used to take photos of spheroids. The composition of cytokines secreted by cells was determined using a human cytokine array. RESULTS The resistant cells had increased survival and activation of ERK kinase in the presence of BRAF/MEK inhibitors. The IC50 values for these cells were over 1000 times higher than for controls. Resistant cells also exhibited elevated activation of AKT, p38, and JNK signaling pathways with increased expression of EGFR, ErbB2, MET, and PDGFRβ receptors as well as reduced expression of ErbB3 receptor. Furthermore, these cells demonstrated increased expression of genes encoding proteins involved in drug transport and metabolism. Resistant cells also exhibited features of epithelial-mesenchymal transition and cancer stem cells as well as reduced proliferation rate and elevated cytokine secretion. CONCLUSIONS In summary, this work describes BRAF/MEK-inhibitor-resistant melanoma cells, allowing for better understanding the underlying mechanisms of resistance. The results may thus contribute to the development of new, more effective therapeutic strategies.
Collapse
Affiliation(s)
- Magdalena Kot
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, Wroclaw, 50-383, Poland
| | - Aleksandra Simiczyjew
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, Wroclaw, 50-383, Poland.
| | - Justyna Wądzyńska
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, Wroclaw, 50-383, Poland
| | - Marcin Ziętek
- Department of Oncology, Division of Surgical Oncology, Wroclaw Medical University, Plac Hirszfelda 12, Wroclaw, 53-413, Poland
- Lower Silesian Oncology, Pulmonology, and Hematology Center, Plac Hirszfelda 12, Wroclaw, 53-413, Poland
| | - Rafał Matkowski
- Department of Oncology, Division of Surgical Oncology, Wroclaw Medical University, Plac Hirszfelda 12, Wroclaw, 53-413, Poland
- Lower Silesian Oncology, Pulmonology, and Hematology Center, Plac Hirszfelda 12, Wroclaw, 53-413, Poland
| | - Dorota Nowak
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, Wroclaw, 50-383, Poland
| |
Collapse
|
3
|
Suryani L, Lee HPY, Teo WK, Chin ZK, Loh KS, Tay JK. Precision Medicine for Nasopharyngeal Cancer-A Review of Current Prognostic Strategies. Cancers (Basel) 2024; 16:918. [PMID: 38473280 DOI: 10.3390/cancers16050918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/02/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024] Open
Abstract
Nasopharyngeal carcinoma (NPC) is an Epstein-Barr virus (EBV) driven malignancy arising from the nasopharyngeal epithelium. Current treatment strategies depend on the clinical stage of the disease, including the extent of the primary tumour, the extent of nodal disease, and the presence of distant metastasis. With the close association of EBV infection with NPC development, EBV biomarkers have shown promise in predicting treatment outcomes. Among the omic technologies, RNA and miRNA signatures have been widely studied, showing promising results in the research setting to predict treatment response. The transformation of radiology images into measurable features has facilitated the use of radiomics to generate predictive models for better prognostication and treatment selection. Nonetheless, much of this work remains in the research realm, and challenges remain in clinical implementation.
Collapse
Affiliation(s)
- Luvita Suryani
- Department of Otolaryngology-Head & Neck Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Hazel P Y Lee
- Department of Otolaryngology-Head & Neck Surgery, National University Hospital, Singapore 119228, Singapore
| | - Wei Keat Teo
- Department of Otolaryngology-Head & Neck Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Zhi Kang Chin
- Department of Otolaryngology-Head & Neck Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Kwok Seng Loh
- Department of Otolaryngology-Head & Neck Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Joshua K Tay
- Department of Otolaryngology-Head & Neck Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| |
Collapse
|
4
|
Zhou S, Cao C, Hu J. Long Non-Coding RNA Small Nucleolar RNA Host Gene 4 Induced by Transcription Factor SP1 Promoted the Progression of Nasopharyngeal Carcinoma Through Modulating microRNA-510-5p/Centromere Protein F Axis. Biochem Genet 2023; 61:1967-1986. [PMID: 36899270 DOI: 10.1007/s10528-023-10351-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 02/15/2023] [Indexed: 03/12/2023]
Abstract
Long non-coding RNAs (LncRNAs) are implicated with tumorigenesis and the development of nasopharyngeal carcinoma (NPC). Previous studies suggested that long non-coding RNA small nucleolar RNA host gene 4 (SNHG4) exerted oncogenic roles in various cancers. However, the function and molecular mechanism of SNHG4 in NPC have not been investigated. In our study, it was confirmed that the SNHG4 level was enriched in NPC tissues and cells. Functional assays indicated that SNHG4 depletion inhibited the proliferation and metastasis but promoted apoptosis of NPC cells. Furthermore, we identified miR-510-5p as a downstream gene of SNHG4 in NPC cells and SNHG4 upregulated CENPF expression by binding to miR-510-5p. Moreover, there was a positive (or negative) association between CENPF and SNHG4 (or miR-510-5p) expression in NPC. In addition, rescue experiments verified that CENPF overexpression or miR-510-5p silencing abrogated inhibitory effects on NPC tumorigenesis caused by SNHG4 deficiency. The study demonstrated that SNHG4 promoted NPC progression via miR-510-5p/CENPF axis, providing a novel potential therapeutic target for NPC treatments.
Collapse
Affiliation(s)
- Shao Zhou
- Department of Otorhinolaryngology, The Affiliated People's Hospital of Ningbo University, No. 251 East Baizhang Road, Ningbo, 315000, Zhejiang, China.
| | - Cheng Cao
- Department of Otorhinolaryngology, The Affiliated People's Hospital of Ningbo University, No. 251 East Baizhang Road, Ningbo, 315000, Zhejiang, China
| | - Jiandao Hu
- Department of Otorhinolaryngology, The Affiliated People's Hospital of Ningbo University, No. 251 East Baizhang Road, Ningbo, 315000, Zhejiang, China
| |
Collapse
|
5
|
Yusuf M, Pradana YPA, Rahmawati R, Farhat F, Kusumastuti EH, Ekoputro JW. N-Cadherin Expression with Metastasis of Neck Lymph Nodes in Patients with Nasopharyngeal Carcinoma. Int J Gen Med 2023; 16:1029-1037. [PMID: 36974062 PMCID: PMC10039623 DOI: 10.2147/ijgm.s393863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 03/14/2023] [Indexed: 03/29/2023] Open
Abstract
Background Lymph node (LN) metastases were one characteristic of negative progress of NPC patient despite its advanced therapeutic approaches. One mechanism for the occurrence of epithelial to mesenchymal transition (EMT)-mediated metastases is by increasing N-cadherin expression. The purpose of this research is to determine investigating N-cadherin expression against metastatic LN in NPC cases. Methods Samples were taken by unproportionate stratified random sampling. N-cadherin expression was examined using immunohistochemistry methods. N-cadherin expression was assessed visually by binocular light microscopy. We analyzed these data using Mann-Whitney U-test to examine N-cadherin expression and lymph node metastases. Results A strong expression was found in N3 group by 63.6%; 27.3% in the N2 group and 9.1% in the N1 group. In patients with NPC N0 or without lymph node metastases, N-cadherin expression is 0%. The expression of N-cadherin is indeed an indicator of the occurrence of lymph node metastases in NPC with a statistically significant analysis of p = 0.026 (p < 0.05). Conclusion There were correlations between N-cadherin expression and lymph node metastasis on NPC patients.
Collapse
Affiliation(s)
- Muhtarum Yusuf
- Department of Otorhinolaryngology, Head, and Neck Surgery, Airlangga University, Surabaya, East Java, Indonesia
- Department of Otorhinolaryngology, Head, and Neck Surgery, Dr. Soetomo General Teaching Hospital, Surabaya, East Java, Indonesia
| | - Yogi Putra Adhi Pradana
- Department of Otorhinolaryngology, Head, and Neck Surgery, Airlangga University, Surabaya, East Java, Indonesia
- Department of Otorhinolaryngology, Head, and Neck Surgery, Dr. Soetomo General Teaching Hospital, Surabaya, East Java, Indonesia
| | - Rosydiah Rahmawati
- Department of Otorhinolaryngology, Head, and Neck Surgery, Airlangga University, Surabaya, East Java, Indonesia
- Department of Otorhinolaryngology, Head, and Neck Surgery, Dr. Soetomo General Teaching Hospital, Surabaya, East Java, Indonesia
| | - Farhat Farhat
- Department of Otorhinolaryngology, Head, and Neck Surgery, Sumatera Utara University, Medan, North Sumatera, Indonesia
| | - Etty Hary Kusumastuti
- Department of Otorhinolaryngology, Head, and Neck Surgery, Dr. Soetomo General Teaching Hospital, Surabaya, East Java, Indonesia
- Department of Pathology Anatomy, Airlangga University, Surabaya, East Java, Indonesia
| | | |
Collapse
|
6
|
Luo W. Nasopharyngeal carcinoma ecology theory: cancer as multidimensional spatiotemporal "unity of ecology and evolution" pathological ecosystem. Theranostics 2023; 13:1607-1631. [PMID: 37056571 PMCID: PMC10086202 DOI: 10.7150/thno.82690] [Citation(s) in RCA: 61] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 02/26/2023] [Indexed: 03/14/2023] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a particular entity of head neck cancer that is generally regarded as a genetic disease with diverse intertumor and intratumor heterogeneity. This perspective review mainly outlines the up-to-date knowledge of cancer ecology and NPC progression, and presents a number of conceptual stepping-stones. At the beginning, I explicitly advocate that the nature of NPC (cancer) is not a genetic disease but an ecological disease: a multidimensional spatiotemporal "unity of ecology and evolution" pathological ecosystem. The hallmarks of cancer is proposed to act as ecological factors of population fitness. Subsequently, NPC cells are described as invasive species and its metastasis as a multidirectional ecological dispersal. The foundational ecological principles include intraspecific relationship (e.g. communication) and interspecific relationship (e.g. competition, predation, parasitism and mutualism) are interpreted to understand NPC progression. "Mulberry-fish-ponds" model can well illustrate the dynamic reciprocity of cancer ecosystem. Tumor-host interface is the ecological transition zone of cancer, and tumor buddings should be recognized as ecological islands separated from the mainland. It should be noted that tumor-host interface has a significantly molecular and functional edge effect because of its curvature and irregularity. Selection driving factors and ecological therapy including hyperthermia for NPC patients, and future perspectives in such field as "ecological pathology", "multidimensional tumoriecology" are also discussed. I advance that "nothing in cancer evolution or ecology makes sense except in the light of the other". The cancer ecology tree is constructed to comprehensively point out the future research direction. Taken together, the establishment of NPC ecology theory and cancer ecology tree might provide a novel conceptual framework and paradigm for our understanding of cancer complex causal process and potential preventive and therapeutic applications for patients.
Collapse
Affiliation(s)
- Weiren Luo
- Cancer Research Institute, Department of Pathology, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen Third People's Hospital, National Clinical Research Center for Infectious Diseases, Shenzhen, China
| |
Collapse
|
7
|
Su ZY, Siak PY, Leong CO, Cheah SC. The role of Epstein-Barr virus in nasopharyngeal carcinoma. Front Microbiol 2023; 14:1116143. [PMID: 36846758 PMCID: PMC9947861 DOI: 10.3389/fmicb.2023.1116143] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 01/27/2023] [Indexed: 02/11/2023] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a metastasis-prone malignancy closely associated with the Epstein-Barr virus (EBV). Despite ubiquitous infection of EBV worldwide, NPC incidences displayed predominance in certain ethnic groups and endemic regions. The majority of NPC patients are diagnosed with advanced-stage disease, as a result of anatomical isolation and non-specific clinical manifestation. Over the decades, researchers have gained insights into the molecular mechanisms underlying NPC pathogenesis as a result of the interplay of EBV infection with several environmental and genetic factors. EBV-associated biomarkers were also used for mass population screening for the early detection of NPC. EBV and its encoded products also serve as potential targets for the development of therapeutic strategies and tumour-specific drug delivery. This review will discuss the pathogenic role of EBV in NPC and efforts in exploiting the potential of EBV-associated molecules as biomarkers and therapeutic targets. The current knowledge on the role of EBV and its associated products in NPC tumorigenesis, development and progression will offer a new outlook and potential intervention strategy against this EBV-associated malignancy.
Collapse
Affiliation(s)
- Zhi Yi Su
- Faculty of Medicine and Health Sciences, UCSI University, Bandar Springhill, Negeri Sembilan, Malaysia
| | - Pui Yan Siak
- Faculty of Medicine and Health Sciences, UCSI University, Bandar Springhill, Negeri Sembilan, Malaysia
| | - Chee-Onn Leong
- AGTC Genomics Sdn Bhd, Pusat Perdagangan Bandar, Persiaran Jalil 1, Bukit Jalil, Wilayah Persekutuan Kuala Lumpur, Malaysia
| | - Shiau-Chuen Cheah
- Faculty of Medicine and Health Sciences, UCSI University, Bandar Springhill, Negeri Sembilan, Malaysia
| |
Collapse
|
8
|
Mao M, Wang X, Seeruttun SR, Chi P, Huang K, Liu W, Tan W. Recurrence risk stratification based on Epstein–Barr virus DNA to identify enlarged retropharyngeal lymph nodes of nasopharyngeal carcinoma: A model-histopathologic correlation study. Front Med (Lausanne) 2022; 9:996127. [DOI: 10.3389/fmed.2022.996127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 10/13/2022] [Indexed: 12/03/2022] Open
Abstract
BackgroundAccurate assessment of the nature of enlarged retropharyngeal lymph nodes (RLN) of nasopharyngeal carcinoma (NPC) patients after radiotherapy is related to selecting appropriate treatments and avoiding unnecessary therapy. This study aimed to develop a non-invasive and effective model for predicting the recurrence of RLN (RRLN) in NPC.Materials and methodsThe data of post-radiotherapy NPC patients (N = 76) with abnormal enlargement of RLN who underwent endonasopharyngeal ultrasound-guided fine-needle aspirations (EPUS-FNA) were examined. They were randomly divided into a discovery (n = 53) and validation (n = 23) cohort. Univariate logistic regression was used to assess the association between variables (magnetic resonance imaging characteristics, EBV DNA) and RRLN. Multiple logistic regression was used to construct a prediction model. The accuracy of the model was assessed by discrimination and calibration, and decision curves were used to assess the clinical reliability of the model for the identification of high risk RLNs for possible recurrence.ResultsAbnormal enhancement, minimum axis diameter (MAD) and EBV-DNA were identified as independent risk factors for RRLN and could stratify NPC patients into three risk groups. The probability of RRLN in the low-, medium-, and high-risk groups were 37.5, 82.4, and 100%, respectively. The AUC of the final predictive model was 0.882 (95% CI: 0.782–0.982) in the discovery cohort and 0.926 (95% CI, 0.827–1.000) in the validation cohort, demonstrating good clinical accuracy for predicting the RRLN of NPC patients. The favorable performance of the model was confirmed by the calibration plot and decision curve analysis.ConclusionThe nomogram model constructed in the study could be reliable in predicting the risk of RRLN after radiotherapy for NPC patients.
Collapse
|
9
|
Huang ML, Luo WL. Engrailed homeobox 1 transcriptional regulation of COL22A1 inhibits nasopharyngeal carcinoma cell senescence through the G1/S phase arrest. J Cell Mol Med 2022; 26:5473-5485. [PMID: 36196630 PMCID: PMC9639036 DOI: 10.1111/jcmm.17575] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 09/19/2022] [Accepted: 09/22/2022] [Indexed: 11/30/2022] Open
Abstract
EN1 is well known as a transcription factor in other tumours, but its role in NPC is unclear. In this study, we first used bioinformatics to analyse GEO data to obtain the differentially expressed gene EN1, and subsequently verified that EN1 was highly expressed in nasopharyngeal carcinoma cells by tissue microarrays as well as cell lines. Further, we down‐regulated the expression of EN1 in cells for RNA sequencing. The analysis of sequencing results using KEGG and GO revealed significant changes in cell proliferation and cycle function after downregulation of EN1. Meanwhile, we found that cells underwent senescence after inhibition of EN1 under electron microscopy and the SA‐β‐gal assays. Based on the sequencing results, we verified that EN1 can promote the proliferation and cycle of NPC cells in cell function experiments and animal experiments. To investigate how EN1 affects cell senescence, we found that EN1 transcriptional regulation of COL22A1 regulated cell proliferation and cycle via CDK4/6‐cyclin D1‐Rb signalling pathway by dual luciferase reporter, Immunoblotting and rescue experiment. Accordingly, we uncovered that EN1 could serve as a target for the regulation of senescence in NPC.
Collapse
Affiliation(s)
- Mao-Ling Huang
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wen-Long Luo
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
10
|
Wei J, Deng W, Weng J, Li M, Lan G, Li X, Ye L, Wang Y, Liu F, Ou H, Wei Y, Huang W, Xie S, Dong G, Qu S. Epithelial-mesenchymal transition classification of circulating tumor cells predicts clinical outcomes in progressive nasopharyngeal carcinoma. Front Oncol 2022; 12:988458. [PMID: 36212389 PMCID: PMC9532596 DOI: 10.3389/fonc.2022.988458] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/23/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundLiquid biopsy facilitates the enrichment and isolation of circulating tumor cells (CTCs) in various human cancers, including nasopharyngeal carcinoma (NPC). Characterizing CTCs allows observation of the evolutionary process of single tumor cells undergoing blood-borne dissemination, such as epithelial-mesenchymal transition. However, the prognostic value of phenotypic classification of CTCs in predicting the clinical outcomes of NPC remains poorly understood.Patients and methodsA total of 92 patients who met the inclusion criteria were enrolled in the present study. The CanPatrol™ CTC technology platform was employed to isolate CTCs, and an RNA in situ hybridization-based system was used for phenotypic classification. Kaplan–Meier survival curves were used for univariate survival analysis, and the log-rank test was performed for between-group comparisons of the survival curves.ResultsCTCs were detected in 88.0% (81/92) of the enrolled patients with NPC. The total CTC number did not vary between the T and N stages or between Epstein–Barr virus DNA-positive and -negative cases. The numbers of total CTCs and epithelial/mesenchymal (E/M) hybrid CTCs decreased significantly at 3 months post concurrent chemoradiotherapy (P=0.008 and P=0.023, respectively), whereas the numbers of epithelial or mesenchymal CTCs did not decrease. E/M hybrid-predominant cases had lower disease-free survival (P=0.043) and distant metastasis-free survival (P=0.046) rates than non-E/M hybrid-predominant cases.ConclusionCTC classification enables a better understanding of the cellular phenotypic alterations responsible for locoregional invasion and distant metastasis in NPC. E/M hybrid-predominant CTC distribution predicts unfavorable clinical outcomes in patients with progressive NPC.
Collapse
Affiliation(s)
- Jiazhang Wei
- Department of Otolaryngology & Head and Neck, The People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Institute of Oncology, Guangxi Academy of Medical Sciences, Nanning, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Ministry of Education/Guangxi Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Nanning, China
| | - Weiming Deng
- Department of Otolaryngology & Head and Neck, The People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Jingjin Weng
- Department of Otolaryngology & Head and Neck, The People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Min Li
- Department of Otolaryngology & Head and Neck, The People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Guiping Lan
- Department of Otolaryngology & Head and Neck, The People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Xiang Li
- Department of Otolaryngology & Head and Neck, The People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Linsong Ye
- Department of Otolaryngology & Head and Neck, The People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Yongli Wang
- Department of Otolaryngology & Head and Neck, The People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Fei Liu
- Research Center of Medical Sciences, The People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Huashuang Ou
- Department of Otolaryngology & Head and Neck, The People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Yunzhong Wei
- Department of Otolaryngology & Head and Neck, The People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Wenlin Huang
- Department of Otolaryngology & Head and Neck, The People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Sifang Xie
- Department of Otolaryngology & Head and Neck, The People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Guohu Dong
- Department of Otolaryngology & Head and Neck, The People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Shenhong Qu
- Department of Otolaryngology & Head and Neck, The People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Institute of Oncology, Guangxi Academy of Medical Sciences, Nanning, China
- *Correspondence: Shenhong Qu,
| |
Collapse
|
11
|
Guo SS, Chen YZ, Liu LT, Liu RP, Liang YJ, Wen DX, Jin J, Tang LQ, Mai HQ, Chen QY. Prognostic significance of AKR1C4 and the advantage of combining EBV DNA to stratify patients at high risk of locoregional recurrence of nasopharyngeal carcinoma. BMC Cancer 2022; 22:880. [PMID: 35953777 PMCID: PMC9373296 DOI: 10.1186/s12885-022-09924-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 07/18/2022] [Indexed: 11/10/2022] Open
Abstract
Background Distinguishing patients at a greater risk of recurrence is essential for treating locoregional advanced nasopharyngeal carcinoma (NPC). This study aimed to explore the potential of aldo–keto reductase 1C4 (AKR1C4) in stratifying patients at high risk of locoregional relapse. Methods A total of 179 patients with locoregionally advanced NPC were grouped by different strategies; they were: (a) divided into two groups according to AKR1C4 expression level, and (b) classified into three clusters by integrating AKR1C4 and Epstein-Barr virus (EBV) DNA. The Kaplan–Meier method was used to calculate locoregional relapse-free survival (LRFS), overall survival (OS), progression-free survival (PFS), and distant metastasis-free survival (DMFS). The Cox proportional hazards model was used to determine potential prognostic factors, and a nomogram was generated to predict 3-year and 5-year LRFS. Results A significant difference in the 5-year LRFS was observed between the high and low AKR1C4 expression groups (83.3% vs. 92.7%, respectively; p = 0.009). After integrating AKR1C4 expression and EBV DNA, the LRFS (84.7%, 84.5%, 96.9%, p = 0.014) of high-, intermediate-, and low- AKR1C4 and EBV DNA was also significant. Multivariate analysis indicated that AKR1C4 expression (p = 0.006) was an independent prognostic factor for LRFS. The prognostic factors incorporated into the nomogram were AKR1C4 expression, T stage, and EBV DNA, and the concordance index of the nomogram for locoregional relapse was 0.718. Conclusions In conclusion, high AKR1C4 expression was associated with a high possibility of relapse in NPC patients, and integrating EBV DNA and AKR1C4 can stratify high-risk patients with locoregional recurrence. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-09924-3.
Collapse
Affiliation(s)
- Shan-Shan Guo
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-Sen University Cancer Center, Guangzhou, China.,Department of Nasopharyngeal Carcinoma, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Yan-Zhou Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-Sen University Cancer Center, Guangzhou, China.,Department of Nasopharyngeal Carcinoma, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Li-Ting Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-Sen University Cancer Center, Guangzhou, China.,Department of Nasopharyngeal Carcinoma, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Rong-Ping Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-Sen University Cancer Center, Guangzhou, China.,Department of Nasopharyngeal Carcinoma, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Yu-Jing Liang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-Sen University Cancer Center, Guangzhou, China.,Department of Nasopharyngeal Carcinoma, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Dong-Xiang Wen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-Sen University Cancer Center, Guangzhou, China.,Department of Nasopharyngeal Carcinoma, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Jing Jin
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-Sen University Cancer Center, Guangzhou, China.,Department of Nasopharyngeal Carcinoma, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Lin-Quan Tang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-Sen University Cancer Center, Guangzhou, China.,Department of Nasopharyngeal Carcinoma, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Hai-Qiang Mai
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-Sen University Cancer Center, Guangzhou, China.,Department of Nasopharyngeal Carcinoma, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Qiu-Yan Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-Sen University Cancer Center, Guangzhou, China. .,Department of Nasopharyngeal Carcinoma, Sun Yat-Sen University Cancer Center, Guangzhou, China.
| |
Collapse
|
12
|
Herkiloglu D, Gokce S, Kaygusuz E, Cevik O. Expression of periostin according to endometrial cancer grade. Oncol Lett 2022; 24:213. [PMID: 35707760 PMCID: PMC9178670 DOI: 10.3892/ol.2022.13335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 04/21/2022] [Indexed: 12/24/2022] Open
Abstract
While various molecular profiling methods have been described for the early diagnosis and prognostic process of endometrial cancer, the most common gynaecological cancer, the data obtained remain insufficient. The present study aimed to investigate the protein and gene expression of periostin and its role as a new biomarker in the diagnosis, treatment and prognosis of endometrial cancer. A total of 15 patients diagnosed with endometrial cancer at the Department of Pathology, Zeynep Kamil Training and Research Hospital (Istanbul, Turkey) and 15 patients who were operated on for non-tumour-related reasons, between December 2019 and May 2020, were included in the study. The cases diagnosed with endometrial cancer were divided into three groups: International Federation of Gynaecology and Obstetrics grades I, II and III. Pathology tumour blocks were selected for enzyme-linked immunosorbent assay and PCR studies in which periostin gene expression and protein levels were measured, respectively. A significant increase in periostin gene expression was observed in the endometrial cancer samples compared with that in the controls (3.40±0.66 vs. 2.23±0.47). The protein level of periostin in the tissues was found to be higher in the endometrial cancer samples than that in the control group (1.59±0.31 vs. 0.94±0.22). The levels of periostin protein and gene expression detected in the endometrial cancer samples increased as the grade increased. To the best of our knowledge, the current study is the first to determine the levels of periostin protein and gene expression in endometrial cancer. The results suggested that periostin may be used as a biomarker in the determination of higher histological grade in endometrial cancer.
Collapse
Affiliation(s)
- Dilsad Herkiloglu
- Department of Obstetrics and Gynaecology, Gaziosmanpasa Hospital, Yeni Yuzyil University, Istanbul 34245, Turkey
| | - Sefik Gokce
- Department of Obstetrics and Gynaecology, Gaziosmanpasa Hospital, Yeni Yuzyil University, Istanbul 34245, Turkey
| | - Ecmel Kaygusuz
- Department of Pathology, Zeynep Kamil Training and Research Hospital, Istanbul 2022, Turkey
| | - Ozge Cevik
- Department of Biochemistry, School of Medicine, Aydin Adnan Menderes University, Aydin 09010, Turkey
| |
Collapse
|
13
|
Lin C, Li M, Lin N, Zong J, Pan J, Ye Y. RNF38 suppress growth and metastasis via ubiquitination of ACTN4 in nasopharyngeal carcinoma. BMC Cancer 2022; 22:549. [PMID: 35568845 PMCID: PMC9107765 DOI: 10.1186/s12885-022-09641-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 05/03/2022] [Indexed: 11/16/2022] Open
Abstract
Background Accumulated evidence suggests that RING finger proteins (RNFs) are involved in the carcinogenesis of cancers. However, RNF38, a member of the RNF protein family, has not been studied in nasopharyngeal carcinoma (NPC). Methods RNF38 expression was analyzed by RT-PCR, Western blotting and Immunohistochemistry. Biological functions of RNF38 were evaluated by cell growth, colony formation, apoptosis, migration and invasion assays in vitro. Xenograft growth and lung metastasis models were conducted to investigate the effect of RNF38 in vivo. Liquid chromatography coupled with tandem mass spectrometry, co-immunoprecipitation, and CHX assay were implemented to detect the interaction among RNF38 and ACTN4. Results RNF38 was significantly downregulated in NPC cells and tissues. Immunohistochemistry implied that loss of RNF38 was an independent prognostic factor for poor outcomes of NPC patients. Gain- and loss-of-function experiments showed that RNF38 inhibited proliferation and metastasis in NPC in vitro and in vivo. Upregulation of RNF38 promoted apoptosis of NPC cells to etoposide but not cisplatin. ACTN4 was upregulated in NPC and negatively correlated with RNF38. Mechanistic investigations suggested that RNF38 inactivates the NF-𝛋B and ERK1/2 signaling pathways by inducing ubiquitination and degradation of ACTN4. RNF38 suppress the development of NPC by interacting with ACTN4. Conclusions RNF38 plays a potential cancer suppressor gene role in NPC tumorigenesis and is a prognostic biomarker in NPC. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-09641-x.
Collapse
Affiliation(s)
- Cheng Lin
- Department of Radiation Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, 350014, China.
| | - Meifang Li
- Department of Medical Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, China
| | - Na Lin
- Department of Radiation Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, 350014, China
| | - Jingfeng Zong
- Department of Radiation Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, 350014, China
| | - Jianji Pan
- Department of Radiation Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, 350014, China
| | - Yunbin Ye
- Laboratory of Immuno-Oncology, Fujian Cancer Hospital, Fuzhou, 350014, China. .,Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, China.
| |
Collapse
|
14
|
Su ZY, Siak PY, Leong CO, Cheah SC. Nasopharyngeal Carcinoma and Its Microenvironment: Past, Current, and Future Perspectives. Front Oncol 2022; 12:840467. [PMID: 35311066 PMCID: PMC8924466 DOI: 10.3389/fonc.2022.840467] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 02/11/2022] [Indexed: 12/31/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC) is an epithelial malignancy that raises public health concerns in endemic countries. Despite breakthroughs in therapeutic strategies, late diagnosis and drug resistance often lead to unsatisfactory clinical outcomes in NPC patients. The tumor microenvironment (TME) is a complex niche consisting of tumor-associated cells, such as fibroblasts, endothelial cells, leukocytes, that influences tumor initiation, progression, invasion, and metastasis. Cells in the TME communicate through various mechanisms, of note, exosomes, ligand-receptor interactions, cytokines and chemokines are active players in the construction of TME, characterized by an abundance of immune infiltrates with suppressed immune activities. The NPC microenvironment serves as a target-rich niche for the discovery of potential promising predictive or diagnostic biomarkers and the development of therapeutic strategies. Thus, huge efforts have been made to exploit the role of the NPC microenvironment. The whole picture of the NPC microenvironment remains to be portrayed to understand the mechanisms underlying tumor biology and implement research into clinical practice. The current review discusses the recent insights into the role of TME in the development and progression of NPC which results in different clinical outcomes of patients. Clinical interventions with the use of TME components as potential biomarkers or therapeutic targets, their challenges, and future perspectives will be introduced. This review anticipates to provide insights to the researchers for future preclinical, translational and clinical research on the NPC microenvironment.
Collapse
Affiliation(s)
- Zhi Yi Su
- Faculty of Medicine and Health Sciences, UCSI University, Kuala Lumpur, Malaysia
| | - Pui Yan Siak
- Faculty of Medicine and Health Sciences, UCSI University, Kuala Lumpur, Malaysia
| | - Chee-Onn Leong
- Centre of Cancer and Stem Cells Research, International Medical University, Kuala Lumpur, Malaysia
- Institute for Research, Development and Innovation, International Medical University, Kuala Lumpur, Malaysia
| | - Shiau-Chuen Cheah
- Faculty of Medicine and Health Sciences, UCSI University, Kuala Lumpur, Malaysia
| |
Collapse
|
15
|
Wang H, Zhang J. Identification of DTL as Related Biomarker and Immune Infiltration Characteristics of Nasopharyngeal Carcinoma via Comprehensive Strategies. Int J Gen Med 2022; 15:2329-2345. [PMID: 35264872 PMCID: PMC8901051 DOI: 10.2147/ijgm.s352330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/02/2022] [Indexed: 11/25/2022] Open
Abstract
Purpose Although considerable progress has been made in basic and clinical research on nasopharyngeal carcinoma (NPC), the biomarkers of the progression of NPC have not been fully studied and described. This study was designed to identify potential novel biomarkers for NPC using integrated analyses and explore the immune cell infiltration in this pathological process. Methods Five GEO data sets were downloaded from gene expression omnibus database (GEO) and analysed to identify differentially expressed genes (DEGs), followed by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. The four algorithms were adopted for screening of novel and key biomarkers for NPC, including random forest (RF) machine learning algorithm, least absolute shrinkage and selection operator (LASSO) logistic regression, support vector machine-recursive feature elimination (SVM-RFE), and weighted gene co-expression network analysis (WGCNA). Lastly, CIBERSORT was used to assess the infiltration of immune cells in NPC, and the correlation between diagnostic markers and infiltrating immune cells was analyzed. Results Herein, we identified 46 DEGs, and enrichment analysis results showed that DEGs and several kinds of signaling pathways might be closely associated with the occurrence and progression of NPC. DTL was recognized as NPC-related biomarker. DTL, also known as retinoic acid-regulated nuclear matrix-associated protein (RAMP), or DNA replication factor 2 (CDT2), is reported to be correlated with the cell proliferation, cell cycle arrest and cell invasion in hepatocellular carcinoma, breast cancer and gastric cancer. Immune infiltration analysis demonstrated that macrophages M0, macrophages M1 and T cells CD4 memory activated were linked to pathogenesis of NPC. Conclusion In summary, we adopted a comprehensive strategy to screen DTL as biomarkers related to NPC and explore the critical role of immune cell infiltration in NPC.
Collapse
Affiliation(s)
- Hehe Wang
- Department of Otolaryngology, Head and Neck Surgery, Ningbo First Hospital, Ningbo, Zhejiang, People’s Republic of China
- Correspondence: Hehe Wang, Department of Otolaryngology Head and Neck Surgery, Ningbo First Hospital, Ningbo, Zhejiang, 315010, People’s Republic of China, Email
| | - Junge Zhang
- Department of Anesthesiology, Ningbo First Hospital, Ningbo, Zhejiang, People’s Republic of China
| |
Collapse
|
16
|
Hu J, Pan J, Luo Z, Duan Q, Wang D. Long non-coding RNA FOXD3-AS1 silencing exerts tumor suppressive effects in nasopharyngeal carcinoma by downregulating FOXD3 expression via microRNA-185-3p upregulation. Cancer Gene Ther 2021; 28:602-618. [PMID: 33204001 DOI: 10.1038/s41417-020-00242-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 09/26/2020] [Accepted: 09/28/2020] [Indexed: 02/07/2023]
Abstract
Emerging evidence indicates that the incidence of nasopharyngeal carcinoma (NPC) remains high in endemic regions despite changing environmental factors, suggesting that genetic traits contribute to its development. Recently, long non-coding RNA-microRNA-messenger RNA (lncRNA-miRNA-mRNA) axis has been reported to be implicated in the pathophysiological processes of malignancies. Moreover, initial bioinformatic analysis revealed a highly expressed lncRNA Forkhead box D3 antisense RNA1 (FOXD3-AS1) for mechanistic network underlying NPC in this present study. Therefore, this study aims to delineate the ability of lncRNA FOXD3-AS1 to influence the NPC progression. The relationship among lncRNA FOXD3-AS1, miR-185-3p, and FOXD3 was identified with bioinformatics prediction, dual-luciferase reporter gene assays, RNA-binding protein immunoprecipitation, and RNA pull-down assays. Furthermore, effects of lncRNA FOXD3-AS1 on malignant phenotypes in vitro, alongside tumor formation in vivo, of transfected NPC stem-like cells were examined with gain- and loss-of-function experiments. Our findings revealed that lncRNA FOXD3-AS1 and FOXD3 exhibited increased expression levels, while miR-185-3p exhibited diminished levels in NPC. The levels of lncRNA FOXD3-AS1 and FOXD3 were further correlated with tumor node metastasis stage and pathological type of patients with NPC. LncRNA FOXD3-AS1 was also confirmed to negatively regulate the miR-185-3p expression, which further targeted the downstream gene FOXD3. In addition, lncRNA FOXD3-AS1 knockdown repressed cell stemness, colony formation, viability, invasion, migration, and in vivo tumor growth, and accelerated cell apoptosis. Moreover, FOXD3 silencing or miR-185-3p overexpression reversed the effects of lncRNA FOXD3-AS1. Our findings provide evidence indicating that lncRNA FOXD3-AS1 could bind to miR-185-3p to upregulate the FOXD3 expression, thereby promoting the development of NPC.
Collapse
Affiliation(s)
- Jiang Hu
- Department of Oncology, Taihe Hospital, Hubei University of Medicine, 442000, Shiyan, P.R. China.
| | - Jun Pan
- Department of Pediatrics, Taihe Hospital, Hubei University of Medicine, 442000, Shiyan, P.R. China
| | - Zhiguo Luo
- Department of Oncology, Taihe Hospital, Hubei University of Medicine, 442000, Shiyan, P.R. China
| | - Qiwen Duan
- Department of Oncology, Taihe Hospital, Hubei University of Medicine, 442000, Shiyan, P.R. China
| | - Dan Wang
- Department of Oncology, Taihe Hospital, Hubei University of Medicine, 442000, Shiyan, P.R. China
| |
Collapse
|
17
|
Ding RB, Chen P, Rajendran BK, Lyu X, Wang H, Bao J, Zeng J, Hao W, Sun H, Wong AHH, Valecha MV, Yang EJ, Su SM, Choi TK, Liu S, Chan KI, Yang LL, Wu J, Miao K, Chen Q, Shim JS, Xu X, Deng CX. Molecular landscape and subtype-specific therapeutic response of nasopharyngeal carcinoma revealed by integrative pharmacogenomics. Nat Commun 2021; 12:3046. [PMID: 34031426 PMCID: PMC8144567 DOI: 10.1038/s41467-021-23379-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 04/16/2021] [Indexed: 02/04/2023] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a malignant head and neck cancer type with high morbidity in Southeast Asia, however the pathogenic mechanism of this disease is poorly understood. Using integrative pharmacogenomics, we find that NPC subtypes maintain distinct molecular features, drug responsiveness, and graded radiation sensitivity. The epithelial carcinoma (EC) subtype is characterized by activations of microtubule polymerization and defective mitotic spindle checkpoint related genes, whereas sarcomatoid carcinoma (SC) and mixed sarcomatoid-epithelial carcinoma (MSEC) subtypes exhibit enriched epithelial-mesenchymal transition (EMT) and invasion promoting genes, which are well correlated with their morphological features. Furthermore, patient-derived organoid (PDO)-based drug test identifies potential subtype-specific treatment regimens, in that SC and MSEC subtypes are sensitive to microtubule inhibitors, whereas EC subtype is more responsive to EGFR inhibitors, which is synergistically enhanced by combining with radiotherapy. Through combinational chemoradiotherapy (CRT) screening, effective CRT regimens are also suggested for patients showing less sensitivity to radiation. Altogether, our study provides an example of applying integrative pharmacogenomics to establish a personalized precision oncology for NPC subtype-guided therapies.
Collapse
Affiliation(s)
- Ren-Bo Ding
- grid.437123.00000 0004 1794 8068Cancer Centre, Faculty of Health Sciences, University of Macau, Macau SAR, China ,grid.437123.00000 0004 1794 8068Centre for Precision Medicine Research and Training, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Ping Chen
- grid.437123.00000 0004 1794 8068Cancer Centre, Faculty of Health Sciences, University of Macau, Macau SAR, China ,grid.437123.00000 0004 1794 8068Centre for Precision Medicine Research and Training, Faculty of Health Sciences, University of Macau, Macau SAR, China ,grid.488387.8Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan China
| | - Barani Kumar Rajendran
- grid.437123.00000 0004 1794 8068Cancer Centre, Faculty of Health Sciences, University of Macau, Macau SAR, China ,grid.437123.00000 0004 1794 8068Centre for Precision Medicine Research and Training, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Xueying Lyu
- grid.437123.00000 0004 1794 8068Cancer Centre, Faculty of Health Sciences, University of Macau, Macau SAR, China ,grid.437123.00000 0004 1794 8068Centre for Precision Medicine Research and Training, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Haitao Wang
- grid.437123.00000 0004 1794 8068Cancer Centre, Faculty of Health Sciences, University of Macau, Macau SAR, China ,grid.437123.00000 0004 1794 8068Centre for Precision Medicine Research and Training, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Jiaolin Bao
- grid.437123.00000 0004 1794 8068Cancer Centre, Faculty of Health Sciences, University of Macau, Macau SAR, China ,grid.437123.00000 0004 1794 8068Centre for Precision Medicine Research and Training, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Jianming Zeng
- grid.437123.00000 0004 1794 8068Cancer Centre, Faculty of Health Sciences, University of Macau, Macau SAR, China ,grid.437123.00000 0004 1794 8068Centre for Precision Medicine Research and Training, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Wenhui Hao
- grid.437123.00000 0004 1794 8068Cancer Centre, Faculty of Health Sciences, University of Macau, Macau SAR, China ,grid.437123.00000 0004 1794 8068Centre for Precision Medicine Research and Training, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Heng Sun
- grid.437123.00000 0004 1794 8068Cancer Centre, Faculty of Health Sciences, University of Macau, Macau SAR, China ,grid.437123.00000 0004 1794 8068Centre for Precision Medicine Research and Training, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Ada Hang-Heng Wong
- grid.437123.00000 0004 1794 8068Cancer Centre, Faculty of Health Sciences, University of Macau, Macau SAR, China ,grid.437123.00000 0004 1794 8068Centre for Precision Medicine Research and Training, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Monica Vishnu Valecha
- grid.437123.00000 0004 1794 8068Cancer Centre, Faculty of Health Sciences, University of Macau, Macau SAR, China ,grid.437123.00000 0004 1794 8068Centre for Precision Medicine Research and Training, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Eun Ju Yang
- grid.437123.00000 0004 1794 8068Cancer Centre, Faculty of Health Sciences, University of Macau, Macau SAR, China ,grid.437123.00000 0004 1794 8068Centre for Precision Medicine Research and Training, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Sek Man Su
- grid.437123.00000 0004 1794 8068Cancer Centre, Faculty of Health Sciences, University of Macau, Macau SAR, China ,grid.437123.00000 0004 1794 8068Centre for Precision Medicine Research and Training, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Tak Kan Choi
- grid.437123.00000 0004 1794 8068Cancer Centre, Faculty of Health Sciences, University of Macau, Macau SAR, China ,grid.437123.00000 0004 1794 8068Centre for Precision Medicine Research and Training, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Shuiming Liu
- grid.507998.a0000 0004 0639 5728Kiang Wu Hospital, Macau SAR, China
| | - Kin Iong Chan
- grid.507998.a0000 0004 0639 5728Kiang Wu Hospital, Macau SAR, China
| | - Ling-Lin Yang
- grid.488387.8Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan China
| | - Jingbo Wu
- grid.488387.8Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan China
| | - Kai Miao
- grid.437123.00000 0004 1794 8068Cancer Centre, Faculty of Health Sciences, University of Macau, Macau SAR, China ,grid.437123.00000 0004 1794 8068Centre for Precision Medicine Research and Training, Faculty of Health Sciences, University of Macau, Macau SAR, China ,grid.437123.00000 0004 1794 8068MOE Frontier Science Centre for Precision Oncology, University of Macau, Macau SAR, China
| | - Qiang Chen
- grid.437123.00000 0004 1794 8068Cancer Centre, Faculty of Health Sciences, University of Macau, Macau SAR, China ,grid.437123.00000 0004 1794 8068Centre for Precision Medicine Research and Training, Faculty of Health Sciences, University of Macau, Macau SAR, China ,grid.437123.00000 0004 1794 8068MOE Frontier Science Centre for Precision Oncology, University of Macau, Macau SAR, China
| | - Joong Sup Shim
- grid.437123.00000 0004 1794 8068Cancer Centre, Faculty of Health Sciences, University of Macau, Macau SAR, China ,grid.437123.00000 0004 1794 8068Centre for Precision Medicine Research and Training, Faculty of Health Sciences, University of Macau, Macau SAR, China ,grid.437123.00000 0004 1794 8068MOE Frontier Science Centre for Precision Oncology, University of Macau, Macau SAR, China
| | - Xiaoling Xu
- grid.437123.00000 0004 1794 8068Cancer Centre, Faculty of Health Sciences, University of Macau, Macau SAR, China ,grid.437123.00000 0004 1794 8068Centre for Precision Medicine Research and Training, Faculty of Health Sciences, University of Macau, Macau SAR, China ,grid.437123.00000 0004 1794 8068MOE Frontier Science Centre for Precision Oncology, University of Macau, Macau SAR, China
| | - Chu-Xia Deng
- grid.437123.00000 0004 1794 8068Cancer Centre, Faculty of Health Sciences, University of Macau, Macau SAR, China ,grid.437123.00000 0004 1794 8068Centre for Precision Medicine Research and Training, Faculty of Health Sciences, University of Macau, Macau SAR, China ,grid.437123.00000 0004 1794 8068MOE Frontier Science Centre for Precision Oncology, University of Macau, Macau SAR, China
| |
Collapse
|
18
|
Hendawy H, Esmail AD, Zahani AMN, Elmahdi AH, Ibrahiem A. Clinicopathological correlation of stem cell markers expression in oral squamous cell carcinoma; relation to patients` outcome. J Immunoassay Immunochem 2021; 42:571-595. [PMID: 33896397 DOI: 10.1080/15321819.2021.1911814] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Background: Squamous cell carcinoma (OSCC) is the commonest oral malignancy.The overall 5 year survival of OSCC has remained at 50%, largely unchanged for 40 years. CSCs are important within the development, invasion, drug resistance, and prediction of carcinomas treatment outcome. ALDH1 and CD44 are commonly used epithelial tumors cancer stem-like cells surface markers. Materials: Our study aimed to judge CD44 and ALDH1 immunohistochemical expressions in 44 cases of OSCC and relates the expression to patients' survival. Results: High CD44 & ALDH1 expressions were significantly expressed in variable histologic grades of OSCCs, large sized carcinomas, presence lymph vascular invasion, presence of nodal and distant metastasis, advanced TNM clinical stage, recurrence and death during follow up period (P ≤ 0.05). Reduced DFS and three years overall survival were significantly recorded in cases with high CD44 expression, and high ALDH1 expression (p < 0.05). CD44 & ALDH1 expressions, histologic grade, tumor size were the independent predictors of DFS and three years OS. Conclusion: CD44 and ALDH1 expressions are valuable prognostic factors in OSCC and could be well considered predictors for patients' 3 years OS and DFS.
Collapse
Affiliation(s)
- Heba Hendawy
- Lecturer of Oral and Maxillofacial Pathology, Mansoura University Faculty of Dentistry, Mansoura, Egypt
| | - A Doaa Esmail
- Lecturer of Oral and Maxillofacial Pathology, Mansoura University Faculty of Dentistry, Mansoura, Egypt
| | - A M Nashwa Zahani
- Teaching Assistant, Northern Border University Faculty of Medicine, Arar, Saudi Arabia
| | - Al Hoda Elmahdi
- Lecturer of Oral and Maxillofacial Pathology, Mansoura University Faculty of Dentistry, Mansoura, Egypt
| | - Afaf Ibrahiem
- Lecturer of Oral and Maxillofacial Pathology, Mansoura University Faculty of Dentistry, Mansoura, Egypt.,Lecturer of pathology, Faculty medicine, Mansoura University , Egypt
| |
Collapse
|
19
|
Chacham M, Almoznino G, Zlotogorski-Hurvitz A, Buchner A, Vered M. Expression of stem cell markers in stroma of odontogenic cysts and tumors. J Oral Pathol Med 2020; 49:1068-1077. [PMID: 32840915 DOI: 10.1111/jop.13102] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/29/2020] [Accepted: 08/10/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND The stroma of odontogenic cysts/tumors may confer them differential biological behavior. We aimed to investigate the immunoexpression of stem cell markers (Nanog, SOX2, Oct4, and CD34) in the stroma of odontogenic cysts and tumors. CD34 was investigated exclusively as a marker for stromal fibroblast/fibrocyte cells (CD34 + SFCs). CD34 + SFCs were also investigated ultrastructurally. METHODS Ten cases each of primary odontogenic keratocyst (OKC), recurrent OKC, dentigerous cyst, ameloblastoma, unicystic ameloblastoma, odontogenic myxoma, and 7 syndromic OKC were included. Results were represented as the mean score (%) of positive cells/field for each marker for each study group. For CD34 + SFCs, results are presented as the mean number of cells/field for each type of lesion. Kruskal-Wallis and Spearman's correlation statistical tests were used; significance was set at P < .05. RESULTS All markers except Oct4 were expressed by stromal cells in all lesions. Expression of SOX2 was significantly higher in tumors than in cysts (P < .05). CD34 + SFCs were more frequent in cysts than in tumors. Ultrastructurally, CD34 + SFCs were identified for the first time in odontogenic lesions and showed characteristic bipolar/dendritic morphology. CONCLUSION Among examined stromal stem cell markers, only SOX2 distinguished tumors from cysts. CD34 + SFCs may also contribute to the biological behavior of odontogenic lesions.
Collapse
Affiliation(s)
- Moran Chacham
- Department of Oral & Maxillofacial Surgery, Soroka Medical Center, Beer Sheva, Israel
| | - Galit Almoznino
- Big Biomedical Data Research Laboratory, Hebrew University, Hadassah School of Dental Medicine, Jerusalem, Israel.,Department of Oral Medicine, Sedation & Maxillofacial Imaging, Hebrew University, Hadassah School of Dentistry, Jerusalem, Israel
| | - Ayelet Zlotogorski-Hurvitz
- Department of Oral Pathology, Oral Medicine & Maxillofacial Imaging, School of Dental Medicine, Tel Aviv University, Tel Aviv, Israel.,Department of Oral & Maxillofacial Surgery, Rabin Medical Center, Petah Tikva, Israel
| | - Amos Buchner
- Department of Oral Pathology, Oral Medicine & Maxillofacial Imaging, School of Dental Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Marilena Vered
- Department of Oral Pathology, Oral Medicine & Maxillofacial Imaging, School of Dental Medicine, Tel Aviv University, Tel Aviv, Israel.,Institute of Pathology, The Chaim Sheba Medical Center, Tel Hashomer, Israel
| |
Collapse
|
20
|
Diao S, Hou J, Yu H, Zhao X, Sun Y, Lambo RL, Xie Y, Liu L, Qin W, Luo W. Computer-Aided Pathologic Diagnosis of Nasopharyngeal Carcinoma Based on Deep Learning. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 190:1691-1700. [PMID: 32360568 DOI: 10.1016/j.ajpath.2020.04.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 03/30/2020] [Accepted: 04/09/2020] [Indexed: 02/07/2023]
Abstract
The pathologic diagnosis of nasopharyngeal carcinoma (NPC) by different pathologists is often inefficient and inconsistent. We have therefore introduced a deep learning algorithm into this process and compared the performance of the model with that of three pathologists with different levels of experience to demonstrate its clinical value. In this retrospective study, a total of 1970 whole slide images of 731 cases were collected and divided into training, validation, and testing sets. Inception-v3, which is a state-of-the-art convolutional neural network, was trained to classify images into three categories: chronic nasopharyngeal inflammation, lymphoid hyperplasia, and NPC. The mean area under the curve (AUC) of the deep learning model is 0.936 based on the testing set, and its AUCs for the three image categories are 0.905, 0.972, and 0.930, respectively. In the comparison with the three pathologists, the model outperforms the junior and intermediate pathologists, and has only a slightly lower performance than the senior pathologist when considered in terms of accuracy, specificity, sensitivity, AUC, and consistency. To our knowledge, this is the first study about the application of deep learning to NPC pathologic diagnosis. In clinical practice, the deep learning model can potentially assist pathologists by providing a second opinion on their NPC diagnoses.
Collapse
Affiliation(s)
- Songhui Diao
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Science, Shenzhen, China; Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen, China
| | - Jiaxin Hou
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Science, Shenzhen, China; College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China
| | - Hong Yu
- Department of Pathology, Cancer Research Institute, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen Third People's Hospital, National Clinical Research Center for Infectious Diseases, Shenzhen, China
| | - Xia Zhao
- Department of Pathology, Cancer Research Institute, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen Third People's Hospital, National Clinical Research Center for Infectious Diseases, Shenzhen, China
| | - Yikang Sun
- Department of Pathology, Cancer Research Institute, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen Third People's Hospital, National Clinical Research Center for Infectious Diseases, Shenzhen, China
| | - Ricardo Lewis Lambo
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Science, Shenzhen, China
| | - Yaoqin Xie
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Science, Shenzhen, China
| | - Lei Liu
- Department of Pathology, Cancer Research Institute, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen Third People's Hospital, National Clinical Research Center for Infectious Diseases, Shenzhen, China
| | - Wenjian Qin
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Science, Shenzhen, China.
| | - Weiren Luo
- Department of Pathology, Cancer Research Institute, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen Third People's Hospital, National Clinical Research Center for Infectious Diseases, Shenzhen, China.
| |
Collapse
|
21
|
Yang T, Deng Z, Pan Z, Qian Y, Yao W, Wang J. Prognostic value of periostin in multiple solid cancers: A systematic review with meta-analysis. J Cell Physiol 2019; 235:2800-2808. [PMID: 31517399 DOI: 10.1002/jcp.29184] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Accepted: 08/26/2019] [Indexed: 12/15/2022]
Abstract
Previous studies have shown that the expression of periostin (POSTN) is significantly correlated with prognosis in multiple solid cancers. However, the function of POSTN in tumorigenesis and its relationship with clinical outcomes have not been systematically summarized and analyzed. Thus, a meta-analysis was performed to evaluate the prognostic pertinence of POSTN in solid cancer. We conducted a systematic search in the PubMed, EMBASE, Web of Science, and Cochrane library databases, and a total of 10 studies were used to assess the association of POSTN expression and patients' overall survival (OS) and disease-free survival (DFS). The hazard ratio (HR) or odds ratio (OR) and their corresponding 95% confidence intervals (95% CIs) were further calculated to estimate the association between POSTN and relevant clinical parameters of solid cancer patients. The pooled results indicated that POSTN overexpression was associated with poor OS (HR = 2.35, 95% CI = 1.88-2.93, p < .00001) and DFS (HR = 2.70, 95% CI = 2.00-3.65, p < .00001) in a cohort of 993 patients with cancer. Subsequent analyses showed that the positive expression ratio of POSTN was evidently higher in cancer tissues than in normal tissues (OR = 7.44, 95% CI = 3.66-13.95, p < .00001). In addition, subgroup analysis showed that POSTN was related to microvascular invasion (OR = 5.09, 95% CI = 3.07-8.44, p < .00001), tumor differentiation (OR = 2.03, 95% CI = 1.41-2.91, p = .0001), and lymph node metastasis (OR = 3.05, 95% CI = 2.01-4.64, p < .00001). These data showed that POSTN could be a credible prognostic biomarker and a potential therapeutic target in human solid cancer.
Collapse
Affiliation(s)
- Tao Yang
- Department of Biliary and Pancreatic Surgery/Cancer Research Center Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhengdong Deng
- Department of Biliary and Pancreatic Surgery/Cancer Research Center Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhongya Pan
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yawei Qian
- Department of Hepato-Biliary-Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Wei Yao
- Department of Oncology Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jianming Wang
- Department of Biliary and Pancreatic Surgery/Cancer Research Center Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Affiliated Tianyou Hospital, Wuhan University of Science & Technology, Wuhan, China
| |
Collapse
|
22
|
Curtarelli RB, Gonçalves JM, dos Santos LGP, Savi MG, Nör JE, Mezzomo LAM, Rodríguez Cordeiro MM. Expression of Cancer Stem Cell Biomarkers in Human Head and Neck Carcinomas: a Systematic Review. Stem Cell Rev Rep 2018; 14:769-784. [DOI: 10.1007/s12015-018-9839-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
23
|
Luo W, Gao F, Li S, Liu L. FoxM1 Promotes Cell Proliferation, Invasion, and Stem Cell Properties in Nasopharyngeal Carcinoma. Front Oncol 2018; 8:483. [PMID: 30416986 PMCID: PMC6212599 DOI: 10.3389/fonc.2018.00483] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Accepted: 10/09/2018] [Indexed: 02/05/2023] Open
Abstract
Background: The self-renewal and tumourigenicity of FoxM1 in nasopharyngeal carcinoma (NPC) remain largely unknown. In this study, we attempt to investigate the self-renewal and tumourigenicity of FoxM1 and its clinical significance in nasopharyngeal carcinoma (NPC). Methods: Several assays including cell counting Kit-8 (CCK-8) assays, colony formation, flow cytometry, immunofluorescence, tumor spheres, and mice model were used to detect the biological function of FoxM1 in NPC. The association between FoxM1 and clinical pathological features, and stem cell markers was analyzed using immunohistochemistry. Results: High expression of FoxM1 was prominently present in the T4 stages, cancer cells migrating into the stroma and vasculature. Overexpression of FoxM1 enhanced tumor proliferation, cell cycle progression, migration and stress fibers formation in vitro. In NPC tissues, FoxM1 correlated significantly with stem cells-related clinical pathological features including late clinical stage, tumor recurrence and distant metastasis. Meanwhile, FoxM1 linked closely with the expression levels of stem cell markers including Nanog, Sox2, and OCT4 in tumor samples, and also promoted the expression of these stemness-related genes in vitro. Moreover, FoxM1 conferred the self-renewal properties of cancer cells by increasing side populations (SP) cells and formed larger and more tumor spheres. Importantly, FoxM1 enhanced the ability of tumourigenicity of NPC cell lines in mice xenograft. Conclusions: We demonstrate that FoxM1 greatly induces cancer progression and cancer stem cell (CSC) features in NPC.
Collapse
Affiliation(s)
- Weiren Luo
- Department of Pathology, Department of Scientific Research and Education, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen Third People's Hospital, Shenzhen, China
- Guangdong Provincial Key Laboratory of Cancer Immunotherapy Research, Cancer Research Institute, Southern Medical University, Guangzhou, China
- *Correspondence: Weiren Luo
| | - Fei Gao
- Department of Gastroenterology, The First Affiliated Hospital of Jinan University, Guangzhou, China
- Gastroenterology Research Unit, Division of Gastroenterology and Hepatology, Department of Physiology and Biomedical Engineering, Enteric Neuroscience Program, Mayo Clinic, Rochester, MN, United States
| | - Siyi Li
- Department of Pathology, Department of Scientific Research and Education, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen Third People's Hospital, Shenzhen, China
| | - Lei Liu
- Department of Pathology, Department of Scientific Research and Education, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen Third People's Hospital, Shenzhen, China
| |
Collapse
|
24
|
The Roles of Matricellular Proteins in Oncogenic Virus-Induced Cancers and Their Potential Utilities as Therapeutic Targets. Int J Mol Sci 2017; 18:ijms18102198. [PMID: 29065446 PMCID: PMC5666879 DOI: 10.3390/ijms18102198] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 10/17/2017] [Accepted: 10/18/2017] [Indexed: 12/13/2022] Open
Abstract
Matricellular proteins differ from other classical extracellular matrix proteins; for instance, they are transiently expressed as soluble proteins rather than being constitutively expressed in pathological conditions, such as acute viral infections. Accumulating studies have revealed that matricellular proteins, including osteopontin and tenascin-C, both of which interact with integrin heterodimers, are involved in inflammatory diseases, autoimmune disorders, and cancers. The concentrations of these matricellular proteins are elevated in the plasma of patients with certain types of cancers, indicating that they play important roles in oncogenesis. Chronic viral infections are associated with certain cancers, which are distinct from non-viral cancers. Viral oncogenes play critical roles in the development and progression of such cancers. It is vital to investigate the mechanisms of tumorigenesis and, particularly, the mechanism by which viral proteins induce tumor progression. Viral proteins have been shown to influence not only the viral-infected cancer cells, but also the stromal cells and matricellular proteins that constitute the extracellular matrix that surrounds tumor tissues. In this review, we summarize the recent progress on the involvement of matricellular proteins in oncogenic virus-induced cancers to elucidate the mechanism of oncogenesis and consider the possible role of matricellular proteins as therapeutic targets in virus-induced cancers.
Collapse
|
25
|
Li X, Zhao Z, Zhang X, Yang S, Lin X, Yang X, Lin X, Shi J, Wang S, Zhao W, Li J, Gao F, Liu M, Ma N, Luo W, Yao K, Sun Y, Xiao S, Xiao D, Jia J. Klf4 reduces stemness phenotype, triggers mesenchymal-epithelial transition (MET)-like molecular changes, and prevents tumor progression in nasopharygeal carcinoma. Oncotarget 2017; 8:93924-93941. [PMID: 29212199 PMCID: PMC5706845 DOI: 10.18632/oncotarget.21370] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 06/29/2017] [Indexed: 12/22/2022] Open
Abstract
The reprogramming factor Krüppel-like factor 4 (Klf4), one of the Yamanaka's reprogramming factors, plays an essential role in reprogramming somatic cells into induced pluripotent stem cells (iPSCs). Klf4 is dysregulated and displays divergent functions in multiple malignancies, but the biological roles of Klf4 in nasopharyngeal carcinoma (NPC) remain unknown. The present study revealed that Klf4 downregulation in a cohort of human NPC biopsies is significantly associated with invasive and metastatic phenotypes of NPC. Our results showed exogenous expression of Klf4 significantly inhibited cell proliferation, decreased stemness, triggered mesenchymal-epithelial transition (MET)-like molecular changes, and suppressed migration and invasion of NPC cells, whereas depletion of endogeneous Klf4 by RNAi reversed the aforementioned biological behaviors and characheristics. Klf4 silencing significantly enhanced the metastatic ability of NPC cells in vivo. In addition, CHIP assay confirmed that E-cadherin is a transcriptional target of Klf4 in NPC cells. Additional studies demonstrated that Klf4-induced MET-like cellular marker alterations, and reduced motility and invasion of NPC cells were mediated by E-cadherin. This study revealed the clinical correlation between Klf4 expression and epithelial-mesenchymal transition (EMT) biomarkers (including its target gene E-cadherin) in a cohort of NPC biopsies. Taken together, our findings suggest, for what we believe is the first time, that Klf4 functions as a tumor suppressor in NPC to decrease stemness phenotype, inhibit EMT and prevent tumor progression, suggesting that restoring Klf4 function may provide therapeutic benefits in NPC.
Collapse
Affiliation(s)
- Xiqing Li
- Guangdong Provincial Key Laboratory of Cancer Immunotherapy Research and Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, Southern Medical University, Guangzhou 510515, China.,Institute of Comparative Medicine & Laboratory Animal Center, Southern Medical University, Guangzhou 510515, China.,Department of Oncology, The People's Hosptial of Zhengzhou University, Zhengzhou 450003, China
| | - Zhunlan Zhao
- Guangdong Provincial Key Laboratory of Cancer Immunotherapy Research and Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, Southern Medical University, Guangzhou 510515, China.,Department of Oncology, The People's Hosptial of Zhengzhou University, Zhengzhou 450003, China
| | - Xiaoling Zhang
- Department of Physiology, Faculty of Basic Medical Sciences, Guilin Medical University, Guilin 541004, China
| | - Sheng Yang
- Guangdong Provincial Key Laboratory of Cancer Immunotherapy Research and Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Xia Lin
- Guangdong Provincial Key Laboratory of Cancer Immunotherapy Research and Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Xinglong Yang
- Guangdong Provincial Key Laboratory of Cancer Immunotherapy Research and Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Xiaolin Lin
- Guangdong Provincial Key Laboratory of Cancer Immunotherapy Research and Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Junwen Shi
- Guangdong Provincial Key Laboratory of Cancer Immunotherapy Research and Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Shengchun Wang
- Guangdong Provincial Key Laboratory of Cancer Immunotherapy Research and Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Wentao Zhao
- Guangdong Provincial Key Laboratory of Cancer Immunotherapy Research and Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Jing Li
- Guangdong Provincial Key Laboratory of Cancer Immunotherapy Research and Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Fei Gao
- Guangdong Provincial Key Laboratory of Cancer Immunotherapy Research and Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, Southern Medical University, Guangzhou 510515, China.,Department of Gastroenterology, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Mingyue Liu
- Department of Oncology, The People's Hosptial of Zhengzhou University, Zhengzhou 450003, China
| | - Ning Ma
- Department of Oncology, The People's Hosptial of Zhengzhou University, Zhengzhou 450003, China
| | - Weiren Luo
- The Third People's Hospital of Shenzhen, Guangdong Medical University, Shenzhen 518112, China
| | - Kaitai Yao
- Guangdong Provincial Key Laboratory of Cancer Immunotherapy Research and Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Yan Sun
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Shengjun Xiao
- Department of Pathology, The Second Affiliated Hospital, Guilin Medical University, Guilin 541199, China
| | - Dong Xiao
- Guangdong Provincial Key Laboratory of Cancer Immunotherapy Research and Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, Southern Medical University, Guangzhou 510515, China.,Institute of Comparative Medicine & Laboratory Animal Center, Southern Medical University, Guangzhou 510515, China
| | - Junshuang Jia
- Guangdong Provincial Key Laboratory of Cancer Immunotherapy Research and Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
26
|
Lin CH, Chiang MC, Chen YJ. STAT3 mediates resistance to anoikis and promotes invasiveness of nasopharyngeal cancer cells. Int J Mol Med 2017; 40:1549-1556. [PMID: 28949390 DOI: 10.3892/ijmm.2017.3151] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 09/08/2017] [Indexed: 11/06/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC), a tumor arising from the epithelial cells of the nasopharynx, is endemic in Southeast Asia and Taiwan. The prognosis of NPC patients with local recurrence and metastasis is poor. Resistance to anoikis is a primary characteristic of tumor cells that metastasize. However, the mechanism through which NPC cells resist anoikis and are able to metastasize has not been fully elucidated. In the present study, the acquisition of anoikis resistance was analyzed in the TW01 and TW06 human NPC cell lines growing under anchorage-independent conditions. A considerable number of TW01 and TW06 cells was found to be resistant to anoikis and exhibited a higher capability of migration and invasion. These anoikis-resistant NPC cells exhibited significantly increased expression of signal transducer and activation of transcription 3 (Stat3) compared with adherent cells. Furthermore, blockade of STAT3 expression by STAT3 inhibitors or STAT3 silencing significant increased anoikis in anoikis-resistant NPC cells. Moreover, silencing STAT3 not only reduced the capacity of NPC cells to resist anoikis, but also reversed their invasive properties. The expression of epithelial‑to-mesenchymal transition‑related proteins and CD44 was also significantly decreased following STAT3 knockdown. The results of the present study established that STAT3 mediates anoikis resistance, with enhanced cell migration and invasion of NPC cells, and that activation of STAT3 may increase metastatic capacity, indicating the crucial role of STAT3 in conferring anoikis resistance and enhanced invasive properties to NPC cells.
Collapse
Affiliation(s)
- Chien-Hung Lin
- Institute of Clinical Medicine, National Yang-Ming University, Taipei 112, Taiwan, R.O.C
| | - Ming-Chang Chiang
- Department of Life Science, College of Science and Engineering, Fu Jen Catholic University, New Taipei City 24205, Taiwan, R.O.C
| | - Yann-Jang Chen
- Institute of Clinical Medicine, National Yang-Ming University, Taipei 112, Taiwan, R.O.C
| |
Collapse
|
27
|
Al-Antary N, Farghaly H, Aboulkassim T, Yasmeen A, Akil N, Al Moustafa AE. Epstein-Barr virus and its association with Fascin expression in colorectal cancers in the Syrian population: A tissue microarray study. Hum Vaccin Immunother 2017; 13:1573-1578. [PMID: 28350509 DOI: 10.1080/21645515.2017.1302046] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Colorectal cancer (CRC) is the third most common malignancy in both men and women worldwide. Colorectal carcinogenesis is a complex, multistep process involving environmental and lifestyle features as well as sequential genetic changes in addition to bacterial and viral infections. Viral infection has a proven role in the incidence of approximately 20% of human cancers including gastric malignancies. Accordingly, Epstein-Barr virus (EBV) has been recently shown to be present in human gastric cancers, which could play an important role in the initiation and progression of these cancers. Therefore, this work explores the prevalence of EBV in 102 CRC tissues from the Syrian population using polymerase chain reaction (PCR) and tissue microarray (TMA) analysis. We found that EBV is present in 37 (36.27%) of CRC samples. Additionally, the expression of LMP1 onco-protein of EBV was found to be correlated with Fascin expression/overexpression in the majority of CRC tissue samples, which are intermediate/high grade invasive carcinomas. Our data indicate that EBV is present in CRC and its presence is associated with more aggressive cancer phenotype. Consequently, future investigations are needed to expose the role of EBV in CRC initiation and progression.
Collapse
Affiliation(s)
- Noor Al-Antary
- a College of Medicine & Biomedical Research Centre , Qatar University , Doha , Qatar
| | | | - Tahar Aboulkassim
- c Segal Cancer Centre, Lady Davis Institute for Medical Research of the Sir Mortimer B. Davis-Jewish General Hospital , McGill University , Montreal , QC , Canada
| | - Amber Yasmeen
- c Segal Cancer Centre, Lady Davis Institute for Medical Research of the Sir Mortimer B. Davis-Jewish General Hospital , McGill University , Montreal , QC , Canada
| | - Nizar Akil
- d Department of Pathology , Gaziantep University , Gaziantep , Turkey.,e Oncology Department , McGill University , Montreal , QC , Canada
| | - Ala-Eddin Al Moustafa
- a College of Medicine & Biomedical Research Centre , Qatar University , Doha , Qatar.,e Oncology Department , McGill University , Montreal , QC , Canada.,f Syrian Research Cancer Centre of the Syrian Society against Cancer , Aleppo , Syria
| |
Collapse
|
28
|
Wei F, Rong XX, Xie RY, Jia LT, Wang HY, Qin YJ, Chen L, Shen HF, Lin XL, Yang J, Yang S, Hao WC, Chen Y, Xiao SJ, Zhou HR, Lin TY, Chen YS, Sun Y, Yao KT, Xiao D. Cytokine-induced killer cells efficiently kill stem-like cancer cells of nasopharyngeal carcinoma via the NKG2D-ligands recognition. Oncotarget 2016; 6:35023-39. [PMID: 26418951 PMCID: PMC4741506 DOI: 10.18632/oncotarget.5280] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 09/04/2015] [Indexed: 02/07/2023] Open
Abstract
Cancer stem cells (CSCs) are considered to be the root cause for cancer treatment failure. Thus, there remains an urgent need for more potent and safer therapies against CSCs for curing cancer. In this study, the antitumor activity of cytokine-induced killer (CIK) cells against putative CSCs of nasopharyngeal carcinoma (NPC) was fully evaluated in vitro and in vivo. To visualize putative CSCs in vitro by fluorescence imaging, and image and quantify putative CSCs in tumor xenograft-bearing mice by in vivo bioluminescence imaging, NPC cells were engineered with CSC detector vector encoding GFP and luciferase (Luc) under control of Nanog promoter. Our study reported in vitro intense tumor-killing activity of CIK cells against putative CSCs of NPC, as revealed by percentage analysis of side population cells, tumorsphere formation assay and Nanog-promoter-GFP-Luc reporter gene strategy plus time-lapse recording. Additionally, time-lapse imaging firstly illustrated that GFP-labeled or PKH26-labeled putative CSCs or tumorspheres were usually attacked simultaneously by many CIK cells and finally killed by CIK cells, suggesting the necessity of achieving sufficient effector-to-target ratios. We firstly confirmed that NKG2D blockade by anti-NKG2D antibody significantly but partially abrogated CIK cell-mediated cytolysis against putative CSCs. More importantly, intravenous infusion of CIK cells significantly delayed tumor growth in NOD/SCID mice, accompanied by a remarkable reduction in putative CSC number monitored by whole-body bioluminescence imaging. Taken together, our findings suggest that CIK cells demonstrate the intense tumor-killing activity against putative CSCs of NPC, at least in part, by NKG2D-ligands recognition. These results indicate that CIK cell-based therapeutic strategy against CSCs presents a promising and safe approach for cancer treatment.
Collapse
Affiliation(s)
- Fang Wei
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China.,Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou 510180, China
| | - Xiao-Xiang Rong
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Rao-Ying Xie
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Li-Ting Jia
- Department of Pathology, Guilin Medical College, Guilin 541001, China
| | - Hui-Yan Wang
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Yu-Juan Qin
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Lin Chen
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Hong-Fen Shen
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Xiao-Lin Lin
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Jie Yang
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Sheng Yang
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Wei-Chao Hao
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Yan Chen
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Sheng-Jun Xiao
- Department of Pathology, Guilin Medical College, Guilin 541001, China
| | - Hui-Rong Zhou
- Department of Pathology, Guilin Medical College, Guilin 541001, China
| | - Tao-Yan Lin
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Yu-Shuang Chen
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Yan Sun
- Children's Hospital Boston, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Kai-Tai Yao
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Dong Xiao
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China.,Institute of Comparative Medicine & Laboratory Animal Center, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
29
|
Gawlik-Rzemieniewska N, Galilejczyk A, Krawczyk M, Bednarek I. Silencing expression of the NANOG gene and changes in migration and metastasis of urinary bladder cancer cells. Arch Med Sci 2016; 12:889-97. [PMID: 27478472 PMCID: PMC4947613 DOI: 10.5114/aoms.2015.55368] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 01/01/2015] [Indexed: 12/15/2022] Open
Abstract
INTRODUCTION It has been proved that expression of the NANOG gene is observed not only in embryonic-derived malignancies, but also in breast cancer, ovarian cancer, cervix cancer and bladder cancer. NANOG overexpression is correlated with high activity of MMP-2 and MMP-9. The aim of the study was to evaluate the changes in the malignant phenotype of T24 bladder cancer cells with modulated expression of the NANOG gene. MATERIAL AND METHODS Human urinary bladder cancer cells T24 (HTB-4) were cultivated under standard conditions. Transfection of the cells with silencing constructions was performed with the application of Lipofectamine 2000 (Invitrogen) reagent. Evaluation of changes in the expression level of individual genes was performed using qRTPCR. Changes in the protein level were evaluated using the Human ELISA Kit (Abcam). The invasion capability of transfected cells was tested using Matrigel Invasion Chambers (BD Biosciences). The changes in cell migration were assessed with a wound-healing assay. RESULTS The qRTPCR evaluation showed that silencing the NANOG gene in T24 cells led to the decrease of mRNA for the MMP-2 gene to the level of 62.4% and the MMP-9 gene to the level of 76%. The cells with modulated expression of the NANOG gene migrated slower in the Matrigel invasion assay and in the wound-healing assay. The immunoenzymatic test showed a decrease in the protein level of MMP-9. CONCLUSIONS The transcriptional activity of the NANOG gene might be connected with some aspects of bladder cancer cell metastasis in vitro and has an influence on MMP-2 and MMP-9 expression levels.
Collapse
Affiliation(s)
- Natalia Gawlik-Rzemieniewska
- School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Department of Biotechnology and Genetic Engineering, Medical University of Silesia, Katowice, Poland
| | - Anna Galilejczyk
- School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Department of Biotechnology and Genetic Engineering, Medical University of Silesia, Katowice, Poland
| | - Michał Krawczyk
- School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Department of Biotechnology and Genetic Engineering, Medical University of Silesia, Katowice, Poland
| | - Ilona Bednarek
- School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Department of Biotechnology and Genetic Engineering, Medical University of Silesia, Katowice, Poland
| |
Collapse
|
30
|
Wang SC, Lin XL, Wang HY, Qin YJ, Chen L, Li J, Jia JS, Shen HF, Yang S, Xie RY, Wei F, Gao F, Rong XX, Yang J, Zhao WT, Zhang TT, Shi JW, Yao KT, Luo WR, Sun Y, Xiao D. Hes1 triggers epithelial-mesenchymal transition (EMT)-like cellular marker alterations and promotes invasion and metastasis of nasopharyngeal carcinoma by activating the PTEN/AKT pathway. Oncotarget 2015; 6:36713-30. [PMID: 26452025 PMCID: PMC4742206 DOI: 10.18632/oncotarget.5457] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 09/21/2015] [Indexed: 02/07/2023] Open
Abstract
Overexpression of the transcriptional factor Hes1 (hairy and enhancer of split-1) has been observed in numerous cancers, but the precise roles of Hes1 in epithelial-mesenchymal transition (EMT), cancer invasion and metastasis remain unknown. Our current study firstly revealed that Hes1 upregulation in a cohort of human nasopharyngeal carcinoma (NPC) biopsies is significantly associated with the EMT, invasive and metastatic phenotypes of cancer. In the present study, we found that Hes1 overexpression triggered EMT-like cellular marker alterations of NPC cells, whereas knockdown of Hes1 through shRNA reversed the EMT-like phenotypes, as strongly supported by Hes1-mediated EMT in NPC clinical specimens described above. Gain-of-function and loss-of-function experiments demonstrated that Hes1 promoted the migration and invasion of NPC cells in vitro. In addition, exogenous expression of Hes1 significantly enhanced the metastatic ability of NPC cells in vivo. Chromatin immunoprecipitation (ChIP) assays showed that Hes1 inhibited PTEN expression in NPC cells through binding to PTEN promoter region. Increased Hes1 expression and decreased PTEN expression were also observed in a cohort of NPC biopsies. Additional studies demonstrated that Hes1-induced EMT-like molecular changes and increased motility and invasion of NPC cells were mediated by PTEN. Taken together, our results suggest, for what we believe is the first time, that Hes1 plays an important role in the invasion and metastasis of NPC through inhibiting PTEN expression to trigger EMT-like phenotypes.
Collapse
Affiliation(s)
- Sheng-Chun Wang
- 1 Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
- 4 Department of Pathology, Guangdong Medical University, Dongguan 523808, China
| | - Xiao-Lin Lin
- 1 Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Hui-Yan Wang
- 1 Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Yu-Juan Qin
- 1 Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Lin Chen
- 1 Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Jing Li
- 1 Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Jun-Shuang Jia
- 1 Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Hong-Fen Shen
- 1 Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Sheng Yang
- 1 Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Rao-Ying Xie
- 1 Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Fang Wei
- 1 Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Fei Gao
- 1 Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
- 6 Department of Gastroenterology, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Xiao-Xiang Rong
- 5 Department of Oncology, Traditional Chinese Medicine-Integrated Hospital, Southern Medical University, Guangzhou, Guangdong 510315, China
| | - Jie Yang
- 1 Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Wen-Tao Zhao
- 1 Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Ting-Ting Zhang
- 1 Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Jun-Wen Shi
- 1 Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Kai-Tai Yao
- 1 Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Wei-Ren Luo
- 1 Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Yan Sun
- 3 Joint Program in Transfusion Medicine, Children's Hospital Boston, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Dong Xiao
- 1 Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
- 2 Institute of Comparative Medicine & Laboratory Animal Center, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
31
|
Wang SC, Lin XL, Wang HY, Qin YJ, Chen L, Li J, Jia JS, Shen HF, Yang S, Xie RY, Wei F, Gao F, Rong XX, Yang J, Zhao WT, Zhang TT, Shi JW, Yao KT, Luo WR, Sun Y, Xiao D. Hes1 triggers epithelial-mesenchymal transition (EMT)-like cellular marker alterations and promotes invasion and metastasis of nasopharyngeal carcinoma by activating the PTEN/AKT pathway. Oncotarget 2015. [PMID: 26452025 DOI: hes1 triggers epithelial-mesenchymal transition (emt)-like cellular marker alterations and promotes invasion and metastasis of nasopharyngeal carcinoma by activating the pten/akt pathway] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Overexpression of the transcriptional factor Hes1 (hairy and enhancer of split-1) has been observed in numerous cancers, but the precise roles of Hes1 in epithelial-mesenchymal transition (EMT), cancer invasion and metastasis remain unknown. Our current study firstly revealed that Hes1 upregulation in a cohort of human nasopharyngeal carcinoma (NPC) biopsies is significantly associated with the EMT, invasive and metastatic phenotypes of cancer. In the present study, we found that Hes1 overexpression triggered EMT-like cellular marker alterations of NPC cells, whereas knockdown of Hes1 through shRNA reversed the EMT-like phenotypes, as strongly supported by Hes1-mediated EMT in NPC clinical specimens described above. Gain-of-function and loss-of-function experiments demonstrated that Hes1 promoted the migration and invasion of NPC cells in vitro. In addition, exogenous expression of Hes1 significantly enhanced the metastatic ability of NPC cells in vivo. Chromatin immunoprecipitation (ChIP) assays showed that Hes1 inhibited PTEN expression in NPC cells through binding to PTEN promoter region. Increased Hes1 expression and decreased PTEN expression were also observed in a cohort of NPC biopsies. Additional studies demonstrated that Hes1-induced EMT-like molecular changes and increased motility and invasion of NPC cells were mediated by PTEN. Taken together, our results suggest, for what we believe is the first time, that Hes1 plays an important role in the invasion and metastasis of NPC through inhibiting PTEN expression to trigger EMT-like phenotypes.
Collapse
Affiliation(s)
- Sheng-Chun Wang
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China.,Department of Pathology, Guangdong Medical University, Dongguan 523808, China
| | - Xiao-Lin Lin
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Hui-Yan Wang
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Yu-Juan Qin
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Lin Chen
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Jing Li
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Jun-Shuang Jia
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Hong-Fen Shen
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Sheng Yang
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Rao-Ying Xie
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Fang Wei
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Fei Gao
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China.,Department of Gastroenterology, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Xiao-Xiang Rong
- Department of Oncology, Traditional Chinese Medicine-Integrated Hospital, Southern Medical University, Guangzhou, Guangdong 510315, China
| | - Jie Yang
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Wen-Tao Zhao
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Ting-Ting Zhang
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Jun-Wen Shi
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Kai-Tai Yao
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Wei-Ren Luo
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Yan Sun
- Joint Program in Transfusion Medicine, Children's Hospital Boston, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Dong Xiao
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China.,Institute of Comparative Medicine & Laboratory Animal Center, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
32
|
Wang SC, Lin XL, Wang HY, Qin YJ, Chen L, Li J, Jia JS, Shen HF, Yang S, Xie RY, Wei F, Gao F, Rong XX, Yang J, Zhao WT, Zhang TT, Shi JW, Yao KT, Luo WR, Sun Y, Xiao D. Hes1 triggers epithelial-mesenchymal transition (EMT)-like cellular marker alterations and promotes invasion and metastasis of nasopharyngeal carcinoma by activating the PTEN/AKT pathway. Oncotarget 2015. [PMID: 26452025 DOI: hes1 triggers epithelial-mesenchymal transition (emt)-like cellular marker alterations and promotes invasion and metastasis of nasopharyngeal carcinoma by activating the pten/akt pathway] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Overexpression of the transcriptional factor Hes1 (hairy and enhancer of split-1) has been observed in numerous cancers, but the precise roles of Hes1 in epithelial-mesenchymal transition (EMT), cancer invasion and metastasis remain unknown. Our current study firstly revealed that Hes1 upregulation in a cohort of human nasopharyngeal carcinoma (NPC) biopsies is significantly associated with the EMT, invasive and metastatic phenotypes of cancer. In the present study, we found that Hes1 overexpression triggered EMT-like cellular marker alterations of NPC cells, whereas knockdown of Hes1 through shRNA reversed the EMT-like phenotypes, as strongly supported by Hes1-mediated EMT in NPC clinical specimens described above. Gain-of-function and loss-of-function experiments demonstrated that Hes1 promoted the migration and invasion of NPC cells in vitro. In addition, exogenous expression of Hes1 significantly enhanced the metastatic ability of NPC cells in vivo. Chromatin immunoprecipitation (ChIP) assays showed that Hes1 inhibited PTEN expression in NPC cells through binding to PTEN promoter region. Increased Hes1 expression and decreased PTEN expression were also observed in a cohort of NPC biopsies. Additional studies demonstrated that Hes1-induced EMT-like molecular changes and increased motility and invasion of NPC cells were mediated by PTEN. Taken together, our results suggest, for what we believe is the first time, that Hes1 plays an important role in the invasion and metastasis of NPC through inhibiting PTEN expression to trigger EMT-like phenotypes.
Collapse
Affiliation(s)
- Sheng-Chun Wang
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China.,Department of Pathology, Guangdong Medical University, Dongguan 523808, China
| | - Xiao-Lin Lin
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Hui-Yan Wang
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Yu-Juan Qin
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Lin Chen
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Jing Li
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Jun-Shuang Jia
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Hong-Fen Shen
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Sheng Yang
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Rao-Ying Xie
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Fang Wei
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Fei Gao
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China.,Department of Gastroenterology, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Xiao-Xiang Rong
- Department of Oncology, Traditional Chinese Medicine-Integrated Hospital, Southern Medical University, Guangzhou, Guangdong 510315, China
| | - Jie Yang
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Wen-Tao Zhao
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Ting-Ting Zhang
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Jun-Wen Shi
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Kai-Tai Yao
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Wei-Ren Luo
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Yan Sun
- Joint Program in Transfusion Medicine, Children's Hospital Boston, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Dong Xiao
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China.,Institute of Comparative Medicine & Laboratory Animal Center, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
33
|
Novel roles and therapeutic targets of Epstein-Barr virus-encoded latent membrane protein 1-induced oncogenesis in nasopharyngeal carcinoma. Expert Rev Mol Med 2015; 17:e15. [PMID: 26282825 DOI: 10.1017/erm.2015.13] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Epstein-Barr virus (EBV) was first discovered 50 years ago as an oncogenic gamma-1 herpesvirus and infects more than 90% of the worldwide adult population. Nasopharyngeal carcinoma (NPC) poses a serious health problem in southern China and is one of the most common cancers among the Chinese. There is now strong evidence supporting a role for EBV in the pathogenesis of NPC. Latent membrane protein 1 (LMP1), a primary oncoprotein encoded by EBV, alters several functional and oncogenic properties, including transformation, cell death and survival in epithelial cells in NPC. LMP1 may increase protein modification, such as phosphorylation, and initiate aberrant signalling via derailed activation of host adaptor molecules and transcription factors. Here, we summarise the novel features of different domains of LMP1 and several new LMP1-mediated signalling pathways in NPC. When then focus on the potential roles of LMP1 in cancer stem cells, metabolism reprogramming, epigenetic modifications and therapy strategies in NPC.
Collapse
|
34
|
Lin SJ, Wu SW, Chou YC, Lin JH, Huang YC, Chen MR, Ma N, Tsai CH. Novel expression and regulation of TIMP-1 in Epstein Barr virus-infected cells and its impact on cell survival. Virology 2015; 481:24-33. [DOI: 10.1016/j.virol.2015.02.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 01/25/2015] [Accepted: 02/10/2015] [Indexed: 11/26/2022]
|
35
|
Hu B, Shi W, Wu YL, Leow WR, Cai P, Li S, Chen X. Orthogonally engineering matrix topography and rigidity to regulate multicellular morphology. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2014; 26:5786-5793. [PMID: 25066463 DOI: 10.1002/adma.201402489] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Indexed: 06/03/2023]
Abstract
Programmable polymer substrates, which mimic the variable extracellular matrices in living systems, are used to regulate multicellular morphology, via orthogonally modulating the matrix topography and elasticity. The multicellular morphology is dependent on the competition between cell-matrix adhesion and cell-cell adhesion. Decreasing the cell-matrix adhesion provokes cytoskeleton reorganization, inhibits lamellipodial crawling, and thus enhances the leakiness of multicellular morphology.
Collapse
Affiliation(s)
- Benhui Hu
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | | | | | | | | | | | | |
Collapse
|
36
|
Wang W, Li X, Zhang W, Li W, Yi M, Yang J, Zeng Z, Colvin Wanshura LE, McCarthy JB, Fan S, Zheng P, Chen S, Xiang B, Li G. Oxidored-nitro domain containing protein 1 (NOR1) expression suppresses slug/vimentin but not snail in nasopharyngeal carcinoma: Inhibition of EMT in vitro and in vivo in mice. Cancer Lett 2014; 348:109-18. [PMID: 24657653 DOI: 10.1016/j.canlet.2014.03.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 03/03/2014] [Accepted: 03/07/2014] [Indexed: 12/28/2022]
Abstract
Oxidored-nitro domain containing protein 1 (NOR1) is a putative tumor suppressor gene. In this study, NOR1 expression was detected in NPC tissues and non-cancerous nasopharyngeal epithelium. The data showed that NOR1 protein was decreased in NPC tissues. Lost expression NOR1 protein was associated with poor overall and event-free survival of NPC patients. Overexpression of NOR1 in NPC cells resulted in a significant morphological change and decreased expression of epithelial-to-mesenchymal transition (EMT) mediators (e.g., slug and vimentin), but induced cytokeratin 13 expression. A nude mouse metastasis assay revealed that overexpression of NOR1 decreased NPC tumor cells metastasis capacity in vivo. Knockdown of NOR1 expression in HeLa cells was sufficient to abrogate epithelial traits and to enhance cell migration and invasion. Concomitant inhibition of slug or vimentin alleviated induction of EMT, migration or invasion by NOR1 siRNA in HeLa cells in vitro. In conclusion, the data from the current study suggest, for the first time, that NOR1 plays an important role in NPC in ex vivo, in vitro, and in vivo.
Collapse
Affiliation(s)
- Wei Wang
- Hunan Provincial Tumor Hospital and The Tumor Hospital Affiliated to Xiangya School of Medicine, The Central South University, Changsha, Hunan 410013, China; Cancer Research Institute, Xiangya School of Medicine, The Central South University, Changsha 410078, China
| | - Xiaoling Li
- Cancer Research Institute, Xiangya School of Medicine, The Central South University, Changsha 410078, China
| | - Wenling Zhang
- Cancer Research Institute, Xiangya School of Medicine, The Central South University, Changsha 410078, China
| | - Wenjuan Li
- Cancer Research Institute, Xiangya School of Medicine, The Central South University, Changsha 410078, China
| | - Mei Yi
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha 410013, China
| | - Jianbo Yang
- Department of Laboratory Medicine and Pathology, Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Zhaoyang Zeng
- Hunan Provincial Tumor Hospital and The Tumor Hospital Affiliated to Xiangya School of Medicine, The Central South University, Changsha, Hunan 410013, China; Cancer Research Institute, Xiangya School of Medicine, The Central South University, Changsha 410078, China
| | - Leah E Colvin Wanshura
- Department of Laboratory Medicine and Pathology, Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA; Minnesota Craniofacial Research Training Program, University of Minnesota School of Dentistry, Minneapolis, MN 55455, USA
| | - James B McCarthy
- Department of Laboratory Medicine and Pathology, Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Songqing Fan
- Department of Pathology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Pan Zheng
- Hunan Provincial Tumor Hospital and The Tumor Hospital Affiliated to Xiangya School of Medicine, The Central South University, Changsha, Hunan 410013, China; Cancer Research Institute, Xiangya School of Medicine, The Central South University, Changsha 410078, China
| | - Shengnan Chen
- Hunan Provincial Tumor Hospital and The Tumor Hospital Affiliated to Xiangya School of Medicine, The Central South University, Changsha, Hunan 410013, China; Cancer Research Institute, Xiangya School of Medicine, The Central South University, Changsha 410078, China
| | - Bo Xiang
- Hunan Provincial Tumor Hospital and The Tumor Hospital Affiliated to Xiangya School of Medicine, The Central South University, Changsha, Hunan 410013, China; Cancer Research Institute, Xiangya School of Medicine, The Central South University, Changsha 410078, China.
| | - Guiyuan Li
- Cancer Research Institute, Xiangya School of Medicine, The Central South University, Changsha 410078, China.
| |
Collapse
|