1
|
Ahi EP, Tsakoumis E, Brunel M, Schmitz M. Transcriptional study reveals a potential leptin-dependent gene regulatory network in zebrafish brain. FISH PHYSIOLOGY AND BIOCHEMISTRY 2021; 47:1283-1298. [PMID: 34236575 PMCID: PMC8302498 DOI: 10.1007/s10695-021-00967-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 05/12/2021] [Indexed: 06/01/2023]
Abstract
The signal mediated by leptin hormone and its receptor is a major regulator of body weight, food intake and metabolism. In mammals and many teleost fish species, leptin has an anorexigenic role and inhibits food intake by influencing the appetite centres in the hypothalamus. However, the regulatory connections between leptin and downstream genes mediating its appetite-regulating effects are still not fully explored in teleost fish. In this study, we used a loss of function leptin receptor zebrafish mutant and real-time quantitative PCR to assess brain expression patterns of several previously identified anorexigenic genes downstream of leptin signal under different feeding conditions (normal feeding, 7-day fasting, 2 and 6-h refeeding). These downstream factors include members of cart genes, crhb and gnrh2, as well as selected genes co-expressed with them based on a zebrafish co-expression database. Here, we found a potential gene expression network (GRN) comprising the abovementioned genes by a stepwise approach of identifying co-expression modules and predicting their upstream regulators. Among the transcription factors (TFs) predicted as potential upstream regulators of this GRN, we found expression pattern of sp3a to be correlated with transcriptional changes of the downstream gene network. Interestingly, the expression and transcriptional activity of Sp3 orthologous gene in mammals have already been implicated to be under the influence of leptin signal. These findings suggest a potentially conserved regulatory connection between leptin and sp3a, which is predicted to act as a transcriptional driver of a downstream gene network in the zebrafish brain.
Collapse
Affiliation(s)
- Ehsan Pashay Ahi
- Department of Organismal Biology, Comparative Physiology, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18A, SE-752 36 Uppsala, Sweden
- Organismal and Evolutionary Biology Research Programme, University of Helsinki, Viikinkaari 9, 00014 Helsinki, Finland
| | - Emmanouil Tsakoumis
- Department of Organismal Biology, Comparative Physiology, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18A, SE-752 36 Uppsala, Sweden
| | - Mathilde Brunel
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Allmas Allé 5, SE-750 07 Uppsala, Sweden
| | - Monika Schmitz
- Department of Organismal Biology, Comparative Physiology, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18A, SE-752 36 Uppsala, Sweden
| |
Collapse
|
2
|
Huët MAL, Wong LW, Goh CBS, Hussain MH, Muzahid NH, Dwiyanto J, Lee SWH, Ayub Q, Reidpath D, Lee SM, Rahman S, Tan JBL. Investigation of culturable human gut mycobiota from the segamat community in Johor, Malaysia. World J Microbiol Biotechnol 2021; 37:113. [PMID: 34101035 DOI: 10.1007/s11274-021-03083-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 05/31/2021] [Indexed: 11/28/2022]
Abstract
Although several studies have already been carried out in investigating the general profile of the gut mycobiome across several countries, there has yet to be an officially established baseline of a healthy human gut mycobiome, to the best of our knowledge. Microbial composition within the gastrointestinal tract differ across individuals worldwide, and most human gut fungi studies concentrate specifically on individuals from developed countries or diseased cohorts. The present study is the first culture-dependent community study assessing the prevalence and diversity of gut fungi among different ethnic groups from South East Asia. Samples were obtained from a multi-ethnic semi-rural community from Segamat in southern Malaysia. Faecal samples were screened for culturable fungi and questionnaire data analysis was performed. Culturable fungi were present in 45% of the participants' stool samples. Ethnicity had an impact on fungal prevalence and density in stool samples. The prevalence of resistance to fluconazole, itraconazole, voriconazole and 5-fluorocytosine, from the Segamat community, were 14%, 14%, 11% and 7% respectively. It was found that Jakun individuals had lower levels of antifungal resistance irrespective of the drug tested, and male participants had more fluconazole resistant yeast in their stool samples. Two novel point mutations were identified in the ERG11 gene from one azole resistant Candida glabrata, suggesting a possible cause of the occurrence of antifungal resistant isolates in the participant's faecal sample.
Collapse
Affiliation(s)
| | - Li Wen Wong
- School of Science, Monash University Malaysia, Subang Jaya, Malaysia
| | | | - Md Hamed Hussain
- School of Science, Monash University Malaysia, Subang Jaya, Malaysia
| | | | - Jacky Dwiyanto
- School of Science, Monash University Malaysia, Subang Jaya, Malaysia
| | | | - Qasim Ayub
- School of Science, Monash University Malaysia, Subang Jaya, Malaysia.,Genomics Facility, Monash University Malaysia, Subang Jaya, Malaysia
| | - Daniel Reidpath
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Subang Jaya, Malaysia.,The South East Asia Community Observatory (SEACO), Segamat, Johor, Malaysia
| | - Sui Mae Lee
- School of Science, Monash University Malaysia, Subang Jaya, Malaysia
| | - Sadequr Rahman
- School of Science, Monash University Malaysia, Subang Jaya, Malaysia.,Tropical Medicine & Biology Multidisciplinary Platform, Monash University Malaysia, Subang Jaya, Malaysia
| | - Joash Ban Lee Tan
- School of Science, Monash University Malaysia, Subang Jaya, Malaysia. .,Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500, Subang Jaya, Selangor, Malaysia.
| |
Collapse
|
3
|
Li Y, Schwalie PC, Bast-Habersbrunner A, Mocek S, Russeil J, Fromme T, Deplancke B, Klingenspor M. Systems-Genetics-Based Inference of a Core Regulatory Network Underlying White Fat Browning. Cell Rep 2020; 29:4099-4113.e5. [PMID: 31851936 DOI: 10.1016/j.celrep.2019.11.053] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 10/02/2019] [Accepted: 11/13/2019] [Indexed: 02/06/2023] Open
Abstract
Recruitment of brite/beige cells, known as browning of white adipose tissue (WAT), is an efficient way to turn an energy-storing organ into an energy-dissipating one and may therefore be of therapeutic value in combating obesity. However, a comprehensive understanding of the regulatory mechanisms mediating WAT browning is still lacking. Here, we exploit the large natural variation in WAT browning propensity between inbred mouse strains to gain an inclusive view of the core regulatory network coordinating this cellular process. Combining comparative transcriptomics, perturbation-based validations, and gene network analyses, we present a comprehensive gene regulatory network of inguinal WAT browning, revealing up to four distinct regulatory modules with key roles for uncovered transcriptional factors, while also providing deep insights into the genetic architecture of brite adipogenesis. The presented findings therefore greatly increase our understanding of the molecular drivers mediating the intriguing cellular heterogeneity and plasticity of adipose tissue.
Collapse
Affiliation(s)
- Yongguo Li
- Chair for Molecular Nutritional Medicine, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Gregor-Mendel-Str. 2, 85354 Freising, Germany; EKFZ-Else Kröner-Fresenius Center for Nutritional Medicine, Technical University of Munich, Gregor-Mendel-Str. 2, 85354 Freising, Germany
| | - Petra C Schwalie
- Institute of Bio-engineering, School of Life Sciences, EPFL and Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Andrea Bast-Habersbrunner
- Chair for Molecular Nutritional Medicine, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Gregor-Mendel-Str. 2, 85354 Freising, Germany; EKFZ-Else Kröner-Fresenius Center for Nutritional Medicine, Technical University of Munich, Gregor-Mendel-Str. 2, 85354 Freising, Germany
| | - Sabine Mocek
- Chair for Molecular Nutritional Medicine, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Gregor-Mendel-Str. 2, 85354 Freising, Germany; EKFZ-Else Kröner-Fresenius Center for Nutritional Medicine, Technical University of Munich, Gregor-Mendel-Str. 2, 85354 Freising, Germany
| | - Julie Russeil
- Institute of Bio-engineering, School of Life Sciences, EPFL and Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Tobias Fromme
- Chair for Molecular Nutritional Medicine, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Gregor-Mendel-Str. 2, 85354 Freising, Germany; EKFZ-Else Kröner-Fresenius Center for Nutritional Medicine, Technical University of Munich, Gregor-Mendel-Str. 2, 85354 Freising, Germany
| | - Bart Deplancke
- Institute of Bio-engineering, School of Life Sciences, EPFL and Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland.
| | - Martin Klingenspor
- Chair for Molecular Nutritional Medicine, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Gregor-Mendel-Str. 2, 85354 Freising, Germany; EKFZ-Else Kröner-Fresenius Center for Nutritional Medicine, Technical University of Munich, Gregor-Mendel-Str. 2, 85354 Freising, Germany.
| |
Collapse
|
4
|
Oh M, Kim SY, Gil JE, Byun JS, Cha DW, Ku B, Lee W, Kim WK, Oh KJ, Lee EW, Bae KH, Lee SC, Han BS. Nurr1 performs its anti-inflammatory function by regulating RasGRP1 expression in neuro-inflammation. Sci Rep 2020; 10:10755. [PMID: 32612143 PMCID: PMC7329810 DOI: 10.1038/s41598-020-67549-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 06/10/2020] [Indexed: 12/21/2022] Open
Abstract
Nurr1, a transcription factor belonging to the orphan nuclear receptor, has an essential role in the generation and maintenance of dopaminergic neurons and is important in the pathogenesis of Parkinson’ disease (PD). In addition, Nurr1 has a non-neuronal function, and it is especially well known that Nurr1 has an anti-inflammatory function in the Parkinson’s disease model. However, the molecular mechanisms of Nurr1 have not been elucidated. In this study, we describe a novel mechanism of Nurr1 function. To provide new insights into the molecular mechanisms of Nurr1 in the inflammatory response, we performed Chromatin immunoprecipitation sequencing (ChIP-Seq) on LPS-induced inflammation in BV2 cells and finally identified the RasGRP1 gene as a novel target of Nurr1. Here, we show that Nurr1 directly binds to the RasGRP1 intron to regulate its expression. Moreover, we also identified that RasGRP1 regulates the Ras-Raf-MEK-ERK signaling cascade in LPS-induced inflammation signaling. Finally, we conclude that RasGRP1 is a novel regulator of Nurr1’s mediated inflammation signaling.
Collapse
Affiliation(s)
- Mihee Oh
- Biodefense Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
| | - Sun Young Kim
- Biodefense Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
| | - Jung-Eun Gil
- Biodefense Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
| | - Jeong-Su Byun
- Biodefense Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
| | - Dong-Wook Cha
- Biodefense Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea.,Department of Functional Genomics, University of Science and Technology (UST) of Korea, Daejeon, 34113, Republic of Korea
| | - Bonsu Ku
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
| | | | - Won-Kon Kim
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea.,Department of Functional Genomics, University of Science and Technology (UST) of Korea, Daejeon, 34113, Republic of Korea
| | - Kyoung-Jin Oh
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea.,Department of Functional Genomics, University of Science and Technology (UST) of Korea, Daejeon, 34113, Republic of Korea
| | - Eun-Woo Lee
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
| | - Kwang-Hee Bae
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea.,Department of Functional Genomics, University of Science and Technology (UST) of Korea, Daejeon, 34113, Republic of Korea
| | - Sang Chul Lee
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea. .,Department of Functional Genomics, University of Science and Technology (UST) of Korea, Daejeon, 34113, Republic of Korea.
| | - Baek-Soo Han
- Biodefense Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea. .,Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea. .,Department of Functional Genomics, University of Science and Technology (UST) of Korea, Daejeon, 34113, Republic of Korea.
| |
Collapse
|
5
|
Ježek P, Holendová B, Garlid KD, Jabůrek M. Mitochondrial Uncoupling Proteins: Subtle Regulators of Cellular Redox Signaling. Antioxid Redox Signal 2018; 29:667-714. [PMID: 29351723 PMCID: PMC6071544 DOI: 10.1089/ars.2017.7225] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
SIGNIFICANCE Mitochondria are the energetic, metabolic, redox, and information signaling centers of the cell. Substrate pressure, mitochondrial network dynamics, and cristae morphology state are integrated by the protonmotive force Δp or its potential component, ΔΨ, which are attenuated by proton backflux into the matrix, termed uncoupling. The mitochondrial uncoupling proteins (UCP1-5) play an eminent role in the regulation of each of the mentioned aspects, being involved in numerous physiological events including redox signaling. Recent Advances: UCP2 structure, including purine nucleotide and fatty acid (FA) binding sites, strongly support the FA cycling mechanism: UCP2 expels FA anions, whereas uncoupling is achieved by the membrane backflux of protonated FA. Nascent FAs, cleaved by phospholipases, are preferential. The resulting Δp dissipation decreases superoxide formation dependent on Δp. UCP-mediated antioxidant protection and its impairment are expected to play a major role in cell physiology and pathology. Moreover, UCP2-mediated aspartate, oxaloacetate, and malate antiport with phosphate is expected to alter metabolism of cancer cells. CRITICAL ISSUES A wide range of UCP antioxidant effects and participations in redox signaling have been reported; however, mechanisms of UCP activation are still debated. Switching off/on the UCP2 protonophoretic function might serve as redox signaling either by employing/releasing the extra capacity of cell antioxidant systems or by directly increasing/decreasing mitochondrial superoxide sources. Rapid UCP2 degradation, FA levels, elevation of purine nucleotides, decreased Mg2+, or increased pyruvate accumulation may initiate UCP-mediated redox signaling. FUTURE DIRECTIONS Issues such as UCP2 participation in glucose sensing, neuronal (synaptic) function, and immune cell activation should be elucidated. Antioxid. Redox Signal. 29, 667-714.
Collapse
Affiliation(s)
- Petr Ježek
- 1 Department of Mitochondrial Physiology, Institute of Physiology of the Czech Academy of Sciences , Prague, Czech Republic
| | - Blanka Holendová
- 1 Department of Mitochondrial Physiology, Institute of Physiology of the Czech Academy of Sciences , Prague, Czech Republic
| | - Keith D Garlid
- 2 UCLA Cardiovascular Research Laboratory, David Geffen School of Medicine at UCLA , Los Angeles, California
| | - Martin Jabůrek
- 1 Department of Mitochondrial Physiology, Institute of Physiology of the Czech Academy of Sciences , Prague, Czech Republic
| |
Collapse
|
6
|
Lee H, Qian K, von Toerne C, Hoerburger L, Claussnitzer M, Hoffmann C, Glunk V, Wahl S, Breier M, Eck F, Jafari L, Molnos S, Grallert H, Dahlman I, Arner P, Brunner C, Hauner H, Hauck SM, Laumen H. Allele-specific quantitative proteomics unravels molecular mechanisms modulated by cis-regulatory PPARG locus variation. Nucleic Acids Res 2017; 45:3266-3279. [PMID: 28334807 PMCID: PMC5389726 DOI: 10.1093/nar/gkx105] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 02/07/2017] [Indexed: 12/11/2022] Open
Abstract
Genome-wide association studies identified numerous disease risk loci. Delineating molecular mechanisms influenced by cis-regulatory variants is essential to understand gene regulation and ultimately disease pathophysiology. Combining bioinformatics and public domain chromatin information with quantitative proteomics supports prediction of cis-regulatory variants and enabled identification of allele-dependent binding of both, transcription factors and coregulators at the type 2 diabetes associated PPARG locus. We found rs7647481A nonrisk allele binding of Yin Yang 1 (YY1), confirmed by allele-specific chromatin immunoprecipitation in primary adipocytes. Quantitative proteomics also found the coregulator RING1 and YY1 binding protein (RYBP) whose mRNA levels correlate with improved insulin sensitivity in primary adipose cells carrying the rs7647481A nonrisk allele. Our findings support a concept with diverse cis-regulatory variants contributing to disease pathophysiology at one locus. Proteome-wide identification of both, transcription factors and coregulators, can profoundly improve understanding of mechanisms underlying genetic associations.
Collapse
Affiliation(s)
- Heekyoung Lee
- Else Kroener-Fresenius-Center for Nutritional Medicine, Chair of Nutritional Medicine, Technische Universität München, 85354 Freising-Weihenstephan, Germany.,ZIEL - Institute for Food & Health, Technische Universität München, 85354 Freising-Weihenstephan, Germany.,Clinical Cooperation Group Nutrigenomics and Type 2 Diabetes, Helmholtz Zentrum München and Technische Universität München, 85354 Freising-Weihenstephan, Germany.,German Center for Diabetes Research (DZD), Germany
| | - Kun Qian
- Else Kroener-Fresenius-Center for Nutritional Medicine, Chair of Nutritional Medicine, Technische Universität München, 85354 Freising-Weihenstephan, Germany.,ZIEL - Institute for Food & Health, Technische Universität München, 85354 Freising-Weihenstephan, Germany.,Clinical Cooperation Group Nutrigenomics and Type 2 Diabetes, Helmholtz Zentrum München and Technische Universität München, 85354 Freising-Weihenstephan, Germany.,German Center for Diabetes Research (DZD), Germany.,Research Unit Protein Science, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Christine von Toerne
- German Center for Diabetes Research (DZD), Germany.,Research Unit Protein Science, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Lena Hoerburger
- ZIEL - Institute for Food & Health, Technische Universität München, 85354 Freising-Weihenstephan, Germany.,Else Kroener-Fresenius-Center for Nutritional Medicine, Paediatric Nutritional Medicine, Technische Universität München, 85354 Freising-Weihenstephan, Germany
| | - Melina Claussnitzer
- Else Kroener-Fresenius-Center for Nutritional Medicine, Chair of Nutritional Medicine, Technische Universität München, 85354 Freising-Weihenstephan, Germany.,ZIEL - Institute for Food & Health, Technische Universität München, 85354 Freising-Weihenstephan, Germany.,Clinical Cooperation Group Nutrigenomics and Type 2 Diabetes, Helmholtz Zentrum München and Technische Universität München, 85354 Freising-Weihenstephan, Germany.,German Center for Diabetes Research (DZD), Germany.,Hebrew SeniorLife Institute for Aging Research, Harvard Medical School, Boston, MA 02131, USA
| | - Christoph Hoffmann
- ZIEL - Institute for Food & Health, Technische Universität München, 85354 Freising-Weihenstephan, Germany.,Else Kroener-Fresenius-Center for Nutritional Medicine, Chair of Molecular Nutritional Medicine, Technische Universität München, 85354 Freising-Weihenstephan, Germany
| | - Viktoria Glunk
- Else Kroener-Fresenius-Center for Nutritional Medicine, Chair of Nutritional Medicine, Technische Universität München, 85354 Freising-Weihenstephan, Germany.,ZIEL - Institute for Food & Health, Technische Universität München, 85354 Freising-Weihenstephan, Germany.,Clinical Cooperation Group Nutrigenomics and Type 2 Diabetes, Helmholtz Zentrum München and Technische Universität München, 85354 Freising-Weihenstephan, Germany.,German Center for Diabetes Research (DZD), Germany
| | - Simone Wahl
- German Center for Diabetes Research (DZD), Germany.,Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, 85764 Neuherberg, Germany.,Institute of Epidemiology II, Helmholtz Zentrum München, Neuherberg, Germany
| | - Michaela Breier
- German Center for Diabetes Research (DZD), Germany.,Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, 85764 Neuherberg, Germany.,Institute of Epidemiology II, Helmholtz Zentrum München, Neuherberg, Germany
| | - Franziska Eck
- Research Unit Protein Science, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Leili Jafari
- Research Unit Protein Science, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Sophie Molnos
- German Center for Diabetes Research (DZD), Germany.,Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, 85764 Neuherberg, Germany.,Institute of Epidemiology II, Helmholtz Zentrum München, Neuherberg, Germany
| | - Harald Grallert
- Clinical Cooperation Group Nutrigenomics and Type 2 Diabetes, Helmholtz Zentrum München and Technische Universität München, 85354 Freising-Weihenstephan, Germany.,German Center for Diabetes Research (DZD), Germany.,Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, 85764 Neuherberg, Germany.,Institute of Epidemiology II, Helmholtz Zentrum München, Neuherberg, Germany
| | - Ingrid Dahlman
- Department of Medicine, Huddinge, Karolinska Institutet, SE-141 86 Stockholm, Sweden
| | - Peter Arner
- Department of Medicine, Huddinge, Karolinska Institutet, SE-141 86 Stockholm, Sweden
| | - Cornelia Brunner
- Klinik für Hals-Nasen-Ohrenheilkunde, Universitätsklinik Ulm, 89075 Ulm, Germany
| | - Hans Hauner
- Else Kroener-Fresenius-Center for Nutritional Medicine, Chair of Nutritional Medicine, Technische Universität München, 85354 Freising-Weihenstephan, Germany.,ZIEL - Institute for Food & Health, Technische Universität München, 85354 Freising-Weihenstephan, Germany.,Clinical Cooperation Group Nutrigenomics and Type 2 Diabetes, Helmholtz Zentrum München and Technische Universität München, 85354 Freising-Weihenstephan, Germany.,German Center for Diabetes Research (DZD), Germany.,Else Kroener-Fresenius-Center for Nutritional Medicine, Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany
| | - Stefanie M Hauck
- German Center for Diabetes Research (DZD), Germany.,Research Unit Protein Science, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Helmut Laumen
- Else Kroener-Fresenius-Center for Nutritional Medicine, Chair of Nutritional Medicine, Technische Universität München, 85354 Freising-Weihenstephan, Germany.,ZIEL - Institute for Food & Health, Technische Universität München, 85354 Freising-Weihenstephan, Germany.,Clinical Cooperation Group Nutrigenomics and Type 2 Diabetes, Helmholtz Zentrum München and Technische Universität München, 85354 Freising-Weihenstephan, Germany.,German Center for Diabetes Research (DZD), Germany.,Research Unit Protein Science, Helmholtz Zentrum München, 85764 Neuherberg, Germany.,Else Kroener-Fresenius-Center for Nutritional Medicine, Paediatric Nutritional Medicine, Technische Universität München, 85354 Freising-Weihenstephan, Germany.,Institute of Experimental Genetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| |
Collapse
|
7
|
Cai Y, Yi M, Chen D, Liu J, Guleng B, Ren J, Shi H. Trefoil factor family 2 expression inhibits gastric cancer cell growth and invasion in vitro via interactions with the transcription factor Sp3. Int J Mol Med 2016; 38:1474-1480. [PMID: 27668303 PMCID: PMC5065293 DOI: 10.3892/ijmm.2016.2739] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 09/09/2016] [Indexed: 12/14/2022] Open
Abstract
The trefoil factor family (TFF) is a group of short secretory peptides of gastric mucous neck cells. The loss of TFF2 protein expression enhances gastric inflammation and occurs in gastric cancer. In this study, we examined the effect of TFF2 on gastric cancer cell lines in vitro and characterized the interaction between TFF2 and Sp3, including the mechanisms that mediate this interaction, using genomics and proteomics approaches, as well as genetics techniques, such as RNA interference and gene knockdown. Assays were performed to examine the role of TFF2 and Sp3 in cancer cell proliferation, invasion and migration. We found that TFF2 expression inhibited the proliferation and invasion capacity of gastric cancer cells, and induced apoptosis. TFF2 interacted with the Sp3 protein, as shown by immunofluorescence staining and immunoprecipitation with western blot analysis. Sp3 knockdown in gastric cancer cells antagonized TFF2 anti-tumor activity. Additionally, TFF2 upregulated the expression of pro-apoptotic proteins, such as Bid, but downregulated the expression of NF-κB and the anti-apoptotic proteins, Bcl-xL and Mcl-1. By contrast, Sp3 knockdown significantly blocked TFF2 activity, affecting the expression of these proteins. The data from our study demonstrate that the antitumor activity of TFF2 is mediated by an interaction with the Sp3 protein in gastric cancer cells. Additional in vivo and ex vivo warrned in order to fully characterize this interaction.
Collapse
Affiliation(s)
- Yiling Cai
- Department of Gastroenterology, Zhongshan Hospital Affiliated to Xiamen University, Xiamen, Fujian 361004, P.R. China
| | - Mengting Yi
- Department of Gastroenterology, Zhongshan Hospital Affiliated to Xiamen University, Xiamen, Fujian 361004, P.R. China
| | - Dajun Chen
- Department of Gastroenterology, Zhongshan Hospital Affiliated to Xiamen University, Xiamen, Fujian 361004, P.R. China
| | - Jingjing Liu
- Department of Gastroenterology, Zhongshan Hospital Affiliated to Xiamen University, Xiamen, Fujian 361004, P.R. China
| | - Bayasi Guleng
- Department of Gastroenterology, Zhongshan Hospital Affiliated to Xiamen University, Xiamen, Fujian 361004, P.R. China
| | - Jianlin Ren
- Department of Gastroenterology, Zhongshan Hospital Affiliated to Xiamen University, Xiamen, Fujian 361004, P.R. China
| | - Huaxiu Shi
- Department of Gastroenterology, Zhongshan Hospital Affiliated to Xiamen University, Xiamen, Fujian 361004, P.R. China
| |
Collapse
|
8
|
Vitamin D3/VDR resists diet-induced obesity by modulating UCP3 expression in muscles. J Biomed Sci 2016; 23:56. [PMID: 27473111 PMCID: PMC4966724 DOI: 10.1186/s12929-016-0271-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 07/11/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The impact of vitamin D3 (VD3) on obesity has been reported in the past. Our study was aimed at investigating the possible mechanisms by which VD3 affects obesity induced by a high fat diet. METHODS Eight-week-old C57BL/6 J male mice were fed a normal- or high-fat diet for 9 weeks and were treated with a gavage of vehicle (corn oil) or cholecalciferol (50 μg/kg, daily). Body weight, white adipose tissue weight, blood lipid and glucose levels were measured. In addition, we investigated the expression of 1,25(OH)2D3 (calcitriol)/VDR-regulated genes involved in energy and lipid metabolism, such as of uncoupling protein 3 (UCP3), by using qRT-PCR in the liver, adipose tissue, skeletal muscle and C2C12, L6, and H-EMC-SS cells. We also measured UCP3 promoter transcription in the same cell lines using a Dual Luciferase Assay. Furthermore, we analyzed the binding site consensus sequences of VDR on the UCP3 promoter. RESULTS Mice consuming a high-fat diet treated with cholecalciferol had lower body weight and adipose tissue weight and higher expression of UCP3 compared to the other treatment groups. Changes in the expression of genes correlated with calcitriol/VDR. Luciferase activity was dose-dependently associated with calcitriol/VDR levels. We confirmed the functional VDR binding site consensus sequences at -2200, -1561, -634, and +314 bp in the UCP3 promoter region. CONCLUSION We suggest that VD3/VDR inhibits weight gain by activating UCP3 in the muscles.
Collapse
|
9
|
Chen W, Xu H, Chen X, Liu Z, Zhang W, Xia D. Functional and Activity Analysis of Cattle UCP3 Promoter with MRFs-Related Factors. Int J Mol Sci 2016; 17:ijms17050682. [PMID: 27164086 PMCID: PMC4881508 DOI: 10.3390/ijms17050682] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Revised: 04/09/2016] [Accepted: 04/13/2016] [Indexed: 12/18/2022] Open
Abstract
Uncoupling protein 3 (UCP3) is mainly expressed in muscle. It plays an important role in muscle, but less research on the regulation of cattle UCP3 has been performed. In order to elucidate whether cattle UCP3 can be regulated by muscle-related factors, deletion of cattle UCP3 promoter was amplified and cloned into pGL3-basic, pGL3-promoter and PEGFP-N3 vector, respectively, then transfected into C2C12 myoblasts cells and UCP3 promoter activity was measured using the dual-Luciferase reporter assay system. The results showed that there is some negative-regulatory element from −620 to −433 bp, and there is some positive-regulatory element between −433 and −385 bp. The fragment (1.08 kb) of UCP3 promoter was cotransfected with muscle-related transcription factor myogenic regulatory factors (MRFs) and myocyte-specific enhancer factor 2A (MEF2A). We found that UCP3 promoter could be upregulated by Myf5, Myf6 and MyoD and downregulated by MyoG and MEF2A.
Collapse
Affiliation(s)
- Wei Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Guizhou University, Guiyang 550025, China.
- College of Animal Science, Guizhou University, Guiyang 550025, China.
- College of Life Science, Guizhou University, Guiyang 550025, China.
| | - Houqiang Xu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Guizhou University, Guiyang 550025, China.
- College of Animal Science, Guizhou University, Guiyang 550025, China.
| | - Xiang Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Guizhou University, Guiyang 550025, China.
- College of Animal Science, Guizhou University, Guiyang 550025, China.
| | - Zhongwei Liu
- College of Life Science, Guizhou University, Guiyang 550025, China.
| | - Wen Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Guizhou University, Guiyang 550025, China.
| | - Dan Xia
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Guizhou University, Guiyang 550025, China.
- College of Animal Science, Guizhou University, Guiyang 550025, China.
| |
Collapse
|
10
|
Hilse KE, Kalinovich AV, Rupprecht A, Smorodchenko A, Zeitz U, Staniek K, Erben RG, Pohl EE. The expression of UCP3 directly correlates to UCP1 abundance in brown adipose tissue. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1857:72-78. [PMID: 26518386 PMCID: PMC7115856 DOI: 10.1016/j.bbabio.2015.10.011] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 10/16/2015] [Accepted: 10/25/2015] [Indexed: 01/14/2023]
Abstract
UCP1 and UCP3 are members of the uncoupling protein (UCP) subfamily and are localized in the inner mitochondrial membrane. Whereas UCP1's central role in non-shivering thermogenesis is acknowledged, the function and even tissue expression pattern of UCP3 are still under dispute. Because UCP3 properties regarding transport of protons are qualitatively identical to those of UCP1, its expression in brown adipose tissue (BAT) alongside UCP1 requires justification. In this work, we tested whether any correlation exists between the expression of UCP1 and UCP3 in BAT by quantification of protein amounts in mouse tissues at physiological conditions, in cold-acclimated and UCP1 knockout mice. Quantification using recombinant UCP3 revealed that the UCP3 amount in BAT (0.51ng/(μg total tissue protein)) was nearly one order of magnitude higher than that in muscles and heart. Cold-acclimated mice showed an approximate three-fold increase in UCP3 abundance in BAT in comparison to mice in thermoneutral conditions. Surprisingly, we found a significant decrease of UCP3 in BAT of UCP1 knockout mice, whereas the protein amount in skeletal and heart muscles remained constant. UCP3 abundance decreased even more in cold-acclimated UCP1 knockout mice. Protein quantification in UCP3 knockout mice revealed no compensatory increase in UCP1 or UCP2 expression. Our results do not support the participation of UCP3 in thermogenesis in the absence of UCP1 in BAT, but clearly demonstrate the correlation in abundance between both proteins. The latter is important for understanding UCP3's function in BAT.
Collapse
Affiliation(s)
- Karolina E Hilse
- Institute of Physiology, Pathophysiology and Biophysics, Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Anastasia V Kalinovich
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Anne Rupprecht
- Institute of Physiology, Pathophysiology and Biophysics, Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Alina Smorodchenko
- Institute of Physiology, Pathophysiology and Biophysics, Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Ute Zeitz
- Institute of Physiology, Pathophysiology and Biophysics, Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Katrin Staniek
- Institute of Pharmacology and Toxicology, Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Reinhold G Erben
- Institute of Physiology, Pathophysiology and Biophysics, Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Elena E Pohl
- Institute of Physiology, Pathophysiology and Biophysics, Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria.
| |
Collapse
|
11
|
Harmancey R, Haight DL, Watts KA, Taegtmeyer H. Chronic Hyperinsulinemia Causes Selective Insulin Resistance and Down-regulates Uncoupling Protein 3 (UCP3) through the Activation of Sterol Regulatory Element-binding Protein (SREBP)-1 Transcription Factor in the Mouse Heart. J Biol Chem 2015; 290:30947-61. [PMID: 26555260 DOI: 10.1074/jbc.m115.673988] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Indexed: 01/22/2023] Open
Abstract
The risk for heart failure and death after myocardial infarction is abnormally high in diabetic subjects. We and others have shown previously that mitochondrial uncoupling protein 3 (UCP3) improves functional recovery of the rodent heart during reperfusion. Here, we demonstrate that pharmacological induction of hyperinsulinemia in mice down-regulates myocardial UCP3. Decreased UCP3 expression was linked to the development of selective insulin resistance in the heart, characterized by decreased basal activity of Akt but preserved activity of the p44/42 mitogen-activated protein kinase, and overactivation of the sterol regulatory element-binding protein (SREBP)-1-mediated lipogenic program. In cultured myocytes, insulin treatment and SREBP-1 overexpression decreased, whereas SREBP-1 interference increased, peroxisome proliferator-activated receptor-stimulated expression of UCP3. Promoter deletion and site-directed mutagenesis identified three functional sterol regulatory elements in the vicinity of a known complex intronic enhancer. Increased binding of SREBP-1 to this DNA region was confirmed in the heart of hyperinsulinemic mice. In conclusion, we describe a hitherto unknown regulatory mechanism by which insulin inhibits cardiac UCP3 expression through activation of the lipogenic factor SREBP-1. Sustained down-regulation of cardiac UCP3 by hyperinsulinemia may partly explain the poor prognosis of type 2 diabetic patients after myocardial infarction.
Collapse
Affiliation(s)
- Romain Harmancey
- From the Department of Internal Medicine, Division of Cardiology, University of Texas Medical School, University of Texas Health Science Center, Houston, Texas 77030 and the Department of Physiology and Biophysics, Mississippi Center for Obesity Research and Cardiovascular-Renal Research Center, University of Mississippi Medical Center, Jackson, Mississippi 39216-4505
| | - Derek L Haight
- From the Department of Internal Medicine, Division of Cardiology, University of Texas Medical School, University of Texas Health Science Center, Houston, Texas 77030 and
| | - Kayla A Watts
- the Department of Physiology and Biophysics, Mississippi Center for Obesity Research and Cardiovascular-Renal Research Center, University of Mississippi Medical Center, Jackson, Mississippi 39216-4505
| | - Heinrich Taegtmeyer
- From the Department of Internal Medicine, Division of Cardiology, University of Texas Medical School, University of Texas Health Science Center, Houston, Texas 77030 and
| |
Collapse
|
12
|
Udagawa C, Tada N, Asano J, Ishioka K, Ochiai K, Bonkobara M, Tsuchida S, Omi T. The genetic association study between polymorphisms in uncoupling protein 2 and uncoupling protein 3 and metabolic data in dogs. BMC Res Notes 2014; 7:904. [PMID: 25495519 PMCID: PMC4295406 DOI: 10.1186/1756-0500-7-904] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 11/25/2014] [Indexed: 12/17/2022] Open
Abstract
Background The uncoupling proteins (UCPs) in the mitochondrial inner membrane are members of the mitochondrial anion carrier protein family that play an important role in energy homeostasis. Genetic association studies have shown that human UCP2 and UCP3 variants (SNPs and indels) are associated with obesity, insulin resistance, type 2 diabetes mellitus, and metabolic syndrome. The aim of this study was to examine the genetic association between polymorphisms in UCP2 and UCP3 and metabolic data in dogs. Results We identified 10 SNPs (9 intronic and 1 exonic) and 4 indels (intronic) in UCP2, and 13 SNPs (11 intronic and 2 exonic) and one indel (exonic) in UCP3, by DNA sequence analysis of 11 different dog breeds (n = 119). An association study between these UCP2 and UCP3 variants and the biochemical parameters of glucose, total cholesterol, lactate dehydrogenase and triglyceride in Labrador Retrievers (n = 50) showed that none of the UCP2 polymorphisms were significantly associated with the levels of these parameters. However, four UCP3 SNPs (intron 1) were significantly associated with total cholesterol levels. In addition, the allele frequencies of two of the four SNPs associated with higher total cholesterol levels in a breed that is susceptible to hypercholesterolemia (Shetland Sheepdogs, n = 30), compared with the control breed (Shiba, n = 30). Conclusion The results obtained from a limited number of individuals suggest that the UCP3 gene in dogs may be associated with total cholesterol levels. The examination of larger sample sizes and further analysis will lead to increased precision of these results. Electronic supplementary material The online version of this article (doi:10.1186/1756-0500-7-904) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Toshinori Omi
- Department of Basic Science, School of Veterinary Nursing and Technology, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino, Tokyo 180-8602, Japan.
| |
Collapse
|
13
|
Nagpal K, Watanabe KS, Tsao BP, Tsokos GC. Transcription factor Ikaros represses protein phosphatase 2A (PP2A) expression through an intronic binding site. J Biol Chem 2014; 289:13751-7. [PMID: 24692537 DOI: 10.1074/jbc.m114.558197] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Protein phosphatase 2A (PP2A) is a highly conserved and ubiquitous serine/threonine phosphatase. We have shown previously that PP2A expression is increased in T cells of systemic lupus erythematosus patients and that this increased expression and activity of PP2A plays a central role in the molecular pathogenesis of systemic lupus erythematosus. Although the control of PP2A expression has been the focus of many studies, many aspects of its regulation still remain poorly understood. In this study, we describe a novel mechanism of PP2A regulation. We propose that the transcription factor Ikaros binds to a variant site in the first intron of PP2A and modulates its expression. Exogenous expression of Ikaros leads to reduced levels of PP2Ac message as well as protein. Conversely, siRNA-enabled silencing of Ikaros enhances the expression of PP2A, suggesting that Ikaros acts as a suppressor of PP2A expression. A ChIP analysis further proved that Ikaros is recruited to this site in T cells. We also attempted to delineate the mechanism of Ikaros-mediated PP2Ac gene suppression. We show that Ikaros-mediated suppression of PP2A expression is at least partially dependent on the recruitment of the histone deacetylase HDAC1 to this intronic site. We conclude that the transcription factor Ikaros can regulate the expression of PP2A by binding to a site in the first intron and modulating chromatin modifications at this site via recruitment of HDAC1.
Collapse
Affiliation(s)
- Kamalpreet Nagpal
- From the Department of Medicine, Division of Rheumatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02115 and
| | - Katsue Sunahori Watanabe
- From the Department of Medicine, Division of Rheumatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02115 and
| | - Betty P Tsao
- the Division of Rheumatology, University of California Los Angeles, Los Angeles, California 90095
| | - George C Tsokos
- From the Department of Medicine, Division of Rheumatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02115 and
| |
Collapse
|