1
|
He JL, You YX, Pei X, Jiang W, Zeng QM, Chen B, Wang YH, Chen EQ, Tang H, Gao XF, Wu DB. Tracking of Stem Cells in Chronic Liver Diseases: Current Trends and Developments. Stem Cell Rev Rep 2024; 20:447-454. [PMID: 37993759 DOI: 10.1007/s12015-023-10659-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/15/2023] [Indexed: 11/24/2023]
Abstract
Stem cell therapy holds great promise for future clinical practice for treatment of advanced liver diseases. However, the fate of stem cells after transplantation, including the distribution, viability, and the cell clearance, has not been fully elucidated. Herein, recent advances regarding the imaging tools for stem cells tracking mainly in chronic liver diseases with the advantages and disadvantages of each approach have been described. Magnetic resonance imaging is a promising clinical imaging modality due to non-radioactivity, excellent penetrability, and high spatial resolution. Fluorescence imaging and radionuclide imaging demonstrate relatively increased sensitivity, with the latter excelling in real-time monitoring. Reporter genes specialize in long-term tracing. Nevertheless, the disadvantages of low sensitivity, radiation, exogenous gene risk are inevitably present in each of these means, respectively. In this review, we aim to comprehensively evaluate the current state of methods for tracking of stem cell, highlighting their strengths and weaknesses, and providing insights into their future potential. Multimodality imaging strategies may overcome the inherent limitations of single-modality imaging by combining the strengths of different imaging techniques to provide more comprehensive information in the clinical setting.
Collapse
Affiliation(s)
- Jin-Long He
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610065, China
| | - Yi-Xian You
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiong Pei
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Wei Jiang
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qing-Min Zeng
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Bin Chen
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yong-Hong Wang
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - En-Qiang Chen
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Hong Tang
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiu-Feng Gao
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610065, China.
| | - Dong-Bo Wu
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
2
|
Hong S, Lee DS, Bae GW, Jeon J, Kim HK, Rhee S, Jung KO. In Vivo Stem Cell Imaging Principles and Applications. Int J Stem Cells 2023; 16:363-375. [PMID: 37643761 PMCID: PMC10686800 DOI: 10.15283/ijsc23045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 07/13/2023] [Accepted: 07/21/2023] [Indexed: 08/31/2023] Open
Abstract
Stem cells are the foundational cells for every organ and tissue in our body. Cell-based therapeutics using stem cells in regenerative medicine have received attracting attention as a possible treatment for various diseases caused by congenital defects. Stem cells such as induced pluripotent stem cells (iPSCs) as well as embryonic stem cells (ESCs), mesenchymal stem cells (MSCs), and neuroprogenitors stem cells (NSCs) have recently been studied in various ways as a cell-based therapeutic agent. When various stem cells are transplanted into a living body, they can differentiate and perform complex functions. For stem cell transplantation, it is essential to determine the suitability of the stem cell-based treatment by evaluating the origin of stem, the route of administration, in vivo bio-distribution, transplanted cell survival, function, and mobility. Currently, these various stem cells are being imaged in vivo through various molecular imaging methods. Various imaging modalities such as optical imaging, magnetic resonance imaging (MRI), ultrasound (US), positron emission tomography (PET), and single-photon emission computed tomography (SPECT) have been introduced for the application of various stem cell imaging. In this review, we discuss the principles and recent advances of in vivo molecular imaging for application of stem cell research.
Collapse
Affiliation(s)
- Seongje Hong
- Department of Anatomy, College of Medicine, Chung-Ang University, Seoul, Korea
| | - Dong-Sung Lee
- Department of Life Sciences, University of Seoul, Seoul, Korea
| | - Geun-Woo Bae
- Department of Anatomy, College of Medicine, Chung-Ang University, Seoul, Korea
| | - Juhyeong Jeon
- Department of Anatomy, College of Medicine, Chung-Ang University, Seoul, Korea
| | - Hak Kyun Kim
- Department of Life Science, Chung-Ang University, Seoul, Korea
| | - Siyeon Rhee
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Kyung Oh Jung
- Department of Anatomy, College of Medicine, Chung-Ang University, Seoul, Korea
| |
Collapse
|
3
|
Tripura C, Gunda S, Vishwakarma SK, Thatipalli AR, Jose J, Jerald MK, Khan AA, Pande G. Long-term and non-invasive in vivo tracking of DiD dye-labeled human hepatic progenitors in chronic liver disease models. World J Hepatol 2022; 14:1884-1898. [PMID: 36340748 PMCID: PMC9627437 DOI: 10.4254/wjh.v14.i10.1884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/02/2022] [Accepted: 10/04/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Chronic liver diseases (CLD) are the major public health burden due to the continuous increasing rate of global morbidity and mortality. The inherent limitations of organ transplantation have led to the development of stem cell-based therapy as a supportive and promising therapeutic option. However, identifying the fate of transplanted cells in vivo represents a crucial obstacle.
AIM To evaluate the potential applicability of DiD dye as a cell labeling agent for long-term, and non-invasive in vivo tracking of transplanted cells in the liver.
METHODS Magnetically sorted, epithelial cell adhesion molecule positive (1 × 106 cells/mL) fetal hepatic progenitor cells were labeled with DiD dye and transplanted into the livers of CLD-severe combined immunodeficiency (SCID) mice. Near-infrared (NIR) imaging was performed for in vivo tracking of the DiD-labeled transplanted cells along with colocalization of hepatic markers for up to 80 d. The existence of human cells within mouse livers was identified using Alu polymerase chain reaction and sequencing.
RESULTS NIR fluorescence imaging of CLD-SCID mice showed a positive fluorescence signal of DiD at days 7, 15, 30, 45, 60, and 80 post-transplantation. Furthermore, positive staining of cytokeratin, c-Met, and albumin colocalizing with DiD fluorescence clearly demonstrated that the fluorescent signal of hepatic markers emerged from the DiD-labeled transplanted cells. Recovery of liver function was also observed with serum levels of glutamic-oxaloacetic transaminase, glutamate-pyruvate transaminase, and bilirubin. The detection of human-specific Alu sequence from the transplanted mouse livers provided evidence for the survival of transplanted cells at day 80.
CONCLUSION DiD-labeling is promising for long-term and non-invasive in vivo cell tracking, and understanding the regenerative mechanisms incurred by the transplanted cells.
Collapse
Affiliation(s)
- Chaturvedula Tripura
- Cell and Stem Cell Biology, CSIR-Centre for Cellular and Molecular Biology, Hyderabad 500007, Telangana, India
| | - Srinivas Gunda
- Cell and Stem Cell Biology, CSIR-Centre for Cellular and Molecular Biology, Hyderabad 500007, Telangana, India
| | - Sandeep Kumar Vishwakarma
- Central Laboratory for Stem Cell Research and Translational Medicine, Centre for Liver Research and Diagnostics, Deccan College of Medical Sciences, Hyderabad 500058, Telangana, India
| | - Avinash Raj Thatipalli
- Cell and Stem Cell Biology, CSIR-Centre for Cellular and Molecular Biology, Hyderabad 500007, Telangana, India
| | - Jedy Jose
- Cell and Stem Cell Biology, CSIR-Centre for Cellular and Molecular Biology, Hyderabad 500007, Telangana, India
| | - Mahesh Kumar Jerald
- Cell and Stem Cell Biology, CSIR-Centre for Cellular and Molecular Biology, Hyderabad 500007, Telangana, India
| | - Aleem Ahmed Khan
- Central Laboratory for Stem Cell Research and Translational Medicine, Centre for Liver Research and Diagnostics, Deccan College of Medical Sciences, Hyderabad 500058, Telangana, India
| | - Gopal Pande
- Cell and Stem Cell Biology, CSIR-Centre for Cellular and Molecular Biology, Hyderabad 500007, Telangana, India
| |
Collapse
|
4
|
Hu C, Zhao L, Li L. Genetic modification by overexpression of target gene in mesenchymal stromal cell for treating liver diseases. J Mol Med (Berl) 2021; 99:179-192. [PMID: 33388882 DOI: 10.1007/s00109-020-02031-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 11/02/2020] [Accepted: 12/21/2020] [Indexed: 12/31/2022]
Abstract
Different hepatoxic factors cause irreversible liver injury, leading to liver failure, cirrhosis, and cancer in mammals. Liver transplantation is the only effective strategy, which can improve the prognosis of patients with end-stage liver diseases, but it is limited by liver donor shortage, expensive costs, liver graft rejection and dysfunction, and recurring liver failure. Recently, mesenchymal stromal cells (MSCs) isolated from various tissues are regarded as the main stem cell type with therapeutic effects in liver diseases because of their hepatogenic differentiation, anti-inflammatory, immuoregulatory, anti-apoptotic, antifibrotic, and antitumor capacities. To further improve the therapeutic effects of MSCs, multiple studies showed that genetically engineered MSCs have increased regenerative capacities and are able to more effectively inhibit cell death. Moreover, they are able to secrete therapeutic proteins for attenuating liver injury in liver diseases. In this review, we mainly focus on gene overexpression for reprogramming MSCs to increase their therapeutic effects in treating various liver diseases. We described the potential mechanisms of MSCs with gene overexpression in attenuating liver injury, and we recommend further expansion of experiments to discover more gene targets and optimized gene delivery methods for MSC-based regenerative medicine. We also discussed the potential hurdles in genetic engineering MSCs. In conclusion, we highlight that we need to overcome all scientific hurdles before genetically modified MSC therapy can be translated into clinical practices for patients with liver diseases.
Collapse
Affiliation(s)
- Chenxia Hu
- Collaborative Innovation Center for the Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Lingfei Zhao
- Key Laboratory of Kidney Disease Prevention and Control Technology, Kidney Disease Center, Institute of Nephrology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Lanjuan Li
- Collaborative Innovation Center for the Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China. .,National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.
| |
Collapse
|
5
|
Ullah M, Qiao Y, Concepcion W, Thakor AS. Stem cell-derived extracellular vesicles: role in oncogenic processes, bioengineering potential, and technical challenges. Stem Cell Res Ther 2019; 10:347. [PMID: 31771657 PMCID: PMC6880555 DOI: 10.1186/s13287-019-1468-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 10/21/2019] [Accepted: 10/23/2019] [Indexed: 12/11/2022] Open
Abstract
Extracellular vesicles (EVs) are cellular-derived versatile transporters with a specialized property for trafficking a variety of cargo, including metabolites, growth factors, cytokines, proteins, lipids, and nucleic acids, throughout the microenvironment. EVs can act in a paracrine manner to facilitate communication between cells as well as modulate immune, inflammatory, regenerative, and remodeling processes. Of particular interest is the emerging association between EVs and stem cells, given their ability to integrate complex inputs for facilitating cellular migration to the sites of tissue injury. Additionally, stem cell-derived EVs can also act in an autocrine manner to influence stem cell proliferation, mobilization, differentiation, and self-renewal. Hence, it has been postulated that stem cells and EVs may work synergistically in the process of tissue repair and that dysregulation of EVs may cause a loss of homeostasis in the microenvironment leading to disease. By harnessing the property of EVs for delivery of small molecules, stem cell-derived EVs possess significant potential as a platform for developing bioengineering approaches for next-generation cancer therapies and targeted drug delivery methods. Although one of the main challenges of clinical cancer treatment remains a lack of specificity for the delivery of effective treatment options, EVs can be modified via genetic, biochemical, or synthetic methods for enhanced targeting ability of chemotherapeutic agents in promoting tumor regression. Here, we summarize recent research on the bioengineering potential of EV-based cancer therapies. A comprehensive understanding of EV modification may provide a novel strategy for cancer therapy and for the utilization of EVs in the targeting of oncogenic processes. Furthermore, innovative and emerging new technologies are shifting the paradigm and playing pivotal roles by continually expanding novel methods and materials for synthetic processes involved in the bioengineering of EVs for enhanced precision therapeutics.
Collapse
Affiliation(s)
- Mujib Ullah
- Interventional Regenerative Medicine and Imaging Laboratory, Stanford University School of Medicine, Department of Radiology, 3155 Porter Dr., Stanford, CA, 94304, USA.
| | - Yang Qiao
- Interventional Regenerative Medicine and Imaging Laboratory, Stanford University School of Medicine, Department of Radiology, 3155 Porter Dr., Stanford, CA, 94304, USA.,Texas A&M University College of Medicine, 8447 Riverside Pkwy, Bryan, TX, 77807, USA.,Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA.,Department of Surgery, Columbia University Irving Medical Center, 177 Fort Washington Ave, New York, NY, 10032, USA
| | - Waldo Concepcion
- Interventional Regenerative Medicine and Imaging Laboratory, Stanford University School of Medicine, Department of Radiology, 3155 Porter Dr., Stanford, CA, 94304, USA
| | - Avnesh S Thakor
- Interventional Regenerative Medicine and Imaging Laboratory, Stanford University School of Medicine, Department of Radiology, 3155 Porter Dr., Stanford, CA, 94304, USA
| |
Collapse
|
6
|
Wen MD, Jiang Y, Huang J, Al-Hawwas M, Dan QQ, Yang RA, Yuan B, Zhao XM, Jiang L, Zhong MM, Xiong LL, Zhang YH. A Novel Role of VEGFC in Cerebral Ischemia With Lung Injury. Front Neurosci 2019; 13:479. [PMID: 31191213 PMCID: PMC6540825 DOI: 10.3389/fnins.2019.00479] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 04/26/2019] [Indexed: 02/05/2023] Open
Abstract
Cerebral ischemia (CI) is a severe brain injury resulting in a variety of motor impairments combined with secondary injury in remote organs, especially the lung. This condition occurs due to insufficient blood supply to the brain during infancy. However, it has a molecular linkage that needs to be thoroughly covered. Here, we report on the role of vascular endothelial growth factor C (VEGFC) in lung injury induced by CI. The middle cerebral artery occlusion (MCAO) was depended to establish the animal model of CI. Rats were used and brain ischemia was confirmed through TTC staining. Serum was used for protein chip analysis to study the proteomic interaction. Immunohistochemistry analyses were used to quantify and locate the VEGFC in the lung and brain. The role of VEGFC was detected by siVEGFC technology in SY5Y, HUCEV, and A549 cell lines, under normal and oxygen glucose deprivation (OGD) conditions in vitro. As a result, the TTC staining demonstrated that the model of brain ischemia was successfully established, and MPO experiments reported that lung damage was induced in MCAO rats. VEGFC levels were up-regulated in serum. On the other hand, immunohistochemistry showed that VEGFC increased significantly in the cytoplasm of neurons, the endothelium of small trachea and the lung cells of CI animals. On a functional level, siVEGFC effectively inhibited the proliferation of SY5Y cells and decreased the viability of HUVEC cells in normal cell lines. But under OGD conditions, siVEGFC decreased the growth of HUVEC and increased the viability of A549 cells, while no effect was noticed on SYSY cells. Therefore, we confirmed the different role of VEGFC played in neurons and lung cells in cerebral ischemia-reperfusion injury. These findings may contribute to the understanding the molecular linkage of brain ischemia and lung injury, which therefore provides a new idea for the therapeutic approach to cerebral ischemia-reperfusion.
Collapse
Affiliation(s)
- Mu-Dong Wen
- Department of Respiration, The First People's Hospital of Yunnan Province, Kunming, China
| | - Ya Jiang
- Laboratory Zoology Department, Institute of Neuroscience, Kunming Medical University, Kunming, China
| | - Jin Huang
- Laboratory Zoology Department, Institute of Neuroscience, Kunming Medical University, Kunming, China
| | - Mohammed Al-Hawwas
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, Australia
| | - Qi-Qin Dan
- Institute of Neurological Disease, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, China
| | - Rui-An Yang
- Department of Respiration, The First People's Hospital of Yunnan Province, Kunming, China
| | - Bing Yuan
- Department of Respiration, The First People's Hospital of Yunnan Province, Kunming, China
| | - Xiao-Ming Zhao
- Institute of Neurological Disease, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, China
| | - Ling Jiang
- Institute of Neurological Disease, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, China
| | - Ming-Mei Zhong
- Department of Respiration, The First People's Hospital of Yunnan Province, Kunming, China
| | - Liu-Lin Xiong
- Department of Anesthesiology, National Traditional Chinese Medicine Clinical Research Base and Western Medicine Translational Medicine Research Center, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China.,School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, Australia
| | - Yun-Hui Zhang
- Department of Respiration, The First People's Hospital of Yunnan Province, Kunming, China
| |
Collapse
|
7
|
Baez-Jurado E, Hidalgo-Lanussa O, Barrera-Bailón B, Sahebkar A, Ashraf GM, Echeverria V, Barreto GE. Secretome of Mesenchymal Stem Cells and Its Potential Protective Effects on Brain Pathologies. Mol Neurobiol 2019; 56:6902-6927. [PMID: 30941733 DOI: 10.1007/s12035-019-1570-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 03/18/2019] [Indexed: 02/06/2023]
Abstract
Previous studies have indicated that mesenchymal stem cells (MSCs) have a fundamental role in the repair and regeneration of damaged tissues. There is strong evidence showing that much of the beneficial effects of these cells are due to the secretion of bioactive molecules-besides microRNAs, hormones, and neurotrophins-with anti-inflammatory, immunoregulatory, angiogenic, and trophic effects. These factors have been reported by many studies to possess protective effects on the nervous tissue. Although the beneficial effects of the secretory factors of MSCs have been suggested for various neurological diseases, their actions on astrocytic cells are not well understood. Hence, it is important to recognize the specific effects of MSCs derived from adipose tissue, in addition to the differences presented by the secretome, depending on the source and methods of analysis. In this paper, the different sources of MSCs and their main characteristics are described, as well as the most significant advances in regeneration and protection provided by the secretome of MSCs. Also, we discuss the possible neuroprotective mechanisms of action of the MSC-derived biomolecules, with special emphasis on the effect of MSCs derived from adipose tissue and their impact on glial cells and brain pathologies.
Collapse
Affiliation(s)
- Eliana Baez-Jurado
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, DC, Colombia
| | - Oscar Hidalgo-Lanussa
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, DC, Colombia
| | - Biviana Barrera-Bailón
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, DC, Colombia
| | - Amirhossein Sahebkar
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ghulam Md Ashraf
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Valentina Echeverria
- Facultad de Ciencias de la Salud, Universidad San Sebastian, Lientur 1457, 4080871, Concepción, Chile.,Research & Development Service, Bay Pines VA Healthcare System, Bay Pines, FL, 33744, USA
| | - George E Barreto
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, DC, Colombia.
| |
Collapse
|
8
|
Yin G, Liu H, Li J, Liu Y, Liu X, Luo E. Adenoviral delivery of adiponectin ameliorates osteogenesis around implants in ovariectomized rats. J Gene Med 2019; 21:e3069. [PMID: 30609197 DOI: 10.1002/jgm.3069] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 12/26/2018] [Accepted: 12/26/2018] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Adiponectin (APN) has been reported to promote bone formation. However, it is difficult to utilize a conventional method that administers sufficient APN to the implant site. The present study investigated the efficacy of an APN transgene to accelerate the implant osseointegration in ovariectomized (OVX) rats. METHODS In vitro, bone marrow stromal cells were transduced with reconstructed adenovirus (Ad-APN-EGFP) and osteoclast precursor RAW264.7 cells were co-cultured with the conditioned medium secreted by transduced bone marrow stromal cells. Tartrate-resistant acid phosphatase staining and bone slice resorption assay were performed to evaluate the activity of osteoclastogenesis. In vivo, Ad-APN-EGFP was administered into the bone defect prior to implant placement in OVX rats. At 7 and 28 days post implantation, the femurs were harvested and prepared for a real-time reverse transcriptase-polymerase chain reaction, hemotoxylin and eosin staining, immunohistochemical staining, micro-computed tomography analysis and biomechanical testing. RESULTS The results showed the formation and function of osteoclasts were significantly suppressed in vitro. Successful transgene expression was confirmed, and a significant increase of OCN, Runx2 and ALP expression was detected in the Ad-APN-EGFP group in vivo. Interestingly, we also found that the overexpression of APN decreased the expression level of potent adipogenic transcription factors such as PPARγ2 and C/EBP-α. At 28 days after implantation, the Ad-APN-EGFP group revealed a significantly increased osseointegration and implant stability in OVX rats compared to the control groups (Ad-EGFP and PBS groups). CONCLUSIONS APN via direct adenovirus-mediated gene transfer could ameliorate osseointegration surrounding titanium implants in OVX-related osteoporosis rats. Furthermore, it may be an effective strategy for promoting bone regeneration under osteoporotic conditions.
Collapse
Affiliation(s)
- Guozhu Yin
- Department of Stomatology, Shandong Provincial Hospital affiliated to Shandong University, Jinan, China
| | - Hanghang Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jiayang Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yao Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Division of Oral Biology, Tufts University School of Dental Medicine, Boston, MA, USA
| | - Xian Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - En Luo
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
9
|
Gao R, Yang H, Jing S, Liu B, Wei M, He P, Zhang N. Protective effect of chlorogenic acid on lipopolysaccharide-induced inflammatory response in dairy mammary epithelial cells. Microb Pathog 2018; 124:178-182. [PMID: 30053604 DOI: 10.1016/j.micpath.2018.07.030] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 07/22/2018] [Accepted: 07/23/2018] [Indexed: 12/29/2022]
Abstract
Mastitis is a major disease of dairy cattle. Given the recent emergence of antibiotics resistance to mastitis, new intramammary treatments are urgently required. In the present study, we investigated whether lipopolysaccharide (LPS) could induce the increase in the proinflammatory cytokines in bovine mammary epithelial cells (MECs), and whether a natural antimicrobial compound Chlorogenic acid (CGA) could attenuate the inflammatory responses induced by LPS and thus could be a potential therapeutic compound for bovine mastitis. Our results indicated that LPS could induce the expression of proinflammatory cytokines such as tumor necrosis factor (TNF)-α, interleukine (IL)-1β and IL-6, and the activation of NF-κB p65 and p-p65 in primary bovine MECs. Furthermore, CGA significantly inhibited not only the protein expression of NF-κB p65 and p-p65 but also the mRNA expression of TNF-α, IL-1β and IL-6 after LPS treatment in primary bovine MECs. These results suggested that CGA had anti-inflammatory role by inhibiting NF-κB activation. In conclusion, CGA could be possibly used as a potential therapeutic compound for bovine mastitis.
Collapse
Affiliation(s)
- Ruifeng Gao
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Huidi Yang
- Basic Medical School, Inner Mongolia Medical University, Hohhot, 010110, China
| | - Shangfei Jing
- Department of Hand and Foot Surgery, Second Affiliated Hospital, Inner Mongolia Medical University, Hohhot, 010110, China
| | - Bo Liu
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Mao Wei
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Pengfei He
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Naisheng Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Jilin Province, Changchun, 130062, China.
| |
Collapse
|
10
|
Liu H, Zhang N, Liu Y, Liu L, Yin G, En L. Effect of Human Wnt10b Transgene Overexpression on Peri-Implant Osteogenesis in Ovariectomized Rats. Hum Gene Ther 2018; 29:1416-1427. [PMID: 29790378 DOI: 10.1089/hum.2018.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
This study aimed to investigate the efficacy of human Wnt10b (hWnt10b) transgene expression in ovariectomized (OVX) rats to accelerate osseointegration around titanium implants, and to provide a new strategy for treating osteoporosis with implants. An in vivo osteoporosis model was generated via bilateral ovariectomy in rats, and changes in expression of Wnt pathway-related genes were investigated. In OVX rats with a femur defect, hWnt10b expressed from an adenovirus vector was locally delivered to the defect site prior to implant placement. Surrounding femur tissues were collected 1 and 3 weeks after implantation for imaging, biomechanical testing, and molecular and histological analyses. In an in vitro model, bone-marrow stromal cells (BMSCs) transfected with adenovirus containing hWnt10b (Ad-hWnt10b) were cultured for 2 weeks in adipogenic medium followed by 2 weeks in osteogenic induction medium. Alizarin Red staining and Oil Red O staining, as well as reverse transcription polymerase chain reaction and Western blot analyses, were performed to assess the effect of hWnt10b expression on BMSC differentiation. Expression of Wnt pathway genes was significantly downregulated in OVX rats. OVX rats treated with Ad-hWnt10b prior to induction of a femur defect showed markedly increased ALP, Runx-2, and osteocalcin expression and decreased cathepsin K expression. Histological and imaging analysis showed increases in the number of osteocalcin-positive cells and the density of newly formed bone surrounding the implant in the Ad-hWnt10b group relative to the untreated control. Meanwhile, Ad-hWnt10b-BMSCs showed significantly increased osteogenesis and decreased adipogenesis. hWnt10b may accelerate osseointegration around implants and subsequently enhance bone regeneration and implant stabilization under OVX conditions.
Collapse
Affiliation(s)
- Hanghang Liu
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases Dept. of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China
| | - Nian Zhang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases Dept. of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China
| | - Yao Liu
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases Dept. of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China.,Division of Oral Biology, Tufts University School of Dental Medicine, Boston, Massachusetts
| | - Li Liu
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases Dept. of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China
| | - Guozhu Yin
- Department of Stomatology, Shandong Provincial Hospital affiliated with Shandong University, Jinan, P.R. China
| | - Luo En
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases Dept. of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China
| |
Collapse
|
11
|
Yi M, Wei T, Wang Y, Lu Q, Chen G, Gao X, Geller HM, Chen H, Yu Z. The potassium channel KCa3.1 constitutes a pharmacological target for astrogliosis associated with ischemia stroke. J Neuroinflammation 2017; 14:203. [PMID: 29037241 PMCID: PMC5644250 DOI: 10.1186/s12974-017-0973-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 09/27/2017] [Indexed: 12/11/2022] Open
Abstract
Background Reactive astrogliosis is one of the significantly pathological features in ischemic stroke accompanied with changes in gene expression, morphology, and proliferation. KCa3.1 was involved in TGF-β-induced astrogliosis in vitro and also contributed to astrogliosis-mediated neuroinflammation in neurodegeneration disease. Methods Wild type mice and KCa3.1−/− mice were subjected to permanent middle cerebral artery occlusion (pMCAO) to evaluate the infarct areas by 2,3,5-triphenyltetrazolium hydrochloride staining and neurological deficit. KCa3.1 channels expression and cell localization in the brain of pMCAO mice model were measured by immunoblotting and immunostaining. Glia activation and neuron loss was measured by immunostaining. DiBAC4 (3) and Fluo-4AM were used to measure membrane potential and cytosolic Ca2+ level in oxygen-glucose deprivation induced reactive astrocytes in vitro. Results Immunohistochemistry on pMCAO mice infarcts showed strong upregulation of KCa3.1 immunoreactivity in reactive astrogliosis. KCa3.1−/− mice exhibited significantly smaller infarct areas on pMCAO and improved neurological deficit. Both activated gliosis and neuronal loss were attenuated in KCa3.1−/− pMCAO mice. In the primary cultured astrocytes, the expressions of KCa3.1 and TRPV4 were increased associated with upregulation of astrogliosis marker GFAP induced by oxygen-glucose deprivation. The activation of KCa3.1 hyperpolarized membrane potential and, by promoting the driving force for calcium, induced calcium entry through TRPV4, a cation channel of the transient receptor potential family. Double-labeled staining showed that KCa3.1 and TRPV4 channels co-localized in astrocytes. Blockade of KCa3.1 or TRPV4 inhibited the phenotype switch of reactive astrogliosis. Conclusions Our data suggested that KCa3.1 inhibition might represent a promising therapeutic strategy for ischemia stroke. Electronic supplementary material The online version of this article (10.1186/s12974-017-0973-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mengni Yi
- Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Tianjiao Wei
- Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yanxia Wang
- Experimental Teaching Center of Basic Medicine, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Qin Lu
- Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Gaoxian Chen
- Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xiaoling Gao
- Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Herbert M Geller
- Developmental Neurobiology Section, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Hongzhuan Chen
- Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Zhihua Yu
- Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
12
|
Xiong LL, Liu F, Lu BT, Zhao WL, Dong XJ, Liu J, Zhang RP, Zhang P, Wang TH. Bone Marrow Mesenchymal Stem-Cell Transplantation Promotes Functional Improvement Associated with CNTF-STAT3 Activation after Hemi-Sectioned Spinal Cord Injury in Tree Shrews. Front Cell Neurosci 2017; 11:172. [PMID: 28701922 PMCID: PMC5487382 DOI: 10.3389/fncel.2017.00172] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 06/07/2017] [Indexed: 02/05/2023] Open
Abstract
Hemi-sectioned spinal cord injury (hSCI) can lead to spastic paralysis on the injured side, as well as flaccid paralysis on the contralateral side, which can negatively affect a patient’s daily life. Stem-cell therapy may offer an effective treatment option for individuals with hSCI. To examine the role of bone marrow mesenchymal stem cells (BMSCs) transplantation on hSCI and explore related mechanisms in the tree shrews, here, we created a model of hSCI by inducing injury at the tenth thoracic vertebra (T10). Hoechst 33342-labeled BMSCs derived from adult tree shrews were isolated, cultured, and implanted into the spinal cord around the injury site at 9 days after injury. The isolated BMSCs were able to survive, proliferate and release a variety of neurotrophic factors (NTFs) both in vitro and in vivo. At 28 days after injury, compared with the sham group, the hSCI group displayed scar formation and dramatic elevations in the mean interleukin 1 beta (IL-1β) density and cell apoptosis level, whereas the expression of signal transducer and activator of transcription 3 (STAT3) and ciliary neurotrophic factor (CNTF) mRNA was reduced. Following BMSC transplantation, motoneurons extent of shrinkage were reduced and the animals’ Basso, Beattie, and Bresnahan (BBB) locomotion scale scores were significantly higher at 21 and 28 days after injury when compared with the injured group. Moreover, the hSCI-induced elevations in scar formation, IL-1β, and cell apoptosis were reduced by BMSC transplantation to levels that were close to those of the sham group. Corresponding elevations in the expression of STAT3 and CNTF mRNA were observed in the hSCI + BMSCs group, and the levels were not significantly different from those observed in the sham group. Together, our results support that grafted BMSCs can significantly improve locomotor function in tree shrews subjected to hSCI and that this improvement is associated with the upregulation of CNTF and STAT3 signaling.
Collapse
Affiliation(s)
- Liu-Lin Xiong
- Institute of Neurological Disease and Department of Anesthesiology, Translational Neuroscience Center, West China Hospital, Sichuan UniversityChengdu, China.,Institute of Neuroscience, Animal Zoology Department, Kunming Medical UniversityKunming, China
| | - Fei Liu
- Institute of Neurological Disease and Department of Anesthesiology, Translational Neuroscience Center, West China Hospital, Sichuan UniversityChengdu, China
| | - Bing-Tuan Lu
- Institute of Neuroscience, Animal Zoology Department, Kunming Medical UniversityKunming, China
| | - Wen-Ling Zhao
- Institute of Neurological Disease and Department of Anesthesiology, Translational Neuroscience Center, West China Hospital, Sichuan UniversityChengdu, China
| | - Xiu-Juan Dong
- Key Laboratory of National Physical Fitness and Altitude Training Adaptation in Yunnan Province, Institute of Physical Education, Yunnan Normal UniversityKunming, China
| | - Jia Liu
- Institute of Neuroscience, Animal Zoology Department, Kunming Medical UniversityKunming, China
| | - Rong-Ping Zhang
- Biomedical Engineering Research Center, Kunming Medical UniversityKunming, China
| | - Piao Zhang
- Institute of Neuroscience, Animal Zoology Department, Kunming Medical UniversityKunming, China
| | - Ting-Hua Wang
- Institute of Neurological Disease and Department of Anesthesiology, Translational Neuroscience Center, West China Hospital, Sichuan UniversityChengdu, China.,Institute of Neuroscience, Animal Zoology Department, Kunming Medical UniversityKunming, China
| |
Collapse
|
13
|
Jie L, Pengcheng Q, Qiaoyan H, Linlin B, Meng Z, Fang W, Min J, Li Y, Ya Z, Qian Y, Siwang W. Dencichine ameliorates kidney injury in induced type II diabetic nephropathy via the TGF-β/Smad signalling pathway. Eur J Pharmacol 2017. [PMID: 28633927 DOI: 10.1016/j.ejphar.2017.06.024] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Diabetic nephropathy (DN), a common complication associated with both type I and type II diabetes mellitus (DM), is a major cause of chronic nephropathy and a common cause of end-stage renal diseases (ESRD) throughout the world. This study is aimed to determine whether dencichine (De) can ameliorate renal damage in high-glucose-and-fat diet combined STZ (streptozocin) induced DN in type II DM rats and to investigate the potential underlying mechanisms. Markers of metabolism, diabetes, and renal function, and levels of extracellular matrix (ECM) collagen I (Col I), collagen IV (Col IV), fibronectin (FN) and laminin (LN), and of proteins in the TGF-β/Smad pathway were analysed through RT-PCR, western blot, immunofluorescence and immunohistochemistry. The results show that De significantly alleviates metabolism disorder, improved renal function, relieved pathological alterations in the glomerulus of DN rats, decreased ECM deposition and increased the ratio of matrix metalloproteinase (MMP)-9 to tissue inhibitor of metalloproteinase (TIMP)-1 both in vivo and in vitro. Moreover, De negatively regulated TGF-β/Smad signalling pathway and increased the expression of Smad7, an endogenic inhibitory Smad located downstream of the signalling pathway. In conclusion, we provide experimental evidence indicating that the renoprotective effect of De could significantly prevent the progression of DN possibly attribute to down-regulation of the TGF-β/Smad pathway and rebalance the deposition and degradation of ECM proteins.
Collapse
Affiliation(s)
- Li Jie
- Department of Natural Medicine, Fourth Military Medical University, 710032 Xi'an, China
| | - Qiu Pengcheng
- Department of Natural Medicine, Fourth Military Medical University, 710032 Xi'an, China
| | - He Qiaoyan
- Department of Natural Medicine, Fourth Military Medical University, 710032 Xi'an, China
| | - Bi Linlin
- Department of Natural Medicine, Fourth Military Medical University, 710032 Xi'an, China
| | - Zhang Meng
- Department of Natural Medicine, Fourth Military Medical University, 710032 Xi'an, China
| | - Wang Fang
- Department of Natural Medicine, Fourth Military Medical University, 710032 Xi'an, China
| | - Jia Min
- Department of Natural Medicine, Fourth Military Medical University, 710032 Xi'an, China; Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi'an Medical University, 710021 Xi'an, China
| | - Yan Li
- Department of Natural Medicine, Fourth Military Medical University, 710032 Xi'an, China
| | - Zhang Ya
- Department of Natural Medicine, Fourth Military Medical University, 710032 Xi'an, China
| | - Yang Qian
- Department of Natural Medicine, Fourth Military Medical University, 710032 Xi'an, China
| | - Wang Siwang
- Department of Natural Medicine, Fourth Military Medical University, 710032 Xi'an, China.
| |
Collapse
|
14
|
Neural Stem Cell Transplantation Promotes Functional Recovery from Traumatic Brain Injury via Brain Derived Neurotrophic Factor-Mediated Neuroplasticity. Mol Neurobiol 2017; 55:2696-2711. [PMID: 28421542 DOI: 10.1007/s12035-017-0551-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 04/07/2017] [Indexed: 02/05/2023]
Abstract
Traumatic brain injury (TBI) induces cognitive impairments, motor and behavioral deficits. Previous evidences have suggested that neural stem cell (NSC) transplantation could facilitate functional recovery from brain insults, but their underlying mechanisms remains to be elucidated. Here, we established TBI model by an electromagnetic-controlled cortical impact device in the rats. Then, 5 μl NSCs (5.0 × 105/μl), derived from green fluorescent protein (GFP) transgenic mouse, was transplanted into the traumatic brain regions of rats at 24 h after injury. After differentiation of the NSCs was determined using immunohistochemistry, neurological severity scores (NSS) and rotarod test were conducted to detect the neurological behavior. Western blot and RT-PCR as well as ELASA were used to evaluate the expression of synaptophysin and brain-derived neurotrophic factor (BDNF). In order to elucidate the role of BDNF on the neural recovery after NSC transplantation, BDNF knockdown in NSC was performed and transplanted into the rats with TBI, and potential mechanism for BDNF knockdown in the NSC was analyzed using microassay analysis. Meanwhile, BDNF antibody blockade was conducted to further confirm the effect of BDNF on neural activity. As a result, an increasing neurological function improvement was seen in NSC transplanted rats, which was associated with the upregulation of synaptophysin and BDNF expression. Moreover, transplantation of BDNF knockdown NSCs and BDNF antibody block reduced not only the level of synaptophysin but also exacerbated neurological function deficits. Microassay analysis showed that 14 genes such as Wnt and Gsk3-β were downregulated after BDNF knockdown. The present data therefore showed that BDNF-mediated neuroplasticity underlie the mechanism of NSC transplantation for the treatment of TBI in adult rats.
Collapse
|
15
|
MicroRNA-127 targeting of mitoNEET inhibits neurite outgrowth, induces cell apoptosis and contributes to physiological dysfunction after spinal cord transection. Sci Rep 2016; 6:35205. [PMID: 27748416 PMCID: PMC5066253 DOI: 10.1038/srep35205] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 09/26/2016] [Indexed: 02/05/2023] Open
Abstract
Neuroregeneration and apoptosis are two important pathophysiologic changes after spinal cord injury (SCI), but their underlying mechanisms remain unclear. MicroRNAs (miRNAs) play a crucial role in the regulation of neuroregeneration and neuronal apoptosis, research areas that have been greatly expanded in recent years. Here, using miRNA arrays to profile miRNA transcriptomes, we demonstrated that miR-127-3p was significantly down-regulated after spinal cord transection (SCT). Then, bioinformatics analyses and experimental detection showed that miR-127-3p exhibited specific effects on the regulation of neurite outgrowth and the induction of neuronal apoptosis by regulating the expression of the mitochondrial membrane protein mitoNEET. Moreover, knockdown of MitoNEET leaded to neuronal loss and apoptosis in primary cultured spinal neurons. This study therefore revealed that miR-127-3p, which targets mitoNEET, plays a vital role in regulating neurite outgrowth and neuronal apoptosis after SCT. Thus, modificatioin of the mitoNEET expression, such as mitoNEET activition may provide a new strategy for the treatment of SCI in preclinical trials.
Collapse
|
16
|
Luo Y, Feng C, Wu J, Wu Y, Liu D, Wu J, Dai F, Zhang J. P2Y1, P2Y2, and TRPV1 Receptors Are Increased in Diarrhea-Predominant Irritable Bowel Syndrome and P2Y2 Correlates with Abdominal Pain. Dig Dis Sci 2016; 61:2878-2886. [PMID: 27250983 DOI: 10.1007/s10620-016-4211-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Accepted: 05/20/2016] [Indexed: 12/17/2022]
Abstract
BACKGROUND Previous studies indicated that P2Y1 and P2Y2 receptors, which are widely distributed in the enteric nervous system, are related to pain, while TRPV1 may contribute to visceral pain and hypersensitivity states in irritable bowel syndrome (IBS). Other studies showed that ATP activates the capsaicin-sensitive TRPV1 channel via P2Y receptors. AIM To detect the expression of P2Y1, P2Y2, and TRPV1 receptors in diarrhea-predominant IBS (IBS-D) patients and analyze any correlations with abdominal pain and to investigate interactions between P2Y receptors and the TRPV1 receptor in IBS-D patients. METHODS Rectosigmoid biopsies were collected from patients with IBS-D (n = 36) and healthy controls (n = 15). Abdominal pain was scored using a 10-cm visual analogue scale. Expression levels of P2Y1, P2Y2, and TRPV1 receptors in rectosigmoid biopsies were determined by real-time PCR and double-labeling immunofluorescence with specific antibodies. RESULTS Both mRNA and protein expression levels of P2Y1, P2Y2, and TRPV1 receptors were increased in IBS-D compared with controls. Of these receptors, P2Y2 expression correlated with the maximum pain scores (p = 0.02, r = 0.63, Spearman correlation) in IBS-D patients. However, no relationships were detected between P2Y receptors and the TRPV1 receptor. CONCLUSION In the present study, we identified an increased expression of P2Y1 and P2Y2 receptors in the rectosigmoid mucosa of IBS-D patients, and P2Y2 correlated with abdominal pain. Furthermore, we identified an increase in TRPV1 expression; however, there were no correlations found between P2Y receptors and the TRPV1 receptor.
Collapse
Affiliation(s)
- Yumei Luo
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157, Xi Wu Road, Xi'an, 710004, Shanxi, China
| | - Cheng Feng
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157, Xi Wu Road, Xi'an, 710004, Shanxi, China
| | - Jing Wu
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157, Xi Wu Road, Xi'an, 710004, Shanxi, China
| | - Yongxing Wu
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, Yanta West Road, Xi'an, 710061, Shanxi, China
| | - Dong Liu
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157, Xi Wu Road, Xi'an, 710004, Shanxi, China
| | - Jie Wu
- Department of Pathology, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157, Xi Wu Road, Xi'an, 710004, Shanxi, China
| | - Fei Dai
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157, Xi Wu Road, Xi'an, 710004, Shanxi, China
| | - Jun Zhang
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157, Xi Wu Road, Xi'an, 710004, Shanxi, China.
| |
Collapse
|
17
|
Cen P, Chen J, Hu C, Fan L, Wang J, Li L. Noninvasive in-vivo tracing and imaging of transplanted stem cells for liver regeneration. Stem Cell Res Ther 2016; 7:143. [PMID: 27664081 PMCID: PMC5035504 DOI: 10.1186/s13287-016-0396-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Terminal liver disease is a major cause of death globally. The only ultimate therapeutic approach is orthotopic liver transplant. Because of the innate defects of organ transplantation, stem cell-based therapy has emerged as an effective alternative, based on the capacity of stem cells for multilineage differentiation and their homing to injured sites. However, the disease etiology, cell type, timing of cellular graft, therapeutic dose, delivery route, and choice of endpoints have varied between studies, leading to different, even divergent, results. In-vivo cell imaging could therefore help us better understand the fate and behaviors of stem cells to optimize cell-based therapy for liver regeneration. The primary imaging techniques in preclinical or clinical studies have consisted of optical imaging, magnetic resonance imaging, radionuclide imaging, reporter gene imaging, and Y chromosome-based fluorescence in-situ hybridization imaging. More attention has been focused on developing new or modified imaging methods for longitudinal and high-efficiency tracing. Herein, we provide a descriptive overview of imaging modalities and discuss recent advances in the field of molecular imaging of intrahepatic stem cell grafts.
Collapse
Affiliation(s)
- Panpan Cen
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases; State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, School of Medicine; First Affiliated Hospital; Zhejiang University, Hangzhou, 310006, China
| | - Jiajia Chen
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases; State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, School of Medicine; First Affiliated Hospital; Zhejiang University, Hangzhou, 310006, China
| | - Chenxia Hu
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases; State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, School of Medicine; First Affiliated Hospital; Zhejiang University, Hangzhou, 310006, China
| | - Linxiao Fan
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases; State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, School of Medicine; First Affiliated Hospital; Zhejiang University, Hangzhou, 310006, China
| | - Jie Wang
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases; State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, School of Medicine; First Affiliated Hospital; Zhejiang University, Hangzhou, 310006, China
| | - Lanjuan Li
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases; State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, School of Medicine; First Affiliated Hospital; Zhejiang University, Hangzhou, 310006, China.
| |
Collapse
|
18
|
Patel D, Haque A, Gao Y, Revzin A. Using reconfigurable microfluidics to study the role of HGF in autocrine and paracrine signaling of hepatocytes. Integr Biol (Camb) 2016; 7:815-24. [PMID: 26108037 DOI: 10.1039/c5ib00105f] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Cancer, developmental biology and tissue injury present multiple examples where groups of cells residing in close proximity communicate via paracrine factors. It is nearly impossible to dissect such cellular interactions in vivo and is quite challenging in vitro. The goal of this study is to utilize a reconfigurable microfluidic device in order to study paracrine signal exchange between groups of primary hepatocytes in vitro. Previously, we demonstrated that hepatocytes residing on protein spots containing collagen and hepatocyte growth factor (HGF) spots expressed epithelial (hepatic) phenotypes and also rescued them in neighboring hepatocytes on collagen spots that did not receive direct HGF stimulus. Herein, we designed a microfluidic device with parallel fluidic channels separated by retractable (reconfigurable) walls and employed this device to investigate interactions between groups of HGF-stimulated and unstimulated hepatocytes. Using a novel reconfigurable microfluidic device, we demonstrate that cultivation of HGF-containing protein spots upregulates the production of endogenous HGF in hepatocytes and that these HGF molecules diffuse over, causing phenotype enhancement in the recipient cells. We also show that selective treatment of the recipient hepatocytes with a c-met inhibitor (SU11274) diminishes the rescue effect, as gauged by the down-regulation of albumin and HGF expression. Our study is one of the first to demonstrate paracrine signaling via HGF in primary hepatocytes. More broadly, tools and methods described here may be used to study paracrine signaling in other types of cells and will have relevance for various fields of biomedical research from cancer to immunology.
Collapse
Affiliation(s)
- Dipali Patel
- Department of Biomedical Engineering, University of California, Davis, 451 East Health Sciences St. #2619, Davis, CA, USA.
| | | | | | | |
Collapse
|
19
|
Hu D, Zhang D, Zheng S, Guo M, Lin X, Jiang Y. Association of Ulcerative Colitis with FUT2 and FUT3 Polymorphisms in Patients from Southeast China. PLoS One 2016; 11:e0146557. [PMID: 26766790 PMCID: PMC4713070 DOI: 10.1371/journal.pone.0146557] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 12/19/2015] [Indexed: 01/01/2023] Open
Abstract
OBJECTIVES Dysbiosis of intestinal microbiota has been implicated in ulcerative colitis (UC). Fucosyltransferase (FUT) 2 and FUT3 determine expression of histo-blood group antigens in the gut and may affect the intestinal microbiota. We investigated the association between FUT2 and FUT3 polymorphisms and UC in Chinese patients. METHODS We genotyped FUT2 (rs281377, rs1047781 and rs601338) and FUT3 (rs28362459, rs3745635 and rs3894326) in 485 UC patients and 580 healthy controls using SNaPshot. We also evaluated expression of Lewis a and b antigens in the sigmoid colon of 7 UC patients and 7 patients with benign colonic polyps. RESULTS The frequencies of mutant allele (A) and genotype (GA+AA) in FUT3 (rs3745635) were higher in UC patients than controls (P = 0.016, 95%CI: 1.339-1.699; P = 0.038, 95%CI: 1.330-1.742, respectively). Stratified analyses revealed that the frequencies of mutant allele (G) and genotype (TG+GG) of FUT3 (rs28362459) were significantly lower in patients with extensive colitis than those with distal colitis (P<0.001, 95%CI: 0.503-0.742; P = 0.001, 95%CI: 0.567-0.786, respectively). Similar conclusions were drawn for the mutant allele (A) and genotype (GA+AA) of FUT3 (rs3745635) in patients with extensive colitis compared to those with distal colitis (P = 0.006, 95%CI: 0.553-0.845; P = 0.011, 95%CI: 0.621-0.900, respectively). Although expression of Lewis b antigen in the sigmoid colon did not differ between UC patients and controls, Lewis a antigen expression was higher in the cryptic epithelium of both inflammatory and non-inflammatory sigmoid colon of UC patients than controls (P = 0.028). CONCLUSIONS Our findings indicated that polymorphisms in FUT3 and its intestinal expression might be associated with UC pathogenesis.
Collapse
Affiliation(s)
- Dingyuan Hu
- Department of Gastroenterology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Daguan Zhang
- Department of Gastroenterology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Shuzi Zheng
- Department of Gastroenterology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Maodong Guo
- Department of Gastroenterology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xinxin Lin
- Department of Gastroenterology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yi Jiang
- Department of Gastroenterology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
20
|
Hashemi Goradel N, Darabi M, Shamsasenjan K, Ejtehadifar M, Zahedi S. Methods of Liver Stem Cell Therapy in Rodents as Models of Human Liver Regeneration in Hepatic Failure. Adv Pharm Bull 2015; 5:293-8. [PMID: 26504749 DOI: 10.5681/apb.2015.041] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 12/07/2014] [Accepted: 12/08/2014] [Indexed: 12/31/2022] Open
Abstract
Cell therapy is a promising intervention for treating liver diseases and liver failure. Different animal models of human liver cell therapy have been developed in recent years. Rats and mice are the most commonly used liver failure models. In fact, rodent models of hepatic failure have shown significant improvement in liver function after cell infusion. With the advent of stem-cell technologies, it is now possible to re-programme adult somatic cells such as skin or hair-follicle cells from individual patients to stem-like cells and differentiate them into liver cells. Such regenerative stem cells are highly promising in the personalization of cell therapy. The present review article will summarize current approaches to liver stem cell therapy with rodent models. In addition, we discuss common cell tracking techniques and how tracking data help to direct liver cell therapy research in animal models of hepatic failure.
Collapse
Affiliation(s)
- Nasser Hashemi Goradel
- Department of Medical Biotechnology, School of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Masoud Darabi
- Liver and Gastrointestinal Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Karim Shamsasenjan
- Iran Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tabriz, Iran
| | - Mostafa Ejtehadifar
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sarah Zahedi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
21
|
Wang J, Xu L, Chen Q, Zhang Y, Hu Y, Yan L. Bone mesenchymal stem cells overexpressing FGF4 contribute to liver regeneration in an animal model of liver cirrhosis. Int J Clin Exp Med 2015; 8:12774-12782. [PMID: 26550191 PMCID: PMC4612876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 07/10/2015] [Indexed: 06/05/2023]
Abstract
It is recognized that Fibroblast Growth Factor 4 (FGF-4) could not only increase the proliferation of bone marrow mesenchymal stem cells (BMSCs), but also induce BMSCs into hepatocyte-like cells in vitro. However, the role of FGF4 played in liver regeneration in vivo is unclear. This study constructed FGF4 overexpressing BMSCs and then transplanted them into cirrhotic rats to investigate the role of FGF4 played in liver regeneration. The results showed that FGF4 promoted the location of the BMSCs only at the early stage, and more proliferating cell nuclear antigen (PCNA), epithelial cell adhesion molecule (EpCAM) and Jagged-1 positive hepatocytes were found in the cirrhotic rats. This study indicated that FGF4 transduced BMSCs contributed to liver regeneration might by the transplanted microenvironment.
Collapse
Affiliation(s)
- Jun Wang
- Department of Gasgroenterology, Institute of Surgery Research, Daping Hospital, Third Military Medical University10, Changjiang Zhilu, Daping, Chongqing 400042, China
| | - Lijuan Xu
- Department of Gastroenterology, Institute of Geriatrics, Chinese PLA General Hospital28, Fuxing Road, Beijing 100853, China
| | - Qianqian Chen
- Department of Gastroenterology, Institute of Geriatrics, Chinese PLA General Hospital28, Fuxing Road, Beijing 100853, China
| | - Yunwei Zhang
- Department of Gastroenterology, Institute of Geriatrics, Chinese PLA General Hospital28, Fuxing Road, Beijing 100853, China
| | - Yazhuo Hu
- Department of Pathology, Institute of Geriatrics, Chinese PLA General Hospital28, Fuxing Road, Beijing 100853, China
| | - Li Yan
- Department of Gastroenterology, Institute of Geriatrics, Chinese PLA General Hospital28, Fuxing Road, Beijing 100853, China
| |
Collapse
|
22
|
Yin G, Chen J, Wei S, Wang H, Chen Q, Lin Y, Hu J, Luo E. Adenoviral vector-mediated overexpression of osteoprotegerin accelerates osteointegration of titanium implants in ovariectomized rats. Gene Ther 2015; 22:636-44. [PMID: 25871826 DOI: 10.1038/gt.2015.34] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 02/27/2015] [Accepted: 03/31/2015] [Indexed: 02/05/2023]
Abstract
This study investigated the efficacy of human osteoprotegerin (hOPG) transgene to accelerate osteointegration of titanium implant in ovariectomized (OVX) rats. Bone marrow stromal cells transduced with Ad-hOPG-EGFP could sustainedly express hOPG. Osteoclast precursor RAW264.7 cells treated by the hOPG were examined by tartrate-resistant acid phosphatase (TRAP) staining and bone slice resorption assay. The results showed differentiation and function of osteoclasts were significantly suppressed by hOPG in vitro. Ad-hOPG-EGFP was locally administered to the bone defect prior to implant placement in OVX and sham rats. After 3, 7, 28 days of implantation, the femurs were harvested for molecular and histological analyses. Successful transgene expression was confirmed by western blot and cryosectioning. A significant reduction in TRAP+ numbers was detected in Ad-hOPG-EGFP group. Real-time reverse transcriptase-PCR examination revealed that hOPG transgene markedly diminished the expression of cathepsin K and receptor activator for nuclear factor-κ B ligand in vivo. The transgene hOPG modification revealed a marked increasing osteointegration and restored implant stability in OVX rats (P<0.01), compared with the control groups (Ad-EGFP or sterilized phosphate-buffered saline) 28 days after implantation. In conclusion, hOPG via direct adenovirus-mediated gene transfer could accelerate osteointegration of titanium implants in OVX rats. Osteoprotegerin gene therapy may be an effective strategy to osteointegration of implants under osteoporotic conditions.
Collapse
Affiliation(s)
- G Yin
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - J Chen
- Division of Oral Biology, Department of General Dentistry, Tufts University School of Dental Medicine, Boston, MA, USA
| | - S Wei
- Department of Oral and Maxillofacial Surgery, Laboratory of Interdisciplinary Studies, School and Hospital of Stomatology, Peking University, Beijing, China
| | - H Wang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Q Chen
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Y Lin
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - J Hu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - E Luo
- 1] State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China [2] Division of Oral Biology, Department of General Dentistry, Tufts University School of Dental Medicine, Boston, MA, USA
| |
Collapse
|
23
|
Wang M, Zhang F, Zhao X, Song Y, Zhang M. Riboflavin Concentration Analysis in Rabbit Corneas Before and After Corneal Collagen Cross-Linking Using Confocal Laser Scanning Microscopy. Asia Pac J Ophthalmol (Phila) 2014; 3:388-94. [PMID: 26107982 DOI: 10.1097/apo.0000000000000100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
PURPOSE The aim of this study was to evaluate riboflavin in rabbit corneas before and after corneal collagen cross-linking (CXL) using confocal laser scanning microscopy. DESIGN A randomized controlled experimental study. METHODS The study was divided into 3 parts. In part 1 of this study, 30 eyes from 15 rabbits were used to evaluate riboflavin in de-epithelialized corneas before standard CXL. In part 2, 12 eyes from 6 rabbits were used to compare the differences of riboflavin concentration between standard CXL and transepithelial CXL (TE-CXL). In part 3, 12 eyes from another set of 6 rabbits were used to evaluate 1-day postoperative changes of riboflavin concentration between standard CXL and TE-CXL. Riboflavin concentrations in corneas were evaluated by calculating fluorescence densities with a confocal laser scanning microscope. RESULTS In part 1, the riboflavin concentration after a 20-minute instillation was 0.036%, and did not reach the safety threshold (0.040%) for standard CXL. In part 2, the riboflavin concentration before TE-CXL was lower than 0.010%, which was significantly lower than standard CXL (P < 0.001). In part 3, corneal fluorescence decreased by approximately 100% (fluorescence quenching) 1 day after standard CXL and approximately 60% 1 day after TE-CXL. CONCLUSIONS Application of 0.010% riboflavin solution for 30 minutes is essential for standard CXL. TE-CXL is not recommended because the epithelial layers are inadequately permeable to riboflavin during and 1 day after surgery.
Collapse
Affiliation(s)
- Mengmeng Wang
- From the *Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology and Visual Sciences Key Lab, Beijing; and †Hebei Eye Hospital, Hebei Ophthalmology Key Lab, Xingtai City, Hebei Province, China
| | | | | | | | | |
Collapse
|
24
|
Wang F, Chang G, Geng X. NGF and TERT co-transfected BMSCs improve the restoration of cognitive impairment in vascular dementia rats. PLoS One 2014; 9:e98774. [PMID: 24887495 PMCID: PMC4041744 DOI: 10.1371/journal.pone.0098774] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2014] [Accepted: 05/06/2014] [Indexed: 11/25/2022] Open
Abstract
Vascular dementia (VaD) is a mental disorder caused by brain damage due to cerebrovascular disease, and incidence of VaD is rising. To date, there is no known effective cure for VaD, so effort in developing an effective treatment for VaD is of great importance. The differentiation plasticity of BMSCs, in conjunction with its weak immunogenicity, makes manipulated BMSCs an attractive strategy for disease treatment. However, BMSCs often display disabled differentiation, premature aging, and unstable proliferation, reducing their neuroprotective function. These problems may be caused by the lack of telomerase activity in BMSCs. Our results show that NGF-TERT co-transfected BMSCs have a better therapeutic effect than BMSCs lacking NGF and TERT expression, demonstrated by significant improvements in learning and memory in VaD rats. The underlying mechanism might be increased expression of NGF, TrkA and SYN in the hippocampal CA1 area, which has potential implication in advancing therapeutics for VaD.
Collapse
Affiliation(s)
- Fei Wang
- Department of Neurology, General Hospital, Tianjin Medical University, Tianjin, China,
| | - Guangming Chang
- Department of clinical laboratory, General Hospital, Tianjin Medical University, Tianjin, China
| | - Xin Geng
- Department of Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Cellular and Molecular Immunology, Tianjin, China
- Key Laboratory of Educational Ministry of China, Tianjin, China
- * E-mail:
| |
Collapse
|
25
|
Zhao Y, Chen X, Liu X, Ding Y, Gao R, Qiu Y, Wang Y, He J. Exposure of mice to benzo(a)pyrene impairs endometrial receptivity and reduces the number of implantation sites during early pregnancy. Food Chem Toxicol 2014; 69:244-51. [PMID: 24769007 DOI: 10.1016/j.fct.2014.04.021] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 04/05/2014] [Accepted: 04/11/2014] [Indexed: 01/14/2023]
Abstract
Benzo(a)pyrene (BaP) is a ubiquitous environmental pollutant. Studies have demonstrated it to be an endocrine-disrupting chemical that can cause adverse effects on the female reproductive system. However, the effect of BaP on early pregnancy has not been reported. We investigated the effect of BaP on endometrial receptivity and embryo implantation. Pregnant mice were dosed with BaP at 0.2, 2 and 20 mg/kg/day from day 1 (D1) to day 5 (D5) of gestation. Exposure to BaP impaired the morphology of the endometrium and decreased the number of implantation sites (p0.2=0.006, p2=0.167, p20=0.003). Levels of estrodiol (p<0.001, for three treatment group compare with control group) and progesterone-4 in plasma were elevated in BaP-treatment groups (p0.2<0.001, p2<0.001, p20=0.032). Expression of estrogen receptor-α was up-regulated (p0.2=0.002, p2=0.131, p20=0.024) whereas expression of the progesterone receptor was down-regulated (p0.2<0.001, p2=0.064, p20=0.021). Levels of receptivity-related genes HoxA10 (p0.2<0.001, p2=0.135, p20<0.001) and E-cadherin (p0.2=0.002, p2=0.624, p20=0.137) were changed by BaP. These results revealed that BaP can disrupt the balance of estrogen and progesterone, influence expression of their receptors and downstream related genes, lead to changes in endometrium receptivity, and reduce of the number of implantation sites.
Collapse
Affiliation(s)
- Yi Zhao
- Laboratory of Reproductive Biology, School of Public Health, Chongqing Medical University, Box 197, No. 1 Yixueyuan Road, Yuzhong District, 400016 Chongqing, PR China
| | - Xuemei Chen
- Laboratory of Reproductive Biology, School of Public Health, Chongqing Medical University, Box 197, No. 1 Yixueyuan Road, Yuzhong District, 400016 Chongqing, PR China
| | - Xueqing Liu
- Laboratory of Reproductive Biology, School of Public Health, Chongqing Medical University, Box 197, No. 1 Yixueyuan Road, Yuzhong District, 400016 Chongqing, PR China
| | - Yubin Ding
- Laboratory of Reproductive Biology, School of Public Health, Chongqing Medical University, Box 197, No. 1 Yixueyuan Road, Yuzhong District, 400016 Chongqing, PR China
| | - Rufei Gao
- Laboratory of Reproductive Biology, School of Public Health, Chongqing Medical University, Box 197, No. 1 Yixueyuan Road, Yuzhong District, 400016 Chongqing, PR China
| | - Yiwen Qiu
- Laboratory of Reproductive Biology, School of Public Health, Chongqing Medical University, Box 197, No. 1 Yixueyuan Road, Yuzhong District, 400016 Chongqing, PR China
| | - Yingxiong Wang
- Laboratory of Reproductive Biology, School of Public Health, Chongqing Medical University, Box 197, No. 1 Yixueyuan Road, Yuzhong District, 400016 Chongqing, PR China
| | - Junlin He
- Laboratory of Reproductive Biology, School of Public Health, Chongqing Medical University, Box 197, No. 1 Yixueyuan Road, Yuzhong District, 400016 Chongqing, PR China.
| |
Collapse
|
26
|
Effects of Chinese Medicine Tong xinluo on Diabetic Nephropathy via Inhibiting TGF- β 1-Induced Epithelial-to-Mesenchymal Transition. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 2014:123497. [PMID: 24864150 PMCID: PMC4016864 DOI: 10.1155/2014/123497] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 03/18/2014] [Accepted: 03/22/2014] [Indexed: 12/31/2022]
Abstract
Diabetic nephropathy (DN) is a major cause of chronic kidney failure and characterized by interstitial and glomeruli fibrosis. Epithelial-to-mesenchymal transition (EMT) plays an important role in the pathogenesis of DN. Tong xinluo (TXL), a Chinese herbal compound, has been used in China with established therapeutic efficacy in patients with DN. To investigate the molecular mechanism of TXL improving DN, KK-Ay mice were selected as models for the evaluation of pathogenesis and treatment in DN. In vitro, TGF-β1 was used to induce EMT. Western blot (WB), immunofluorescence staining, and real-time polymerase chain reaction (RT-PCR) were applied to detect the changes of EMT markers in vivo and in vitro, respectively. Results showed the expressions of TGF-β1 and its downstream proteins smad3/p-smad3 were greatly reduced in TXL group; meantime, TXL restored the expression of smad7. As a result, the expressions of collagen IV (Col IV) and fibronectin (FN) were significantly decreased in TXL group. In vivo, 24 h-UAER (24-hour urine albumin excretion ratio) and BUN (blood urea nitrogen) were decreased and Ccr (creatinine clearance ratio) was increased in TXL group compared with DN group. In summary, the present study demonstrates that TXL successfully inhibits TGF-β1-induced epithelial-to-mesenchymal transition in DN, which may account for the therapeutic efficacy in TXL-mediated renoprotection.
Collapse
|