1
|
Montero-Calasanz MDC, Yaramis A, Rohde M, Schumann P, Klenk HP, Meier-Kolthoff JP. Genotype-phenotype correlations within the Geodermatophilaceae. Front Microbiol 2022; 13:975365. [PMID: 36439792 PMCID: PMC9686282 DOI: 10.3389/fmicb.2022.975365] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 10/11/2022] [Indexed: 11/11/2022] Open
Abstract
The integration of genomic information into microbial systematics along with physiological and chemotaxonomic parameters provides for a reliable classification of prokaryotes. In silico analysis of chemotaxonomic traits is now being introduced to replace characteristics traditionally determined in the laboratory with the dual goal of both increasing the speed of the description of taxa and the accuracy and consistency of taxonomic reports. Genomics has already successfully been applied in the taxonomic rearrangement of Geodermatophilaceae (Actinomycetota) but in the light of new genomic data the taxonomy of the family needs to be revisited. In conjunction with the taxonomic characterisation of four strains phylogenetically located within the family, we conducted a phylogenetic analysis of the whole proteomes of the sequenced type strains and established genotype-phenotype correlations for traits related to chemotaxonomy, cell morphology and metabolism. Results indicated that the four isolates under study represent four novel species within the genus Blastococcus. Additionally, the genera Blastococcus, Geodermatophilus and Modestobacter were shown to be paraphyletic. Consequently, the new genera Trujillonella, Pleomorpha and Goekera were proposed within the Geodermatophilaceae and Blastococcus endophyticus was reclassified as Trujillonella endophytica comb. nov., Geodermatophilus daqingensis as Pleomorpha daqingensis comb. nov. and Modestobacter deserti as Goekera deserti comb. nov. Accordingly, we also proposed emended descriptions of Blastococcus aggregatus, Blastococcus jejuensis, Blastococcus saxobsidens and Blastococcus xanthilyniticus. In silico chemotaxonomic results were overall consistent with wet-lab results. Even though in silico discriminatory levels varied depending on the respective chemotaxonomic trait, this approach is promising for effectively replacing and/or complementing chemotaxonomic analyses at taxonomic ranks above the species level. Finally, interesting but previously overlooked insights regarding morphology and ecology were revealed by the presence of a repertoire of genes related to flagellum synthesis, chemotaxis, spore production and pilus assembly in all representatives of the family. A rich carbon metabolism including four different CO2 fixation pathways and a battery of enzymes able to degrade complex carbohydrates were also identified in Blastococcus genomes.
Collapse
Affiliation(s)
- Maria del Carmen Montero-Calasanz
- IFAPA Las Torres-Andalusian Institute of Agricultural and Fisheries Research and Training, Junta de Andalucía, Seville, Spain
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Adnan Yaramis
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Manfred Rohde
- Central Facility for Microscopy, HZI – Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Peter Schumann
- Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Hans-Peter Klenk
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Jan P. Meier-Kolthoff
- Department Bioinformatics and Databases, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| |
Collapse
|
2
|
Mukai T. Rational Design of Aptamer-Tagged tRNAs. Int J Mol Sci 2020; 21:ijms21207793. [PMID: 33096801 PMCID: PMC7590224 DOI: 10.3390/ijms21207793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/14/2020] [Accepted: 10/20/2020] [Indexed: 11/16/2022] Open
Abstract
Reprogramming of the genetic code system is limited by the difficulty in creating new tRNA structures. Here, I developed translationally active tRNA variants tagged with a small hairpin RNA aptamer, using Escherichia coli reporter assay systems. As the tRNA chassis for engineering, I employed amber suppressor variants of allo-tRNAs having the 9/3 composition of the 12-base pair amino-acid acceptor branch as well as a long variable arm (V-arm). Although their V-arm is a strong binding site for seryl-tRNA synthetase (SerRS), insertion of a bulge nucleotide in the V-arm stem region prevented allo-tRNA molecules from being charged by SerRS with serine. The SerRS-rejecting allo-tRNA chassis were engineered to have another amino-acid identity of either alanine, tyrosine, or histidine. The tip of the V-arms was replaced with diverse hairpin RNA aptamers, which were recognized by their cognate proteins expressed in E. coli. A high-affinity interaction led to the sequestration of allo-tRNA molecules, while a moderate-affinity aptamer moiety recruited histidyl-tRNA synthetase variants fused with the cognate protein domain. The new design principle for tRNA-aptamer fusions will enhance radical and dynamic manipulation of the genetic code.
Collapse
Affiliation(s)
- Takahito Mukai
- Department of Life Science, College of Science, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima-ku, Tokyo 171-8501, Japan
| |
Collapse
|
3
|
Englert M, Vargas-Rodriguez O, Reynolds NM, Wang YS, Söll D, Umehara T. A genomically modified Escherichia coli strain carrying an orthogonal E. coli histidyl-tRNA synthetase•tRNA His pair. Biochim Biophys Acta Gen Subj 2017; 1861:3009-3015. [PMID: 28288813 DOI: 10.1016/j.bbagen.2017.03.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 03/01/2017] [Indexed: 01/23/2023]
Abstract
BACKGROUND Development of new aminoacyl-tRNA synthetase (aaRS)•tRNA pairs is central for incorporation of novel non-canonical amino acids (ncAAs) into proteins via genetic code expansion (GCE). The Escherichia coli and Caulobacter crescentus histidyl-tRNA synthetases (HisRS) evolved divergent mechanisms of tRNAHis recognition that prevent their cross-reactivity. Although the E. coli HisRS•tRNAHis pair is a good candidate for GCE, its use in C. crescentus is limited by the lack of established genetic selection methods and by the low transformation efficiency of C. crescentus. METHODS E. coli was genetically engineered to use a C. crescentus HisRS•tRNAHis pair. Super-folder green fluorescent protein (sfGFP) and chloramphenicol acetyltransferase (CAT) were used as reporters for read-through assays. A library of 313 ncAAs coupled with the sfGFP reporter system was employed to investigate the specificity of E. coli HisRS in vivo. RESULTS A genomically modified E. coli strain (named MEOV1) was created. MEVO1 requires an active C. crescentus HisRS•tRNAHis pair for growth, and displays a similar doubling time as the parental E. coli strain. sfGFP- and CAT-based assays showed that the E. coli HisRS•tRNAHis pair is orthogonal in MEOV1 cells. A mutation in the anticodon loop of E. coli tRNAHisCUA elevated its suppression efficiency by 2-fold. CONCLUSIONS The C. crescentus HisRS•tRNAHis pair functionally complements an E. coli ΔhisS strain. The E. coli HisRS•tRNAHis is orthogonal in MEOV1 cells. E. coli tRNAHisCUA is an efficient amber suppressor in MEOV1. GENERAL SIGNIFICANCE We developed a platform that allows protein engineering of E. coli HisRS that should facilitate GCE in E. coli. This article is part of a Special Issue entitled "Biochemistry of Synthetic Biology - Recent Developments" Guest Editor: Dr. Ilka Heinemann and Dr. Patrick O'Donoghue.
Collapse
Affiliation(s)
- Markus Englert
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Oscar Vargas-Rodriguez
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Noah M Reynolds
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Yane-Shih Wang
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Dieter Söll
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA; Department of Chemistry, Yale University, New Haven, CT 06520, USA.
| | - Takuya Umehara
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA; Department of Biological Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan.
| |
Collapse
|
4
|
Webster GR, Teh AYH, Ma JKC. Synthetic gene design-The rationale for codon optimization and implications for molecular pharming in plants. Biotechnol Bioeng 2016; 114:492-502. [PMID: 27618314 DOI: 10.1002/bit.26183] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 08/10/2016] [Accepted: 09/05/2016] [Indexed: 12/14/2022]
Abstract
Degeneracy in the genetic code allows multiple codon sequences to encode the same protein. Codon usage bias in genes is the term given to the preferred use of particular synonymous codons. Synonymous codon substitutions had been regarded as "silent" as the primary structure of the protein was not affected; however, it is now accepted that synonymous substitutions can have a significant effect on heterologous protein expression. Codon optimization, the process of altering codons within the gene sequence to improve recombinant protein expression, has become widely practised. Multiple inter-linked factors affecting protein expression need to be taken into consideration when optimizing a gene sequence. Over the years, various computer programmes have been developed to aid in the gene sequence optimization process. However, as the rulebook for altering codon usage to affect protein expression is still not completely understood, it is difficult to predict which strategy, if any, will design the "optimal" gene sequence. In this review, codon usage bias and factors affecting codon selection will be discussed and the evidence for codon optimization impact will be reviewed for recombinant protein expression using plants as a case study. These developments will be relevant to all recombinant expression systems; however, molecular pharming in plants is an area which has consistently encountered difficulties with low levels of recombinant protein expression, and should benefit from an evidence based rational approach to synthetic gene design. Biotechnol. Bioeng. 2017;114: 492-502. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Gina R Webster
- Molecular Immunology Unit, Institute for Infection and Immunity, St. George's University of London, SW17 0RE, London, UK
| | - Audrey Y-H Teh
- Molecular Immunology Unit, Institute for Infection and Immunity, St. George's University of London, SW17 0RE, London, UK
| | - Julian K-C Ma
- Molecular Immunology Unit, Institute for Infection and Immunity, St. George's University of London, SW17 0RE, London, UK
| |
Collapse
|
5
|
Lajoie MJ, Söll D, Church GM. Overcoming Challenges in Engineering the Genetic Code. J Mol Biol 2016; 428:1004-21. [PMID: 26348789 PMCID: PMC4779434 DOI: 10.1016/j.jmb.2015.09.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 08/19/2015] [Accepted: 09/01/2015] [Indexed: 11/24/2022]
Abstract
Withstanding 3.5 billion years of genetic drift, the canonical genetic code remains such a fundamental foundation for the complexity of life that it is highly conserved across all three phylogenetic domains. Genome engineering technologies are now making it possible to rationally change the genetic code, offering resistance to viruses, genetic isolation from horizontal gene transfer, and prevention of environmental escape by genetically modified organisms. We discuss the biochemical, genetic, and technological challenges that must be overcome in order to engineer the genetic code.
Collapse
Affiliation(s)
- M J Lajoie
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Program in Chemical Biology, Harvard University, Cambridge, MA 02138, USA.
| | - D Söll
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114, USA
| | - G M Church
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| |
Collapse
|
6
|
Hong SH, Kwon YC, Martin RW, Des Soye BJ, de Paz AM, Swonger KN, Ntai I, Kelleher NL, Jewett MC. Improving cell-free protein synthesis through genome engineering of Escherichia coli lacking release factor 1. Chembiochem 2015; 16:844-53. [PMID: 25737329 DOI: 10.1002/cbic.201402708] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Indexed: 12/12/2022]
Abstract
Site-specific incorporation of non-standard amino acids (NSAAs) into proteins opens the way to novel biological insights and applications in biotechnology. Here, we describe the development of a high yielding cell-free protein synthesis (CFPS) platform for NSAA incorporation from crude extracts of genomically recoded Escherichia coli lacking release factor 1. We used genome engineering to construct synthetic organisms that, upon cell lysis, lead to improved extract performance. We targeted five potential negative effectors to be disabled: the nuclease genes rna, rnb, csdA, mazF, and endA. Using our most productive extract from strain MCJ.559 (csdA(-) endA(-)), we synthesized 550±40 μg mL(-1) of modified superfolder green fluorescent protein containing p-acetyl-L-phenylalanine. This yield was increased to ∼1300 μg mL(-1) when using a semicontinuous method. Our work has implications for using whole genome editing for CFPS strain development, expanding the chemistry of biological systems, and cell-free synthetic biology.
Collapse
Affiliation(s)
- Seok Hoon Hong
- Department of Chemical and Biological Engineering, Chemistry of Life Processes Institute, Northwestern University, 2145 Sheridan Road, Tech E-136, Evanston, IL 60208 (USA)
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Hong SH, Kwon YC, Jewett MC. Non-standard amino acid incorporation into proteins using Escherichia coli cell-free protein synthesis. Front Chem 2014; 2:34. [PMID: 24959531 PMCID: PMC4050362 DOI: 10.3389/fchem.2014.00034] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Accepted: 05/19/2014] [Indexed: 12/20/2022] Open
Abstract
Incorporating non-standard amino acids (NSAAs) into proteins enables new chemical properties, new structures, and new functions. In recent years, improvements in cell-free protein synthesis (CFPS) systems have opened the way to accurate and efficient incorporation of NSAAs into proteins. The driving force behind this development has been three-fold. First, a technical renaissance has enabled high-yielding (>1 g/L) and long-lasting (>10 h in batch operation) CFPS in systems derived from Escherichia coli. Second, the efficiency of orthogonal translation systems (OTSs) has improved. Third, the open nature of the CFPS platform has brought about an unprecedented level of control and freedom of design. Here, we review recent developments in CFPS platforms designed to precisely incorporate NSAAs. In the coming years, we anticipate that CFPS systems will impact efforts to elucidate structure/function relationships of proteins and to make biomaterials and sequence-defined biopolymers for medical and industrial applications.
Collapse
Affiliation(s)
- Seok Hoon Hong
- Chemical and Biological Engineering, Northwestern University Evanston, IL, USA ; Chemistry of Life Processes Institute, Northwestern University Evanston, IL, USA
| | - Yong-Chan Kwon
- Chemical and Biological Engineering, Northwestern University Evanston, IL, USA ; Chemistry of Life Processes Institute, Northwestern University Evanston, IL, USA
| | - Michael C Jewett
- Chemical and Biological Engineering, Northwestern University Evanston, IL, USA ; Chemistry of Life Processes Institute, Northwestern University Evanston, IL, USA ; Robert H. Lurie Comprehensive Cancer Center, Northwestern University Chicago, IL, USA ; Institute of Bionanotechnology in Medicine, Northwestern University Chicago, IL, USA
| |
Collapse
|