1
|
Shil RK, Mohammed NBB, Dimitroff CJ. Galectin-9 - ligand axis: an emerging therapeutic target for multiple myeloma. Front Immunol 2024; 15:1469794. [PMID: 39386209 PMCID: PMC11461229 DOI: 10.3389/fimmu.2024.1469794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 09/09/2024] [Indexed: 10/12/2024] Open
Abstract
Galectin-9 (Gal-9) is a tandem-repeat galectin with diverse roles in immune homeostasis, inflammation, malignancy, and autoimmune diseases. In cancer, Gal-9 displays variable expression patterns across different tumor types. Its interactions with multiple binding partners, both intracellularly and extracellularly, influence key cellular processes, including immune cell modulation and tumor microenvironment dynamics. Notably, Gal-9 binding to cell-specific glycoconjugate ligands has been implicated in both promoting and suppressing tumor progression. Here, we provide insights into Gal-9 and its involvement in immune homeostasis and cancer biology with an emphasis on multiple myeloma (MM) pathophysiology, highlighting its complex and context-dependent dual functions as a pro- and anti-tumorigenic molecule and its potential implications for therapy in MM patients.
Collapse
Affiliation(s)
- Rajib K. Shil
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States
| | - Norhan B. B. Mohammed
- The Ronald O. Perelman Department of Dermatology, NYU Grossman School of Medicine, New York, NY, United States
- Department of Medical Biochemistry, Faculty of Medicine, South Valley University, Qena, Egypt
| | - Charles J. Dimitroff
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States
| |
Collapse
|
2
|
Torres-Valdetano Á, Vallejo-Ruiz V, Milflores-Flores L, Martínez-Morales P. Role of PIGM and PIGX in glycosylphosphatidylinositol biosynthesis and human health (Review). Biomed Rep 2024; 20:57. [PMID: 38414627 PMCID: PMC10895387 DOI: 10.3892/br.2024.1746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 01/09/2024] [Indexed: 02/29/2024] Open
Abstract
Glycosylphosphatidylinositol-glycan (GPI) is an anchor to specific cell surface proteins known as GPI-anchored proteins (APs) that are localized in lipid rafts and may act as cell co-receptors, enzymes and adhesion molecules. The present review investigated the significance of GPI biosynthesis class phosphatidylinositol-glycan (PIG)M and PIGX in GPI synthesis and their implications in human health conditions. PIGM encodes GPI-mannosyltransferase I (MT-I) enzyme that adds the first mannose to the GPI core structure. PIGX encodes the regulatory subunit of GPI-MT-I. The present review summarizes characteristics of the coding sequences of PIGM and PIGX, and their expression in humans, as well as the relevance of GPI-MT-I and the regulatory subunit in maintaining the presence of GPI-APs on the cell surface and their secretion. In addition, the association of PIGM mutations with paroxysmal nocturnal hemoglobinuria and certain types of GPI-deficiency disease and the altered expression of PIGM and PIGX in cancer were also reviewed. In addition, their interaction with other proteins was described, suggesting a complex role in cell biology. PIGM and PIGX are critical genes for GPI synthesis. Understanding gene and protein regulation may provide valuable insights into the role of GPI-APs in cellular processes.
Collapse
Affiliation(s)
- Ángeles Torres-Valdetano
- Faculty of Biological Science, Building BIO 1 University City, Autonomous University of Puebla, Puebla 72570, Mexico
| | - Verónica Vallejo-Ruiz
- Mexican Social Security Institute, East Biomedical Research Center, Puebla 74360, Mexico
| | - Lorena Milflores-Flores
- Faculty of Biological Science, Building BIO 1 University City, Autonomous University of Puebla, Puebla 72570, Mexico
| | - Patricia Martínez-Morales
- National Council of Humanities, Sciences and Technologies, East Biomedical Research Center, Puebla 74360, Mexico
| |
Collapse
|
3
|
De Masi R, Orlando S. GANAB and N-Glycans Substrates Are Relevant in Human Physiology, Polycystic Pathology and Multiple Sclerosis: A Review. Int J Mol Sci 2022; 23:7373. [PMID: 35806376 PMCID: PMC9266668 DOI: 10.3390/ijms23137373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/22/2022] [Accepted: 06/28/2022] [Indexed: 11/29/2022] Open
Abstract
Glycans are one of the four fundamental macromolecular components of living matter, and they are highly regulated in the cell. Their functions are metabolic, structural and modulatory. In particular, ER resident N-glycans participate with the Glc3Man9GlcNAc2 highly conserved sequence, in protein folding process, where the physiological balance between glycosylation/deglycosylation on the innermost glucose residue takes place, according GANAB/UGGT concentration ratio. However, under abnormal conditions, the cell adapts to the glucose availability by adopting an aerobic or anaerobic regimen of glycolysis, or to external stimuli through internal or external recognition patterns, so it responds to pathogenic noxa with unfolded protein response (UPR). UPR can affect Multiple Sclerosis (MS) and several neurological and metabolic diseases via the BiP stress sensor, resulting in ATF6, PERK and IRE1 activation. Furthermore, the abnormal GANAB expression has been observed in MS, systemic lupus erythematous, male germinal epithelium and predisposed highly replicating cells of the kidney tubules and bile ducts. The latter is the case of Polycystic Liver Disease (PCLD) and Polycystic Kidney Disease (PCKD), where genetically induced GANAB loss affects polycystin-1 (PC1) and polycystin-2 (PC2), resulting in altered protein quality control and cyst formation phenomenon. Our topics resume the role of glycans in cell physiology, highlighting the N-glycans one, as a substrate of GANAB, which is an emerging key molecule in MS and other human pathologies.
Collapse
Affiliation(s)
- Roberto De Masi
- Complex Operative Unit of Neurology, “F. Ferrari” Hospital, Casarano, 73042 Lecce, Italy;
- Laboratory of Neuroproteomics, Multiple Sclerosis Centre, “F. Ferrari” Hospital, Casarano, 73042 Lecce, Italy
| | - Stefania Orlando
- Laboratory of Neuroproteomics, Multiple Sclerosis Centre, “F. Ferrari” Hospital, Casarano, 73042 Lecce, Italy
| |
Collapse
|
4
|
Resistance to cisplatin in human lung adenocarcinoma cells: effects on the glycophenotype and epithelial to mesenchymal transition markers. Glycoconj J 2022; 39:247-259. [DOI: 10.1007/s10719-022-10042-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 12/21/2021] [Accepted: 01/18/2022] [Indexed: 12/15/2022]
|
5
|
Abstract
Glycobiology is a glycan-based field of study that focuses on the structure, function, and biology of carbohydrates, and glycomics is a sub-study of the field of glycobiology that aims to define structure/function of glycans in living organisms. With the popularity of the glycobiology and glycomics, application of computational modeling expanded in the scientific area of glycobiology over the last decades. The recent availability of progressive Wet-Lab methods in the field of glycobiology and glycomics is promising for the impact of systems biology on the research area of the glycome, an emerging field that is termed “systems glycobiology.” This chapter will summarize the up-to-date leading edge in the use of bioinformatics tools in the field of glycobiology. The chapter provides basic knowledge both for glycobiologists interested in the application of bioinformatics tools and scientists of computational biology interested in studying the glycome.
Collapse
|
6
|
Mitochondrial Functions, Energy Metabolism and Protein Glycosylation are Interconnected Processes Mediating Resistance to Bortezomib in Multiple Myeloma Cells. Biomolecules 2020; 10:biom10050696. [PMID: 32365811 PMCID: PMC7277183 DOI: 10.3390/biom10050696] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 03/31/2020] [Accepted: 04/28/2020] [Indexed: 12/18/2022] Open
Abstract
The proteasome inhibitor bortezomib (BTZ) has emerged as an effective drug for the treatment of multiple myeloma even though many patients relapse from BTZ therapy. The present study investigated the metabolic pathways underlying the acquisition of bortezomib resistance in multiple myeloma. We used two different clones of multiple myeloma cell lines exhibiting different sensitivities to BTZ (U266 and U266-R) and compared them in terms of metabolic profile, mitochondrial fitness and redox balance homeostasis capacity. Our results showed that the BTZ-resistant clone (U266-R) presented increased glycosylated UDP-derivatives when compared to BTZ-sensitive cells (U266), thus also suggesting higher activities of the hexosamine biosynthetic pathway (HBP), regulating not only protein O- and N-glycosylation but also mitochondrial functions. Notably, U266-R displayed increased mitochondrial biogenesis and mitochondrial dynamics associated with stronger antioxidant defenses. Furthermore, U266-R maintained a significantly higher concentration of substrates for protein glycosylation when compared to U266, particularly for UDP-GlcNac, thus further suggesting the importance of glycosylation in the BTZ pharmacological response. Moreover, BTZ-treated U266-R showed significantly higher ATP/ADP ratios and levels of ECP and also exhibited increased mitochondrial fitness and antioxidant response. In conclusions, our findings suggest that the HBP may play a major role in mitochondrial fitness, driving BTZ resistance in multiple myeloma and thus representing a possible target for new drug development for BTZ-resistant patients.
Collapse
|
7
|
Kunej T. Rise of Systems Glycobiology and Personalized Glycomedicine: Why and How to Integrate Glycomics with Multiomics Science? OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2019; 23:615-622. [PMID: 31651212 DOI: 10.1089/omi.2019.0149] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Glycomics is a rapidly emerging subspecialty of system sciences that evaluates the structures and functions of glycans in biological systems. Moreover, glycomics informs allied scholarships such as systems glycobiology and personalized glycomedicine that collectively aim to explain the role of glycans in person-to-person and between-population variations in disease susceptibility and response to health interventions such as drugs, nutrition, and vaccines. For glycomics to make greater, systems-scale, contributions to biology and medical research, it is facing a new developmental challenge: transition from single omics to multiomics integrative technology platforms. A comprehensive map of all possible connections between glycomics and other omics types has not yet been developed. Glycomics aims to discover a complex interplay of molecular interactions; however, little is known about the regulatory networks controlling these complex processes. In addition, the glycomics knowledgebase is presently scattered across various publications and databases, and therefore does not enable a holistic or systems view of this study field. Therefore, researchers are not always aware, for example, that a given analyzed genetic locus is linked with glycans, and that there are also glycomics determinants of complex phenotypes in health and biology. This review presents several published examples of glycomics science in association with other omics levels, such as genomics, transcriptomics, proteomics, metabolomics, epigenomics, ncRNomics, lipidomics, and interactomics. I also highlight the salient knowledge gaps and suggest future research directions. Understanding the interconnections of glycomics with other omics technologies will facilitate multiomics science and knowledge integration, enhance development of systems glycobiology and personalized glycomedicine.
Collapse
Affiliation(s)
- Tanja Kunej
- University of Ljubljana, Biotechnical Faculty, Department of Animal Science, Domzale, Slovenia
| |
Collapse
|
8
|
Role of Galectins in Multiple Myeloma. Int J Mol Sci 2017; 18:ijms18122740. [PMID: 29258207 PMCID: PMC5751341 DOI: 10.3390/ijms18122740] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 12/11/2017] [Accepted: 12/12/2017] [Indexed: 12/16/2022] Open
Abstract
Galectins are a family of lectins that bind β-galactose-containing glycoconjugates and are characterized by carbohydrate-recognition domains (CRDs). Galectins exploit several biological functions, including angiogenesis, regulation of immune cell activities and cell adhesion, in both physiological and pathological processes, as tumor progression. Multiple myeloma (MM) is a plasma cell (PC) malignancy characterized by the tight adhesion between tumoral PCs and bone marrow (BM) microenvironment, leading to the increase of PC survival and drug resistance, MM-induced neo-angiogenesis, immunosuppression and osteolytic bone lesions. In this review, we explore the expression profiles and the roles of galectin-1, galectin-3, galectin-8 and galectin-9 in the pathophysiology of MM. We focus on the role of these lectins in the interplay between MM and BM microenvironment cells showing their involvement in MM progression mainly through the regulation of PC survival and MM-induced angiogenesis and osteoclastogenesis. The translational impact of these pre-clinical pieces of evidence is supported by recent data that indicate galectins could be new attractive targets to block MM cell growth in vivo and by the evidence that the expression levels of LGALS1 and LGALS8, genes encoding for galectin-1 and galectin-8 respectively, correlate to MM patients’ survival.
Collapse
|
9
|
Mittermayr S, Lê GN, Clarke C, Millán Martín S, Larkin AM, O’Gorman P, Bones J. Polyclonal Immunoglobulin G N-Glycosylation in the Pathogenesis of Plasma Cell Disorders. J Proteome Res 2016; 16:748-762. [DOI: 10.1021/acs.jproteome.6b00768] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Stefan Mittermayr
- NIBRT−The
National Institute for Bioprocessing Research and Training, Foster Avenue, Mount Merrion, Blackrock Co., Dublin A94 X099, Ireland
| | - Giao N. Lê
- NIBRT−The
National Institute for Bioprocessing Research and Training, Foster Avenue, Mount Merrion, Blackrock Co., Dublin A94 X099, Ireland
- Department
of Haematology, Mater Misericordiae University Hospital, Dublin D07 R2WY, Ireland
- National
Institute for Cellular Biotechnology, Dublin City University, Dublin D09 NR58, Ireland
| | - Colin Clarke
- NIBRT−The
National Institute for Bioprocessing Research and Training, Foster Avenue, Mount Merrion, Blackrock Co., Dublin A94 X099, Ireland
| | - Silvia Millán Martín
- NIBRT−The
National Institute for Bioprocessing Research and Training, Foster Avenue, Mount Merrion, Blackrock Co., Dublin A94 X099, Ireland
| | - Anne-Marie Larkin
- National
Institute for Cellular Biotechnology, Dublin City University, Dublin D09 NR58, Ireland
| | - Peter O’Gorman
- Department
of Haematology, Mater Misericordiae University Hospital, Dublin D07 R2WY, Ireland
| | - Jonathan Bones
- NIBRT−The
National Institute for Bioprocessing Research and Training, Foster Avenue, Mount Merrion, Blackrock Co., Dublin A94 X099, Ireland
| |
Collapse
|
10
|
Friedel M, André S, Goldschmidt H, Gabius HJ, Schwartz-Albiez R. Galectin-8 enhances adhesion of multiple myeloma cells to vascular endothelium and is an adverse prognostic factor. Glycobiology 2016; 26:1048-1058. [PMID: 27287437 DOI: 10.1093/glycob/cww066] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 05/24/2016] [Accepted: 05/29/2016] [Indexed: 11/13/2022] Open
Abstract
Multiple myeloma is characterized by abnormal infiltration of malignant plasma cells into bone marrow. Testing the hypothesis that bivalent galectin-8 (Gal-8) may influence homing of myeloma cells to vascular endothelium as a key prerequisite for infiltration, we analyzed the two Gal-8 splice variants (Gal-8S, Gal-8L). They differ in the length of their linker peptide connecting the two lectin domains. Both Gal-8 isoforms bind to cells of the myeloma lines Gal-8+ MOLP-8 and Gal-8- LP-1 in a glycan-inhibitable manner. Both Gal-8 isoforms led to enhanced adhesion of myeloma cells to vascular endothelium under dynamic shear stress conditions, Gal-8L (by more than 40-fold) even stronger than Gal-8S. Additional treatment of endothelial cells with tumour necrosis factor prior to the dynamic shear stress assay entailed an almost 100-fold enhanced adhesion of myeloma cells without addition of Gal-8 variants and a further 1.5-1.7-fold enhancement by addition of Gal-8 variants. We also found that elevated expression of Gal-8 in native multiple myeloma cells is an adverse prognostic factor for overall and event-free survival using patients' gene expression profile data of the total therapy 2 and 3 myeloma studies. Also, elevated concentrations of Gal-8 were detected (45%, 19/42 patients) in sera of multiple myeloma patients compared to those of healthy, age-matched donors. Both experimental and clinical data strongly point to the significance of Gal-8 for multiple myeloma development.
Collapse
Affiliation(s)
- Myriam Friedel
- Clinical Cooperation Unit Applied Tumor Immunity, Deutsches Krebsforschungszentrum, 69120 Heidelberg, Germany
| | - Sabine André
- Institut für Physiologische Chemie, Tierärztliche Fakultät, Ludwig-Maximilians-Universität München, 80539 München, Germany
| | - Hartmut Goldschmidt
- Medizinische Klinik V, Universitätsklinikum Heidelberg und Nationales Centrum für Tumorerkrankungen Heidelberg, 69120 Heidelberg, Germany
| | - Hans-Joachim Gabius
- Institut für Physiologische Chemie, Tierärztliche Fakultät, Ludwig-Maximilians-Universität München, 80539 München, Germany
| | - Reinhard Schwartz-Albiez
- Clinical Cooperation Unit Applied Tumor Immunity, Deutsches Krebsforschungszentrum, 69120 Heidelberg, Germany
| |
Collapse
|
11
|
Safo S, Song X, Dobbin KK. Sample size determination for training cancer classifiers from microarray and RNA-seq data. Ann Appl Stat 2015. [DOI: 10.1214/15-aoas825] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
12
|
Glavey SV, Huynh D, Reagan MR, Manier S, Moschetta M, Kawano Y, Roccaro AM, Ghobrial IM, Joshi L, O'Dwyer ME. The cancer glycome: carbohydrates as mediators of metastasis. Blood Rev 2015; 29:269-79. [PMID: 25636501 DOI: 10.1016/j.blre.2015.01.003] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 01/06/2015] [Accepted: 01/16/2015] [Indexed: 12/30/2022]
Abstract
Glycosylation is a frequent post-translational modification which results in the addition of carbohydrate determinants, "glycans", to cell surface proteins and lipids. These glycan structures form the "glycome" and play an integral role in cell-cell and cell-matrix interactions through modulation of adhesion and cell trafficking. Glycosylation is increasingly recognized as a modulator of the malignant phenotype of cancer cells, where the interaction between cells and the tumor micro-environment is altered to facilitate processes such as drug resistance and metastasis. Changes in glycosylation of cell surface adhesion molecules such as selectin ligands, integrins and mucins have been implicated in the pathogenesis of several solid and hematological malignancies, often with prognostic implications. In this review we focus on the functional significance of alterations in cancer cell glycosylation, in terms of cell adhesion, trafficking and the metastatic cascade and provide insights into the prognostic and therapeutic implications of recent findings in this fast-evolving niche.
Collapse
Affiliation(s)
- Siobhan V Glavey
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Glycoscience Research Group, National University of Ireland, Galway, Ireland.
| | - Daisy Huynh
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
| | - Michaela R Reagan
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
| | - Salomon Manier
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
| | - Michele Moschetta
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
| | - Yawara Kawano
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
| | - Aldo M Roccaro
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
| | - Irene M Ghobrial
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
| | - Lokesh Joshi
- Glycoscience Research Group, National University of Ireland, Galway, Ireland.
| | - Michael E O'Dwyer
- Glycoscience Research Group, National University of Ireland, Galway, Ireland; Department of Hematology National University of Ireland, Galway and Galway University Hospital, Ireland.
| |
Collapse
|
13
|
Abstract
Glycosylation is a stepwise procedure of covalent attachment of oligosaccharide chains to proteins or lipids, and alterations in this process, especially increased sialylation, have been associated with malignant transformation and metastasis. The role of altered sialylation in multiple myeloma (MM) cell trafficking has not been previously investigated. In the present study we identified high expression of β-galactoside α-2,3-sialyltransferase, ST3GAL6, in MM cell lines and patients. This gene plays a key role in selectin ligand synthesis in humans through the generation of functional sialyl Lewis X. In MRC IX patients, high expression of this gene is associated with inferior overall survival. In this study we demonstrate that knockdown of ST3GAL6 results in a significant reduction in levels of α-2,3-linked sialic acid on the surface of MM cells with an associated significant reduction in adhesion to MM bone marrow stromal cells and fibronectin along with reduced transendothelial migration in vitro. In support of our in vitro findings, we demonstrate significantly reduced homing and engraftment of ST3GAL6 knockdown MM cells to the bone marrow niche in vivo, along with decreased tumor burden and prolonged survival. This study points to the importance of altered glycosylation, particularly sialylation, in MM cell adhesion and migration.
Collapse
|