1
|
The functions and molecular mechanisms of Tribbles homolog 3 (TRIB3) implicated in the pathophysiology of cancer. Int Immunopharmacol 2023; 114:109581. [PMID: 36527874 DOI: 10.1016/j.intimp.2022.109581] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/21/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022]
Abstract
Currently, cancer ranks as the second leading cause of death worldwide, and at the same time, the burden of cancer continues to increase. The underlying molecular pathways involved in the initiation and development of cancer are the subject of considerable research worldwide. Further understanding of these pathways may lead to new cancer treatments. Growing data suggest that Tribble's homolog 3 (TRIB3) is essential in oncogenesis in many types of cancer. The mammalian tribbles family's proteins regulate various cellular and physiological functions, such as the cell cycle, stress response, signal transduction, propagation, development, differentiation, immunity, inflammatory processes, and metabolism. To exert their activities, Tribbles proteins must alter key signaling pathways, including the mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3 kinase (PI3K)/AKT pathways. Recent evidence supports that TRIB3 dysregulation has been linked to various diseases, including tumor development and chemoresistance. It has been speculated that TRIB3 may either promote or inhibit the onset and development of cancer. However, it is still unclear how TRIB3 performs this dual function in cancer. In this review, we present and discuss the most recent data on the role of TRIB3 in cancer pathophysiology and chemoresistance. Furthermore, we describe in detail the molecular mechanism TRIB3 regulates in cancer.
Collapse
|
2
|
Sayad A, Najafi S, Kashi AH, Hosseini SJ, Akrami SM, Taheri M, Ghafouri-Fard S. Circular RNAs in renal cell carcinoma: Functions in tumorigenesis and diagnostic and prognostic potentials. Pathol Res Pract 2021; 229:153720. [PMID: 34942510 DOI: 10.1016/j.prp.2021.153720] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/20/2021] [Accepted: 11/25/2021] [Indexed: 12/23/2022]
Abstract
Circular RNAs (circRNAs) are non-coding RNAs with closed ends which makes them resistant to degrading enzyme RNAse R. These RNA molecules show cell, tissue or organ specific expression. Regulatory functions have been reported for a number of circRNAs. Particularly, they have been found to affect cell cycle and control cell proliferation. CircRNAs are involved in physiological processes like natural organ development. Their dysregulation in high-throughput technologies have been shown in a growing number of diseases especially many types of cancers such as renal cell carcinoma (RCC). Differentially expressed circRNAs in RCC tissues compared to normal tissues may affect carcinogenesis process. Overexpressed circRNAs promote tumorigenic functions of RCC cell lines while down-regulated transcripts repress them. Both dysregulated circRNAs are correlated with clinicopathological features, prognosis and survival in RCC patients which along with their acceptable diagnostic values suggest them as potential biomarkers in diagnosis or prediction of prognosis of RCC patients. In this review, we have assessed tumorigenic or tumor-suppressing effects of circRNAs and also their diagnostic and prognostic potentials in RCC.
Collapse
Affiliation(s)
- Arezou Sayad
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sajad Najafi
- Student Research Committee, Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Hossein Kashi
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Jalil Hosseini
- Men's Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Mohamamd Akrami
- Department of Medical Genetics, School of Medicine Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Wang J, Li T, Ma L, Liu G, Wang G, Kang J. NDRG2 inhibition facilitates angiogenesis of hepatocellular carcinoma. Open Med (Wars) 2021; 16:742-748. [PMID: 34013046 PMCID: PMC8114951 DOI: 10.1515/med-2021-0268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 12/29/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is an angiogenesis-dependent tumor, and angiogenesis plays pivotal roles in progression and hematogenous metastasis. Upregulating NDRG2 expression could inhibit endothelial cell proliferation and tumor angiogenesis. However, the development of angiogenesis is a complicated and dynamic process, and the specific mechanisms that NDRG2 influences its progression are largely unknown. Conditioned media (CM) was collected from HCC cells. Cell viability, migration assay, tube formation, and western blot were used to evaluate the effect of NDRG2 on angiogenesis in HCC cells. ELISA assay was used to measure the level of VEGFA in CM. CM from NDRG2 knockdown cells significantly promoted HUVECs proliferation, migration, and tube formation compared with control cells. The level of VEGFA in CM was increased by NDRG2 knockdown relative to the control group. The expression of VEGFA, HIF-1α, and p-Akt was significantly increased in NDRG2 knockdown cells. CM from NDRG2 knockdown cells with VEGFA antibody failed to induce HUVEC proliferation, migration, and tube formation. YC-1 significantly inhibited the level of VEGFA in CM from NDRG2 knockdown cells. YC-1 also inhibited the expression of VEGFA and HIF-1α. Therefore, NDRG2 inhibition promoted the angiogenesis of HCC via VEGFA and may be used to be an anti-angiogenesis target.
Collapse
Affiliation(s)
- Jianlong Wang
- Minimally Invasive Surgery Department of Biliary Duct, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei province, China
| | - Tao Li
- Minimally Invasive Surgery Department of Biliary Duct, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei province, China
| | - Lifeng Ma
- Minimally Invasive Surgery Department of Biliary Duct, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei province, China
| | - Guochao Liu
- Minimally Invasive Surgery Department of Biliary Duct, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei province, China
| | - Guiying Wang
- General Surgical Department, The Third Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei province, China.,General Surgical Department, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei province, China
| | - Jiansheng Kang
- Minimally Invasive Surgery Department of Biliary Duct, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei province, China
| |
Collapse
|
4
|
Feng J, Guo Y, Li Y, Zeng J, Wang Y, Yang Y, Xie G, Feng Q. Tumor promoting effects of circRNA_001287 on renal cell carcinoma through miR-144-targeted CEP55. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:269. [PMID: 33256799 PMCID: PMC7706056 DOI: 10.1186/s13046-020-01744-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 10/20/2020] [Indexed: 12/11/2022]
Abstract
Background Renal cell carcinoma (RCC) is a common urological cancer. circular RNAs (circRNAs) is involved in the development of various types of cancers. However, the roles and underlying mechanisms of circRNAs in RCC are not fully elucidated. Herein, we aimed to examine the potential effect of circ_001287 on RCC progression. Materials and Methods Microarray-based gene expression profiling of RCC was initially employed in order to identify differentially expressed genes. Next, the expression of circ_001287 was examined, and the cell line with the highest circ_001287 expression was selected for subsequent investigation. The interaction among circ_001287, miR-144, and CEP55 was identified by conducting luciferase reporter assay, RNA-pull down, RIP, RT-qPCR and FISH. The effect of circ_001287 on proliferative, invasive and migratory capacities as well as tumorigenicity of transfected cells in mice was examined using gain- and loss-of-function experiments. Results circ_001287 and CEP55 were highly expressed while miR-144 was decreased in RCC tissues and cell lines. circ_001287 can up-regulate CEP55 by binding to miR-144, which resulted in increased proliferative, invasive and migratory capacities and tumor growth in vivo. In addition, down-regulation of miR-144 was also observed to promote these biological activities. Conclusions Overall, these results elucidate a new mechanism for circ_001287 in RCC development and provide a potential therapeutic target for RCC patients.
Collapse
Affiliation(s)
- Jiafu Feng
- Department of Clinical Laboratory, Mianyang Central Hospital, No. 12, Changjia Lane, Jingzhong Street, Fucheng District, Sichuan Province, 621000, Mianyang, PR China.
| | - Yongcan Guo
- Clinical Laboratory of Traditional, Chinese Medicine Hospital Affiliated to Southwest Medical University, 646000, Luzhou, Province, PR China
| | - Yuanmeng Li
- Department of Medical Laboratory, Affiliated Hospital of Southwest Medical University, Sichuan Province, 646000, Luzhou, PR China
| | - Jiawei Zeng
- Department of Clinical Laboratory, Mianyang Central Hospital, No. 12, Changjia Lane, Jingzhong Street, Fucheng District, Sichuan Province, 621000, Mianyang, PR China
| | - Yaodong Wang
- Department of Urology Surgery, Mianyang Central Hospital, Sichuan Province, 621000, Mianyang, PR China
| | - Yuwei Yang
- Department of Clinical Laboratory, Mianyang Central Hospital, No. 12, Changjia Lane, Jingzhong Street, Fucheng District, Sichuan Province, 621000, Mianyang, PR China
| | - Gang Xie
- Department of Pathology, Mianyang Central Hospital, Sichuan Province, 621000, Mianyang, PR China
| | - Qian Feng
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Sichuan Province, 610075, Chengdu, PR China
| |
Collapse
|
5
|
Wang M, Dai W, Ke Z, Li Y. Functional roles of E3 ubiquitin ligases in gastric cancer. Oncol Lett 2020; 20:22. [PMID: 32774495 PMCID: PMC7405480 DOI: 10.3892/ol.2020.11883] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 04/29/2020] [Indexed: 12/15/2022] Open
Abstract
To date, >650 E3 ubiquitin ligases have been described in humans, including >600 really interesting new genes (RINGs), 28 homologous to E6-associated protein C-terminus (HECTs) and several RING-in-between-RINGs. They are considered key regulators and therapeutic targets of many types of human cancers, including gastric cancer (GC). Among them, some RING and HECT E3 ligases are closely related to the proliferation, infiltration and prognosis of GC. During the past few years, abnormal expressions and functions of many E3 ligases have been identified in GC. However, the functional roles of E3 ligases in GC have not been fully elucidated. The present article focuses on the functional roles of E3 ligases related to the proteasome in GC. In this comprehensive review, the latest research progress on E3 ligases involved in GC and elaborate their structure, classification, functional roles and therapeutic value in GC was summarized. Finally, 30 E3 ligases that serve essential roles in regulating the development of GC were described. Some of these ligases may serve as oncogenes or tumor suppressors in GC, whereas the pathological mechanism of others needs further study; for example, constitutive photomorphogenic 1. In conclusion, the present review demonstrated that E3 ligases are crucial tumor regulatory factors and potential therapeutic targets in GC. Therefore, more studies should focus on the therapeutic targeting of E3 ligases in GC.
Collapse
Affiliation(s)
- Mingliang Wang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Wei Dai
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Zhangyan Ke
- Department of Geriatric Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Yongxiang Li
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| |
Collapse
|
6
|
The Warburg effect and glucose-derived cancer theranostics. Drug Discov Today 2017; 22:1637-1653. [DOI: 10.1016/j.drudis.2017.08.003] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 07/16/2017] [Accepted: 08/14/2017] [Indexed: 12/20/2022]
|
7
|
Bialesova L, Xu L, Gustafsson JÅ, Haldosen LA, Zhao C, Dahlman-Wright K. Estrogen receptor β2 induces proliferation and invasiveness of triple negative breast cancer cells: association with regulation of PHD3 and HIF-1α. Oncotarget 2017; 8:76622-76633. [PMID: 29100336 PMCID: PMC5652730 DOI: 10.18632/oncotarget.20635] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 08/17/2017] [Indexed: 12/25/2022] Open
Abstract
The two estrogen receptor (ER) subtypes, ERα and ERβ, belong to the nuclear receptor superfamily. The human ERβ variant ERβ2 is proposed to be expressed at higher levels than ERβ1 in many breast tumors and it has been suggested that ERβ2, in contrast to ERβ1, is associated with aggressive phenotypes of various cancers. However, the role of endogenous ERβ2 in breast cancer cells remains elusive. In this study, we identified that triple negative breast cancer (TNBC) cell lines express endogenous ERβ2, but not ERα or ERβ1. This allows novel studies of endogenous ERβ2 functions independent of ERα and ERβ1. We show that overexpression of ERβ2 in TNBC cells increased whereas knockdown of endogenous ERβ2 decreased cell proliferation and cell invasion. To elucidate the molecular mechanism responsible for these cellular phenotypes, we assayed ERβ2 dependent global gene expression profiles. We show that ERβ2 decreases prolyl hydroxylase 3 (PHD3) gene expression and further show that this is associated with increased hypoxia inducible factor 1α (HIF-1α) protein levels, thus providing a possible mechanism for the invasive phenotype. These results are further supported by analysing the expression of ERβ2 and PHD3 in breast tumor samples where a negative correlation between ERβ2 and PHD3 expression was observed. Together, we demonstrate that ERβ2 has an important role in enhancing cell proliferation and invasion, beyond modulation of ERβ and ERβ1 signalling which might contribute to the invasive characteristics of TNBC. The invasive phenotype could potentially be mediated through transcriptional repression of PHD3 and increased HIF-1α protein levels.
Collapse
Affiliation(s)
- Lucia Bialesova
- Department of Biosciences and Nutrition, Novum, Karolinska Institutet, Huddinge S-141 83, Sweden
| | - Li Xu
- Department of Biosciences and Nutrition, Novum, Karolinska Institutet, Huddinge S-141 83, Sweden
| | - Jan-Åke Gustafsson
- Department of Biosciences and Nutrition, Novum, Karolinska Institutet, Huddinge S-141 83, Sweden.,Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX 77204-5056, USA
| | - Lars-Arne Haldosen
- Department of Biosciences and Nutrition, Novum, Karolinska Institutet, Huddinge S-141 83, Sweden
| | - Chunyan Zhao
- Department of Biosciences and Nutrition, Novum, Karolinska Institutet, Huddinge S-141 83, Sweden
| | - Karin Dahlman-Wright
- Department of Biosciences and Nutrition, Novum, Karolinska Institutet, Huddinge S-141 83, Sweden
| |
Collapse
|
8
|
Anti-fibrotic effects of Salvia miltiorrhiza and Ligustrazine Injection on LX-2 cells involved with increased N-myc downstream-regulated gene 2 expression. Chin J Integr Med 2016; 23:923-928. [PMID: 27933510 DOI: 10.1007/s11655-016-2640-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Indexed: 01/07/2023]
Abstract
OBJECTIVE To investigate the effects of Salvia miltiorrhiza and Ligustrazine Injection (SML) on proliferation and apoptosis of human hepatic stellate cell LX-2 and the expression of N-myc downstreamregulated gene 2 (NDRG2, a tumor suppressor gene). METHODS HSCs from the LX-2 cell line were cultured in vitro. The proliferative state of different initial LX-2 cell numbers was measured using a 3-(4,5-dimethylthiazol- 2-yl)-2,5-diphenyltetrazolium bromide (MTT) colorimetric assay. LX-2 cells were plated in 96-well plates at an approximate density of 2.50×104 cells/mL and cultured for 24 h followed by the application of different concentrations of SML (1, 2, 4 and 8 μL/mL). Cell proliferation was measured using the MTT assay at 24 and 48 h. Apoptosis was detected by flow cytometry at 24 h. LX-2 cells were treated with different concentrations of SML and extracted with protein lysis buffer. The levels of NDRG2 and β-catenin were measured by Western blot. RESULTS With the exception of the 1 and 2 μL/mL concentrations, 4 and 8 μL/mL SML inhibited cell proliferation in a concentration-dependent manner at 24 and 48 h (P<0.05). With the exception of the 1 and 2 μL/mL concentrations, the NDRG2 expression level was greatly increased in a concentration-dependent manner. However, the level of β-catenin was unaffected. CONCLUSION SML inhibit LX-2 cell proliferation in a concentration-dependent manner, and the mechanism may be associated with NDRG2 over-expression.
Collapse
|
9
|
Gao L, Wu GJ, Liu B, Shen MZ, Pan TJ, Yu CG, Wang QH, Ru Y, Liu XP, Niu TS, Wang GD, Wei M, Li RX, Yao L, Wang H, Li X. Retraction. Up-regulation of pVHL along with down-regulation of HIF-1α by NDRG2 expression attenuates proliferation and invasion in renal cancer cells. PLoS One 2014; 9:e95904. [PMID: 24740414 PMCID: PMC3989322 DOI: 10.1371/journal.pone.0095904] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|