1
|
Bagher-Ebadian H, Brown SL, Ghassemi MM, Nagaraja TN, Movsas B, Ewing JR, Chetty IJ. Radiomics characterization of tissues in an animal brain tumor model imaged using dynamic contrast enhanced (DCE) MRI. Sci Rep 2023; 13:10693. [PMID: 37394559 DOI: 10.1038/s41598-023-37723-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 06/27/2023] [Indexed: 07/04/2023] Open
Abstract
Here, we investigate radiomics-based characterization of tumor vascular and microenvironmental properties in an orthotopic rat brain tumor model measured using dynamic-contrast-enhanced (DCE) MRI. Thirty-two immune compromised-RNU rats implanted with human U-251N cancer cells were imaged using DCE-MRI (7Tesla, Dual-Gradient-Echo). The aim was to perform pharmacokinetic analysis using a nested model (NM) selection technique to classify brain regions according to vasculature properties considered as the source of truth. A two-dimensional convolutional-based radiomics analysis was performed on the raw-DCE-MRI of the rat brains to generate dynamic radiomics maps. The raw-DCE-MRI and respective radiomics maps were used to build 28 unsupervised Kohonen self-organizing-maps (K-SOMs). A Silhouette-Coefficient (SC), k-fold Nested-Cross-Validation (k-fold-NCV), and feature engineering analyses were performed on the K-SOMs' feature spaces to quantify the distinction power of radiomics features compared to raw-DCE-MRI for classification of different Nested Models. Results showed that eight radiomics features outperformed respective raw-DCE-MRI in prediction of the three nested models. The average percent difference in SCs between radiomics features and raw-DCE-MRI was: 29.875% ± 12.922%, p < 0.001. This work establishes an important first step toward spatiotemporal characterization of brain regions using radiomics signatures, which is fundamental toward staging of tumors and evaluation of tumor response to different treatments.
Collapse
Affiliation(s)
- Hassan Bagher-Ebadian
- Department of Radiation Oncology, Henry Ford Health, Detroit, MI, 48202, USA.
- Department of Radiology, Michigan State University, East Lansing, MI, 48824, USA.
- Department of Osteopathic Medicine, Michigan State University, East Lansing, MI, 48824, USA.
- Department of Physics, Oakland University, Rochester, MI, 48309, USA.
| | - Stephen L Brown
- Department of Radiation Oncology, Henry Ford Health, Detroit, MI, 48202, USA
- Department of Radiology, Michigan State University, East Lansing, MI, 48824, USA
- Department of Radiation Oncology, Wayne State University, Detroit, MI, 48202, USA
| | - Mohammad M Ghassemi
- Department of Computer Science and Engineering, Michigan State University, East Lansing, MI, 48824, USA
| | - Tavarekere N Nagaraja
- Department of Radiology, Michigan State University, East Lansing, MI, 48824, USA
- Department of Neurosurgery, Henry Ford Health, Detroit, MI, 48202, USA
| | - Benjamin Movsas
- Department of Radiation Oncology, Henry Ford Health, Detroit, MI, 48202, USA
- Department of Radiology, Michigan State University, East Lansing, MI, 48824, USA
- Department of Radiation Oncology, Wayne State University, Detroit, MI, 48202, USA
| | - James R Ewing
- Department of Radiology, Michigan State University, East Lansing, MI, 48824, USA
- Department of Physics, Oakland University, Rochester, MI, 48309, USA
- Department of Neurosurgery, Henry Ford Health, Detroit, MI, 48202, USA
- Department of Neurology, Henry Ford Health, Detroit, MI, 48202, USA
- Department of Neurology, Wayne State University, Detroit, MI, 48202, USA
| | - Indrin J Chetty
- Department of Radiation Oncology, Henry Ford Health, Detroit, MI, 48202, USA
- Department of Physics, Oakland University, Rochester, MI, 48309, USA
- Department of Radiation Oncology, Wayne State University, Detroit, MI, 48202, USA
| |
Collapse
|
2
|
Bagher-Ebadian H, Brown SL, Ghassemi MM, Nagaraja TN, Valadie OG, Acharya PC, Cabral G, Divine G, Knight RA, Lee IY, Xu JH, Movsas B, Chetty IJ, Ewing JR. Dynamic contrast enhanced (DCE) MRI estimation of vascular parameters using knowledge-based adaptive models. Sci Rep 2023; 13:9672. [PMID: 37316579 PMCID: PMC10267191 DOI: 10.1038/s41598-023-36483-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 06/05/2023] [Indexed: 06/16/2023] Open
Abstract
We introduce and validate four adaptive models (AMs) to perform a physiologically based Nested-Model-Selection (NMS) estimation of such microvascular parameters as forward volumetric transfer constant, Ktrans, plasma volume fraction, vp, and extravascular, extracellular space, ve, directly from Dynamic Contrast-Enhanced (DCE) MRI raw information without the need for an Arterial-Input Function (AIF). In sixty-six immune-compromised-RNU rats implanted with human U-251 cancer cells, DCE-MRI studies estimated pharmacokinetic (PK) parameters using a group-averaged radiological AIF and an extended Patlak-based NMS paradigm. One-hundred-ninety features extracted from raw DCE-MRI information were used to construct and validate (nested-cross-validation, NCV) four AMs for estimation of model-based regions and their three PK parameters. An NMS-based a priori knowledge was used to fine-tune the AMs to improve their performance. Compared to the conventional analysis, AMs produced stable maps of vascular parameters and nested-model regions less impacted by AIF-dispersion. The performance (Correlation coefficient and Adjusted R-squared for NCV test cohorts) of the AMs were: 0.914/0.834, 0.825/0.720, 0.938/0.880, and 0.890/0.792 for predictions of nested model regions, vp, Ktrans, and ve, respectively. This study demonstrates an application of AMs that quickens and improves DCE-MRI based quantification of microvasculature properties of tumors and normal tissues relative to conventional approaches.
Collapse
Affiliation(s)
- Hassan Bagher-Ebadian
- Department of Radiation Oncology, Henry Ford Health, Detroit, MI, 48202, USA.
- Department of Radiology, Michigan State University, East Lansing, MI, 48824, USA.
- Department of Osteopathic Medicine, Michigan State University, East Lansing, MI, 48824, USA.
- Department of Physics, Oakland University, Rochester, MI, 48309, USA.
| | - Stephen L Brown
- Department of Radiation Oncology, Henry Ford Health, Detroit, MI, 48202, USA
- Department of Radiology, Michigan State University, East Lansing, MI, 48824, USA
- Department of Radiation Oncology, Wayne State University, Detroit, MI, 48202, USA
| | - Mohammad M Ghassemi
- Department of Computer Science and Engineering, Michigan State University, East Lansing, MI, 48824, USA
| | - Tavarekere N Nagaraja
- Department of Radiology, Michigan State University, East Lansing, MI, 48824, USA
- Department of Neurosurgery, Henry Ford Health, Detroit, MI, 48202, USA
| | - Olivia Grahm Valadie
- Department of Radiation Oncology, Wayne State University, Detroit, MI, 48202, USA
| | - Prabhu C Acharya
- Department of Physics, Oakland University, Rochester, MI, 48309, USA
| | - Glauber Cabral
- Department of Neurology, Henry Ford Health, Detroit, MI, 48202, USA
| | - George Divine
- Department of Public Health Sciences, Henry Ford Health, Detroit, MI, 48202, USA
- Department of Epidemiology and Biostatistics, Michigan State University, E. Lansing, MI, 48824, USA
| | - Robert A Knight
- Department of Neurology, Henry Ford Health, Detroit, MI, 48202, USA
| | - Ian Y Lee
- Department of Neurosurgery, Henry Ford Health, Detroit, MI, 48202, USA
| | - Jun H Xu
- Department of Neurosurgery, Henry Ford Health, Detroit, MI, 48202, USA
| | - Benjamin Movsas
- Department of Radiation Oncology, Henry Ford Health, Detroit, MI, 48202, USA
- Department of Radiology, Michigan State University, East Lansing, MI, 48824, USA
- Department of Radiation Oncology, Wayne State University, Detroit, MI, 48202, USA
| | - Indrin J Chetty
- Department of Radiation Oncology, Henry Ford Health, Detroit, MI, 48202, USA
- Department of Physics, Oakland University, Rochester, MI, 48309, USA
- Department of Radiation Oncology, Wayne State University, Detroit, MI, 48202, USA
| | - James R Ewing
- Department of Radiology, Michigan State University, East Lansing, MI, 48824, USA
- Department of Physics, Oakland University, Rochester, MI, 48309, USA
- Department of Neurosurgery, Henry Ford Health, Detroit, MI, 48202, USA
- Department of Neurology, Henry Ford Health, Detroit, MI, 48202, USA
- Department of Neurology, Wayne State University, Detroit, MI, 48202, USA
| |
Collapse
|
3
|
Grahm Valadie O, Brown SL, Farmer K, Nagaraja TN, Cabral G, Shadaia S, Divine GW, Knight RA, Lee IY, Dolan J, Rusu S, Joiner MC, Ewing JR. Characterization of the Response of 9L and U-251N Orthotopic Brain Tumors to 3D Conformal Radiation Therapy. Radiat Res 2023; 199:217-228. [PMID: 36656561 PMCID: PMC10174721 DOI: 10.1667/rade-22-00048.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 12/21/2022] [Indexed: 01/20/2023]
Abstract
In a study employing MRI-guided stereotactic radiotherapy (SRS) in two orthotopic rodent brain tumor models, the radiation dose yielding 50% survival (the TCD50) was sought. Syngeneic 9L cells, or human U-251N cells, were implanted stereotactically in 136 Fischer 344 rats or 98 RNU athymic rats, respectively. At approximately 7 days after implantation for 9L, and 18 days for U-251N, rats were imaged with contrast-enhanced MRI (CE-MRI) and then irradiated using a Small Animal Radiation Research Platform (SARRP) operating at 220 kV and 13 mA with an effective energy of ∼70 keV and dose rate of ∼2.5 Gy per min. Radiation doses were delivered as single fractions. Cone-beam CT images were acquired before irradiation, and tumor volumes were defined using co-registered CE-MRI images. Treatment planning using MuriPlan software defined four non-coplanar arcs with an identical isocenter, subsequently accomplished by the SARRP. Thus, the treatment workflow emulated that of current clinical practice. The study endpoint was animal survival to 200 days. The TCD50 inferred from Kaplan-Meier survival estimation was approximately 25 Gy for 9L tumors and below 20 Gy, but within the 95% confidence interval in U-251N tumors. Cox proportional-hazards modeling did not suggest an effect of sex, with the caveat of wide confidence intervals. Having identified the radiation dose at which approximately half of a group of animals was cured, the biological parameters that accompany radiation response can be examined.
Collapse
Affiliation(s)
- O. Grahm Valadie
- Department of Neurology, Henry Ford Hospital, Detroit, Michigan
- Department of Radiation Oncology, Henry Ford Hospital, Detroit, Michigan
- Department of Radiation Oncology, Wayne State University, Detroit, Michigan
| | - Stephen L. Brown
- Department of Radiation Oncology, Henry Ford Hospital, Detroit, Michigan
- Department of Radiation Oncology, Wayne State University, Detroit, Michigan
- Department of Radiology, Michigan State University College of Human Medicine, East Lansing, Michigan
| | - Katelynn Farmer
- Department of Neurology, Henry Ford Hospital, Detroit, Michigan
| | | | - Glauber Cabral
- Department of Neurology, Henry Ford Hospital, Detroit, Michigan
| | - Sheldon Shadaia
- Department of Neurology, Henry Ford Hospital, Detroit, Michigan
| | - George W. Divine
- Department of Public Health Sciences, Henry Ford Hospital, Detroit Michigan
| | - Robert A. Knight
- Department of Neurology, Henry Ford Hospital, Detroit, Michigan
- Department of Physics, Oakland University, Rochester, Michigan
| | - Ian Y. Lee
- Department of Neurosurgery, Henry Ford Hospital, Detroit Michigan
| | - Jennifer Dolan
- Department of Radiation Oncology, Henry Ford Hospital, Detroit, Michigan
| | - Sam Rusu
- Department of Neurology, Henry Ford Hospital, Detroit, Michigan
| | - Michael C. Joiner
- Department of Radiation Oncology, Wayne State University, Detroit, Michigan
| | - James R. Ewing
- Department of Neurology, Henry Ford Hospital, Detroit, Michigan
- Department of Radiology, Michigan State University College of Human Medicine, East Lansing, Michigan
- Department of Neurosurgery, Henry Ford Hospital, Detroit Michigan
- Department of Physics, Oakland University, Rochester, Michigan
| |
Collapse
|
4
|
Adaptation of laser interstitial thermal therapy for tumor ablation under MRI monitoring in a rat orthotopic model of glioblastoma. Acta Neurochir (Wien) 2021; 163:3455-3463. [PMID: 34554269 DOI: 10.1007/s00701-021-05002-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 09/01/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Laser interstitial thermal therapy (LITT) under magnetic resonance imaging (MRI) monitoring is being increasingly used in cytoreductive surgery of recurrent brain tumors and tumors located in eloquent brain areas. The objective of this study was to adapt this technique to an animal glioma model. METHODS A rat model of U251 glioblastoma (GBM) was employed. Tumor location and extent were determined by MRI and dynamic contrast-enhanced (DCE) MRI. A day after assessing tumor appearance, tumors were ablated during diffusion-weighted imaging (DWI)-MRI using a Visualase LITT system (n = 5). Brain images were obtained immediately after ablation and again at 24 h post-ablation to confirm the efficacy of tumor cytoablation. Untreated tumors served as controls (n = 3). Rats were injected with fluorescent isothiocyanate (FITC) dextran and Evans blue that circulated for 10 min after post-LITT MRI. The brains were then removed for fluorescence microscopy and histopathology evaluations using hematoxylin and eosin (H&E) and major histocompatibility complex (MHC) staining. RESULTS All rats showed a space-occupying tumor with T2 and T1 contrast-enhancement at pre-LITT imaging. The rats that underwent the LITT procedure showed a well-demarcated ablation zone with near-complete ablation of tumor tissue and with peri-ablation contrast enhancement at 24 h post-ablation. Tumor cytoreduction by ablation as seen on MRI was confirmed by H&E and MHC staining. CONCLUSIONS Data showed that tumor cytoablation using MRI-monitored LITT was possible in preclinical glioma models. Real-time MRI monitoring facilitated visualizing and controlling the area of ablation as it is otherwise performed in clinical applications.
Collapse
|
5
|
Nagaraja TN, Elmghirbi R, Brown SL, Rey JA, Schultz L, Mukherjee A, Cabral G, Panda S, Lee IY, Sarntinoranont M, Keenan KA, Knight RA, Ewing JR. Imaging acute effects of bevacizumab on tumor vascular kinetics in a preclinical orthotopic model of U251 glioma. NMR IN BIOMEDICINE 2021; 34:e4516. [PMID: 33817893 PMCID: PMC8978145 DOI: 10.1002/nbm.4516] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 03/12/2021] [Accepted: 03/13/2021] [Indexed: 05/05/2023]
Abstract
The effect of a human vascular endothelial growth factor antibody on the vasculature of human tumor grown in rat brain was studied. Using dynamic contrast-enhanced magnetic resonance imaging, the effects of intravenous bevacizumab (Avastin; 10 mg/kg) were examined before and at postadministration times of 1, 2, 4, 8, 12 and 24 h (N = 26; 4-5 per time point) in a rat model of orthotopic, U251 glioblastoma (GBM). The commonly estimated vascular parameters for an MR contrast agent were: (i) plasma distribution volume (vp ), (ii) forward volumetric transfer constant (Ktrans ) and (iii) reverse transfer constant (kep ). In addition, extracellular distribution volume (VD ) was estimated in the tumor (VD-tumor ), tumor edge (VD-edge ) and the mostly normal tumor periphery (VD-peri ), along with tumor blood flow (TBF), peri-tumoral hydraulic conductivity (K) and interstitial flow (Flux) and tumor interstitial fluid pressure (TIFP). Studied as % changes from baseline, the 2-h post-treatment time point began showing significant decreases in vp , VD-tumor, VD-edge and VD-peri , as well as K, with these changes persisting at 4 and 8 h in vp , K, VD-tumor, -edge and -peri (t-tests; p < 0.05-0.01). Decreases in Ktrans were observed at the 2- and 4-h time points (p < 0.05), while interstitial volume fraction (ve ; = Ktrans /kep ) showed a significant decrease only at the 2-h time point (p < 0.05). Sustained decreases in Flux were observed from 2 to 24 h (p < 0.01) while TBF and TIFP showed delayed responses, increases in the former at 12 and 24 h and a decrease in the latter only at 12 h. These imaging biomarkers of tumor vascular kinetics describe the short-term temporal changes in physical spaces and fluid flows in a model of GBM after Avastin administration.
Collapse
Affiliation(s)
| | - Rasha Elmghirbi
- Department of Neurology, Henry Ford Hospital, Detroit, Michigan, USA
- Department of Physics, Oakland University, Rochester, Michigan, USA
| | - Stephen L. Brown
- Department of Radiation Oncology, Henry Ford Hospital, Detroit, Michigan, USA
| | - Julian A. Rey
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, Florida, USA
| | - Lonni Schultz
- Department of Neurosurgery, Henry Ford Hospital, Detroit, Michigan, USA
| | - Abir Mukherjee
- Department of Pathology, Henry Ford Hospital, Detroit, Michigan, USA
| | - Glauber Cabral
- Department of Neurology, Henry Ford Hospital, Detroit, Michigan, USA
| | - Swayamprava Panda
- Department of Neurology, Henry Ford Hospital, Detroit, Michigan, USA
| | - Ian Y. Lee
- Department of Neurosurgery, Henry Ford Hospital, Detroit, Michigan, USA
| | - Malisa Sarntinoranont
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, Florida, USA
| | - Kelly A. Keenan
- Department of Neurosurgery, Henry Ford Hospital, Detroit, Michigan, USA
| | - Robert A. Knight
- Department of Neurology, Henry Ford Hospital, Detroit, Michigan, USA
- Department of Physics, Oakland University, Rochester, Michigan, USA
| | - James R. Ewing
- Department of Neurology, Henry Ford Hospital, Detroit, Michigan, USA
- Department of Physics, Oakland University, Rochester, Michigan, USA
- Department of Neurology, Wayne State University, Detroit, Michigan, USA
| |
Collapse
|
6
|
Elmghirbi R, Nagaraja TN, Brown SL, Keenan KA, Panda S, Cabral G, Bagher-Ebadian H, Divine GW, Lee IY, Ewing JR. Toward a noninvasive estimate of interstitial fluid pressure by dynamic contrast-enhanced MRI in a rat model of cerebral tumor. Magn Reson Med 2018. [PMID: 29524243 DOI: 10.1002/mrm.27163] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE This study demonstrates a DCE-MRI estimate of tumor interstitial fluid pressure (TIFP) and hydraulic conductivity in a rat model of glioblastoma, with validation against an invasive wick-in-needle (WIN) technique. An elevated TIFP is considered a mark of aggressiveness, and a decreased TIFP a predictor of response to therapy. METHODS The DCE-MRI studies were conducted in 36 athymic rats (controls and posttreatment animals) with implanted U251 cerebral tumors, and with TIFP measured using a WIN method. Using a model selection paradigm and a novel application of Patlak and Logan plots to DCE-MRI data, the MRI parameters required for estimating TIFP noninvasively were estimated. Two models, a fluid-mechanical model and a multivariate empirical model, were used for estimating TIFP, as verified against WIN-TIFP. RESULTS Using DCE-MRI, the mean estimated hydraulic conductivity (MRI-K) in U251 tumors was (2.3 ± 3.1) × 10-5 (mm2 /mmHg-s) in control studies. Significant positive correlations were found between WIN-TIFP and MRI-TIFP in both mechanical and empirical models. For instance, in the control group of the fluid-mechanical model, MRI-TIFP was a strong predictor of WIN-TIFP (R2 = 0.76, p < .0001). A similar result was found in the bevacizumab-treated group of the empirical model (R2 = 0.93, p = .014). CONCLUSION This research suggests that MRI dynamic studies contain enough information to noninvasively estimate TIFP in this, and possibly other, tumor models, and thus might be used to assess tumor aggressiveness and response to therapy.
Collapse
Affiliation(s)
- Rasha Elmghirbi
- Department of Physics, Oakland University, Rochester, Michigan.,Department of Neurology, Henry Ford Health System, Detroit, Michigan
| | | | - Stephen L Brown
- Department of Radiation Oncology, Henry Ford Health System, Detroit, Michigan
| | - Kelly A Keenan
- Department of Neurosurgery, Henry Ford Health System, Detroit, Michigan
| | - Swayamprava Panda
- Department of Neurology, Henry Ford Health System, Detroit, Michigan
| | - Glauber Cabral
- Department of Neurology, Henry Ford Health System, Detroit, Michigan
| | - Hassan Bagher-Ebadian
- Department of Physics, Oakland University, Rochester, Michigan.,Department of Radiation Oncology, Henry Ford Health System, Detroit, Michigan
| | - George W Divine
- Department of Public Health Sciences, Henry Ford Health System, Detroit, Michigan
| | - Ian Y Lee
- Department of Neurosurgery, Henry Ford Health System, Detroit, Michigan
| | - James R Ewing
- Department of Physics, Oakland University, Rochester, Michigan.,Department of Neurology, Henry Ford Health System, Detroit, Michigan.,Department of Neurology, Wayne State University, Detroit, Michigan
| |
Collapse
|
7
|
Reproducibility and relative stability in magnetic resonance imaging indices of tumor vascular physiology over a period of 24h in a rat 9L gliosarcoma model. Magn Reson Imaging 2017; 44:131-139. [PMID: 28887206 DOI: 10.1016/j.mri.2017.09.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 08/03/2017] [Accepted: 09/01/2017] [Indexed: 02/06/2023]
Abstract
PURPOSE The objective was to study temporal changes in tumor vascular physiological indices in a period of 24h in a 9L gliosarcoma rat model. METHODS Fischer-344 rats (N=14) were orthotopically implanted with 9L cells. At 2weeks post-implantation, they were imaged twice in a 24h interval using dynamic contrast enhanced magnetic resonance imaging (DCE-MRI). Data-driven model-selection-based analysis was used to segment tumor regions with varying vascular permeability characteristics. The region with the maximum number of estimable parameters of vascular kinetics was chosen for comparison across the two time points. It provided estimates of three parameters for an MR contrast agent (MRCA): i) plasma volume (vp), ii) forward volumetric transfer constant (Ktrans) and interstitial volume fraction (ve, ratio of Ktrans to reverse transfer constant, kep). In addition, MRCA extracellular distribution volume (VD) was estimated in the tumor and its borders, along with tumor blood flow (TBF) and peritumoral MRCA flux. Descriptors of parametric distributions were compared between the two times. Tumor extent was examined by hematoxylin and eosin (H&E) staining. Picrosirus red staining of secreted collagen was performed as an additional index for 9L cells. RESULTS Test-retest differences between population summaries for any parameter were not significant (paired t and Wilcoxon signed rank tests). Bland-Altman plots showed no apparent trends between the differences and averages of the test-retest measures for all indices. The intraclass correlation coefficients showed moderate to almost perfect reproducibility for all of the parameters, except vp. H&E staining showed tumor infiltration in parenchyma, perivascular space and white matter tracts. Collagen staining was observed along the outer edges of main tumor mass. CONCLUSION The data suggest the relative stability of these MR indices of tumor microenvironment over a 24h duration in this gliosarcoma model.
Collapse
|
8
|
Elmghirbi R, Nagaraja TN, Brown SL, Panda S, Aryal MP, Keenan KA, Bagher-Ebadian H, Cabral G, Ewing JR. Acute Temporal Changes of MRI-Tracked Tumor Vascular Parameters after Combined Anti-angiogenic and Radiation Treatments in a Rat Glioma Model: Identifying Signatures of Synergism. Radiat Res 2017; 187:79-88. [PMID: 28001908 PMCID: PMC5381817 DOI: 10.1667/rr14358.1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
In this study we used magnetic resonance imaging (MRI) biomarkers to monitor the acute temporal changes in tumor vascular physiology with the aim of identifying the vascular signatures that predict response to combined anti-angiogenic and radiation treatments. Forty-three athymic rats implanted with orthotopic U-251 glioma cells were studied for approximately 21 days after implantation. Two MRI studies were performed on each animal, pre- and post-treatment, to measure tumor vascular parameters. Two animal groups received treatment comprised of Cilengitide, an anti-angiogenic agent and radiation. The first group received a subcurative regimen of Cilengitide 1 h before irradiation, while the second group received a curative regimen of Cilengitide 8 h before irradiation. Cilengitide was given as a single dose (4 mg/kg; intraperitoneal) after the pretreatment MRI study and before receiving a 20 Gy radiation dose. After irradiation, the post-treatment MRI study was performed at selected time points: 2, 4, 8 and 12 h (n = ≥5 per time point). Significant changes in vascular parameters were observed at early time points after combined treatments in both treatment groups (1 and 8 h). The temporal changes in vascular parameters in the first group (treated 1 h before exposure) resembled a previously reported pattern associated with radiation exposure alone. Conversely, in the second group (treated 8 h before exposure), all vascular parameters showed an initial response at 2-4 h postirradiation, followed by an apparent lack of response at later time points. The signature time point to define the "synergy" of Cilengitide and radiation was 4 h postirradiation. For example, 4 h after combined treatments using a 1 h separation (which followed the subcurative regimen), tumor blood flow was significantly decreased, nearly 50% below baseline (P = 0.007), whereas 4 h after combined treatments using an 8 h separation (which followed the curative regimen), tumor blood flow was only 10% less than baseline. Comparison between the first and second groups further revealed that most other vascular parameters were maximally different 4 h after combined treatments. In conclusion, the data are consistent with the assertion that the delivery of radiation at the vascular normalization time window of Cilengitide improves radiation treatment outcome. The different vascular responses after the different delivery times of combined treatments in light of the known tumor responses under similar conditions would indicate that timing has a crucial influence on treatment outcome and long-term survival. Tracking acute changes in tumor physiology after monotherapy or combined treatments appears to aid in identifying the beneficial timing for administration, and perhaps has predictive value. Therefore, judicial timing of treatments may result in optimal treatment response.
Collapse
Affiliation(s)
- Rasha Elmghirbi
- Department of Physics, Oakland University, Rochester, Michigan
- Department of Neurology, Henry Ford Hospital, Detroit, Michigan
| | | | - Stephen L. Brown
- Department of Radiation Oncology, Henry Ford Hospital, Detroit, Michigan
| | | | - Madhava P. Aryal
- Department of Radiation Oncology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Kelly A. Keenan
- Department of Neurosurgery, Henry Ford Hospital, Detroit, Michigan
| | - Hassan Bagher-Ebadian
- Department of Physics, Oakland University, Rochester, Michigan
- Department of Radiation Oncology, Henry Ford Hospital, Detroit, Michigan
| | - Glauber Cabral
- Department of Neurology, Henry Ford Hospital, Detroit, Michigan
| | - James R. Ewing
- Department of Physics, Oakland University, Rochester, Michigan
- Department of Neurology, Henry Ford Hospital, Detroit, Michigan
- Department of Neurology, Wayne State University, Detroit, Michigan
| |
Collapse
|
9
|
Shankar A, Borin TF, Iskander A, Varma NR, Achyut BR, Jain M, Mikkelsen T, Guo AM, Chwang WB, Ewing JR, Bagher-Ebadian H, Arbab AS. Combination of vatalanib and a 20-HETE synthesis inhibitor results in decreased tumor growth in an animal model of human glioma. Onco Targets Ther 2016; 9:1205-19. [PMID: 27022280 PMCID: PMC4790509 DOI: 10.2147/ott.s93790] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Background Due to the hypervascular nature of glioblastoma (GBM), antiangiogenic treatments, such as vatalanib, have been added as an adjuvant to control angiogenesis and tumor growth. However, evidence of progressive tumor growth and resistance to antiangiogenic treatment has been observed. To counter the unwanted effect of vatalanib on GBM growth, we have added a new agent known as N-hydroxy-N′-(4-butyl-2 methylphenyl)formamidine (HET0016), which is a selective inhibitor of 20-hydroxyeicosatetraenoic acid (20-HETE) synthesis. The aims of the studies were to determine 1) whether the addition of HET0016 can attenuate the unwanted effect of vatalanib on tumor growth and 2) whether the treatment schedule would have a crucial impact on controlling GBM. Methods U251 human glioma cells (4×105) were implanted orthotopically. Two different treatment schedules were investigated. Treatment starting on day 8 (8–21 days treatment) of the tumor implantation was to mimic treatment following detection of tumor, where tumor would have hypoxic microenvironment and well-developed neovascularization. Drug treatment starting on the same day of tumor implantation (0–21 days treatment) was to mimic cases following radiation therapy or surgery. There were four different treatment groups: vehicle, vatalanib (oral treatment 50 mg/kg/d), HET0016 (intraperitoneal treatment 10 mg/kg/d), and combined (vatalanib and HET0016). Following scheduled treatments, all animals underwent magnetic resonance imaging on day 22, followed by euthanasia. Brain specimens were equally divided for immunohistochemistry and protein array analysis. Results Our results demonstrated a trend that HET0016, alone or in combination with vatalanib, is capable of controlling the tumor growth compared with that of vatalanib alone, indicating attenuation of the unwanted effect of vatalanib. When both vatalanib and HET0016 were administered together on the day of the tumor implantation (0–21 days treatment), tumor volume, tumor blood volume, permeability, extravascular and extracellular space volume, tumor cell proliferation, and cell migration were decreased compared with that of the vehicle-treated group. Conclusion HET0016 is capable of controlling tumor growth and migration, but these effects are dependent on the timing of drug administration. The addition of HET0016 to vatalanib may attenuate the unwanted effect of vatalanib.
Collapse
Affiliation(s)
- Adarsh Shankar
- Tumor Angiogenesis Laboratory, Cancer Center, Georgia Regents University, Augusta, GA, USA
| | - Thaiz F Borin
- Laboratory of Molecular Investigation of Cancer (LIMC), Faculty of Medicine of Sao Jose do Rio Preto, Sao Jose do Rio Preto, Brazil
| | - Asm Iskander
- Tumor Angiogenesis Laboratory, Cancer Center, Georgia Regents University, Augusta, GA, USA
| | - Nadimpalli Rs Varma
- Department of Radiology, Cellular and Molecular Imaging Laboratory, Detroit, MI, USA
| | - Bhagelu R Achyut
- Tumor Angiogenesis Laboratory, Cancer Center, Georgia Regents University, Augusta, GA, USA
| | - Meenu Jain
- Tumor Angiogenesis Laboratory, Cancer Center, Georgia Regents University, Augusta, GA, USA
| | - Tom Mikkelsen
- Department of Neurosurgery, Henry Ford Health System, Detroit, MI, USA
| | - Austin M Guo
- Department of Pharmacology, New York Medical College, Valhalla, NY, USA
| | - Wilson B Chwang
- Department of Radiology, Cellular and Molecular Imaging Laboratory, Detroit, MI, USA
| | - James R Ewing
- Department of Neurology and Radiology, Henry Ford Health System, Detroit, MI, USA
| | | | - Ali S Arbab
- Tumor Angiogenesis Laboratory, Cancer Center, Georgia Regents University, Augusta, GA, USA
| |
Collapse
|
10
|
Ewing JR, Nagaraja TN, Aryal MP, Keenan KA, Elmghirbi R, Bagher-Ebadian H, Panda S, Lu M, Mikkelsen T, Cabral G, Brown SL. Peritumoral tissue compression is predictive of exudate flux in a rat model of cerebral tumor: an MRI study in an embedded tumor. NMR IN BIOMEDICINE 2015; 28:1557-69. [PMID: 26423316 PMCID: PMC4656050 DOI: 10.1002/nbm.3418] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 08/18/2015] [Accepted: 08/27/2015] [Indexed: 05/22/2023]
Abstract
MRI estimates of extracellular volume and tumor exudate flux in peritumoral tissue are demonstrated in an experimental model of cerebral tumor. Peritumoral extracellular volume predicted the tumor exudate flux. Eighteen RNU athymic rats were inoculated intracerebrally with U251MG tumor cells and studied with dynamic contrast enhanced MRI (DCE-MRI) approximately 18 days post implantation. Using a model selection paradigm and a novel application of Patlak and Logan plots to DCE-MRI data, the distribution volume (i.e. tissue porosity) in the leaky rim of the tumor and that in the tissue external to the rim (the outer rim) were estimated, as was the tumor exudate flow from the inner rim of the tumor through the outer rim. Distribution volume in the outer rim was approximately half that of the inner adjacent region (p < 1 × 10(-4)). The distribution volume of the outer ring was significantly correlated (R(2) = 0.9) with tumor exudate flow from the inner rim. Thus, peritumoral extracellular volume predicted the rate of tumor exudate flux. One explanation for these data is that perfusion, i.e. the delivery of blood to the tumor, was regulated by the compression of the mostly normal tissue of the tumor rim, and that the tumor exudate flow was limited by tumor perfusion.
Collapse
Affiliation(s)
- James R. Ewing
- Dept. of Neurology, Henry Ford Hospital, Detroit, MI
- Dept. of Neurology, Wayne State University, Detroit, MI
- Dept. of Physics, Oakland University, Rochester, MI
- Corresponding Author: James R. Ewing;
| | | | - Madhava P. Aryal
- Department of Radiation Oncology, University of Michigan Medical School, Ann Arbor, MI
| | | | - Rasha Elmghirbi
- Dept. of Neurology, Henry Ford Hospital, Detroit, MI
- Dept. of Physics, Oakland University, Rochester, MI
| | - Hassan Bagher-Ebadian
- Dept. of Neurology, Henry Ford Hospital, Detroit, MI
- Dept. of Physics, Oakland University, Rochester, MI
| | | | - Mei Lu
- Dept. of Public Health Sciences, Henry Ford Hospital, Detroit, MI
| | - Tom Mikkelsen
- Dept. of Neurology, Henry Ford Hospital, Detroit, MI
- Dept. of Neurosurgery, Henry Ford Hospital, Detroit, MI
| | | | | |
Collapse
|
11
|
Brown SL, Nagaraja TN, Aryal MP, Panda S, Cabral G, Keenan KA, Elmghirbi R, Mikkelsen T, Hearshen D, Knight RA, Wen N, Kim JH, Ewing JR. MRI-Tracked Tumor Vascular Changes in the Hours after Single-Fraction Irradiation. Radiat Res 2015; 183:713-21. [PMID: 26010711 DOI: 10.1667/rr13458.1] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The purpose of this study was to characterize changes in tumor vascular parameters hours after a single radiation exposure in an orthotopic brain tumor model. U-251 human brain tumors were established intracerebrally in rat brains, and tumor blood flow, forward volume transfer constant (K(trans)) and interstitial volume fraction (v(e)) were measured using magnetic resonance imaging (MRI). Tumors were exposure to a single stereotactic radiation treatment of 20 Gy. Vascular parameters were assessed one additional time between 2 and 24 h after irradiation. After the second MRI session, brain tissue histology was examined for gross changes and apoptosis. In separate studies, cerebral blood flow was measured in nonimplanted controls before radiation exposure and 2 and 24 h after 20 Gy irradiation, and in implanted rats before radiation exposure and at 2 and 24 h after 6 Gy irradiation. Significant changes were observed in tumor-bearing rat brains in the hours after 20 Gy irradiation. Two hours after 20 Gy irradiation, tumor blood flow decreased nearly 80% and ve decreased by 30%. At 4 h, the K(trans) increased by 30% over preirradiation values. Extensive vacuolization and an increase in apoptosis were evident histologically in rats imaged 2 h after irradiation. Between 8 and 12 h after irradiation, all vascular parameters including blood flow returned to near preirradiation values. One day after irradiation, tumor blood flow was elevated 40% over preirradiation values, and other vascular parameters, including K(trans) and ve, were 20-40% below preirradiation values. In contrast, changes in vascular parameters observed in the normal brain 2 or 24 h after 20 Gy irradiation were not significantly different from preirradiation values. Also, tumor blood flow appeared to be unchanged at 2 h after 6 Gy irradiation, with a small increase observed at 24 h, unlike the tumor blood flow changes after 20 Gy irradiation. Large and significant changes in vascular parameters were observed hours after 20 Gy irradiation using noninvasive MRI techniques. It is hypothesized that cellular swelling hours after a high dose of radiation, coinciding with vacuolization, led to a decrease in tumor blood flow and v(e). Four hours after radiation exposure, K(trans) increased in concert with an increase in tumor blood flow. Vascular permeability normalized, 24 h after 20 Gy irradiation, as characterized by a decrease in K(trans). Vascular parameters did not change significantly in the normal brain after 20 Gy irradiation or in the tumor-bearing brain after 6 Gy irradiation.
Collapse
Affiliation(s)
| | | | - Madhava P Aryal
- c Neurosurgery.,f Department of Physics, Oakland University, Rochester, Michigan; and
| | | | | | | | - Rasha Elmghirbi
- c Neurosurgery.,f Department of Physics, Oakland University, Rochester, Michigan; and
| | | | | | - Robert A Knight
- c Neurosurgery.,f Department of Physics, Oakland University, Rochester, Michigan; and
| | - Ning Wen
- Departments of a Radiation Oncology
| | | | - James R Ewing
- c Neurosurgery.,f Department of Physics, Oakland University, Rochester, Michigan; and.,g Department of Neurology, Wayne State University, Detroit, Michigan
| |
Collapse
|
12
|
Chodobski A, Ghersi-Egea JF, Nicholson C, Nagaraja TN, Szmydynger-Chodobska J. The quest for a better insight into physiology of fluids and barriers of the brain: the exemplary career of Joseph D. Fenstermacher. Fluids Barriers CNS 2015; 12:1. [PMID: 25745556 PMCID: PMC4350980 DOI: 10.1186/2045-8118-12-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 12/18/2014] [Indexed: 12/27/2022] Open
Abstract
In June 2014 Dr. Joseph D. Fenstermacher celebrated his 80th birthday, which was honored by the symposium held in New London, NH, USA. This review discusses Fenstermacher's contribution to the field of fluids and barriers of the CNS. Specifically, his fundamental work on diffusion of molecules within the brain extracellular space and the research on properties of the blood-brain barrier in health and disease are described. Fenstermacher's early research on cerebrospinal fluid dynamics and the regulation of cerebral blood flow is also reviewed, followed by the discussion of his more recent work involving the use of magnetic resonance imaging.
Collapse
Affiliation(s)
- Adam Chodobski
- Department of Emergency Medicine, Neurotrauma and Brain Barriers Research Laboratory, The Warren Alpert Medical School of Brown University, Coro Center West, Room 112, 1 Hoppin Street, Providence, RI 02903 USA
| | - Jean-François Ghersi-Egea
- Blood-Brain Interface Group, Oncoflam Team and BIP Platform INSERM U 1028, CNRS UMR5292 Lyon Neuroscience Research Center, Faculté de Médecine RTH Laennec, Rue Guillaume Paradin, Cedex 08, 69372 Lyon, France
| | - Charles Nicholson
- Department of Neuroscience and Physiology, NYU School of Medicine, MSB 460, 550 First Avenue, New York, NY 10016 USA
| | - Tavarekere N Nagaraja
- Department of Anesthesiology, Henry Ford Hospital, 2799 West Grand Blvd., Detroit, MI 48202-2689 USA
| | - Joanna Szmydynger-Chodobska
- Department of Emergency Medicine, Neurotrauma and Brain Barriers Research Laboratory, The Warren Alpert Medical School of Brown University, Coro Center West, Room 112, 1 Hoppin Street, Providence, RI 02903 USA
| |
Collapse
|