1
|
Then C, Miyazaki J, Bauer-Panskus A. Deficiencies in the Risk Assessment of Genetically Engineered Bt Cowpea Approved for Cultivation in Nigeria: A Critical Review. PLANTS 2022; 11:plants11030380. [PMID: 35161361 PMCID: PMC8838765 DOI: 10.3390/plants11030380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/22/2022] [Accepted: 01/25/2022] [Indexed: 12/23/2022]
Abstract
We analyze the application filed for the marketing and cultivation of genetically engineered Bt cowpea (event AAT 709A) approved in Nigeria in 2019. Cowpea (Vigna ungiguiculata) is extensively grown throughout sub-Saharan Africa and consumed by around two hundred million people. The transgenic plants produce an insecticidal, recombinant Bt toxin meant to protect the plants against the larvae of Maruca vitrata, which feed on the plants and are also known as pod borer. Our analysis of the application reveals issues of concern regarding the safety of the Bt toxins produced in the plants. These concerns include stability of gene expression, impact on soil organisms, effects on non-target species and food safety. In addition, we show deficiencies in the risk assessment of potential gene flow and uncontrolled spread of the transgenes and cultivated varieties as well as the maintenance of seed collections. As far as information is publicly available, we analyze the application by referring to established standards of GMO risk assessment. We take the provisions of the Cartagena Protocol on Biosafety (CPB) into account, of which both Nigeria and the EU are parties. We also refer to the EU standards for GMO risk assessment, which are complementary to the provisions of the CPB.
Collapse
|
2
|
Belousova ME, Malovichko YV, Shikov AE, Nizhnikov AA, Antonets KS. Dissecting the Environmental Consequences of Bacillus thuringiensis Application for Natural Ecosystems. Toxins (Basel) 2021; 13:toxins13050355. [PMID: 34065665 PMCID: PMC8155924 DOI: 10.3390/toxins13050355] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 05/10/2021] [Accepted: 05/13/2021] [Indexed: 12/30/2022] Open
Abstract
Bacillus thuringiensis (Bt), a natural pathogen of different invertebrates, primarily insects, is widely used as a biological control agent. While Bt-based preparations are claimed to be safe for non-target organisms due to the immense host specificity of the bacterium, the growing evidence witnesses the distant consequences of their application for natural communities. For instance, upon introduction to soil habitats, Bt strains can affect indigenous microorganisms, such as bacteria and fungi, and further establish complex relationships with local plants, ranging from a mostly beneficial demeanor, to pathogenesis-like plant colonization. By exerting a direct effect on target insects, Bt can indirectly affect other organisms in the food chain. Furthermore, they can also exert an off-target activity on various soil and terrestrial invertebrates, and the frequent acquisition of virulence factors unrelated to major insecticidal toxins can extend the Bt host range to vertebrates, including humans. Even in the absence of direct detrimental effects, the exposure to Bt treatment may affect non-target organisms by reducing prey base and its nutritional value, resulting in delayed alleviation of their viability. The immense phenotypic plasticity of Bt strains, coupled with the complexity of ecological relationships they can engage in, indicates that further assessment of future Bt-based pesticides' safety should consider multiple levels of ecosystem organization and extend to a wide variety of their inhabitants.
Collapse
Affiliation(s)
- Maria E. Belousova
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608 St. Petersburg, Russia; (M.E.B.); (Y.V.M.); (A.E.S.); (A.A.N.)
| | - Yury V. Malovichko
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608 St. Petersburg, Russia; (M.E.B.); (Y.V.M.); (A.E.S.); (A.A.N.)
- Faculty of Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Anton E. Shikov
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608 St. Petersburg, Russia; (M.E.B.); (Y.V.M.); (A.E.S.); (A.A.N.)
- Faculty of Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Anton A. Nizhnikov
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608 St. Petersburg, Russia; (M.E.B.); (Y.V.M.); (A.E.S.); (A.A.N.)
- Faculty of Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Kirill S. Antonets
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608 St. Petersburg, Russia; (M.E.B.); (Y.V.M.); (A.E.S.); (A.A.N.)
- Faculty of Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
- Correspondence:
| |
Collapse
|
3
|
Zhao Y, Yun Y, Peng Y. Bacillus thuringiensis protein Vip3Aa does not harm the predator Propylea japonica: A toxicological, histopathological, biochemical and molecular analysis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 192:110292. [PMID: 32035396 DOI: 10.1016/j.ecoenv.2020.110292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 01/30/2020] [Accepted: 02/01/2020] [Indexed: 06/10/2023]
Abstract
The ladybeetle Propylea japonica is a widely distributed natural enemy in many agricultural systems. P. japonica is often used as a test organism for safety assessments of transgenic Bacillus thuringiensis crops. Plant varieties expressing the Vip3Aa insecticidal protein are not currently commercially available in China. In this study, protease inhibitor E-64 was used as a positive control to examine the responses of P. japonica larvae to a high concentration of Vip3Aa proteins. Larvae that were fed E-64 had increased mortality and prolonged developmental period, but these parameters were unaffected when larvae were fed Vip3Aa. The epithelial cells of midguts were intact and closely connected with the basal membrane when larvae were fed Vip3Aa, but the epithelial cells degenerated in the E-64 treatment. The activities of antioxidative enzymes and expression levels of detoxification-related genes in P. japonica larvae were not altered after exposure to Vip3Aa; however, these biochemical and molecular parameters were significantly changed in the E-64 treatment. The results demonstrate that Vip3Aa protein is not harmful to the predator P. japonica.
Collapse
Affiliation(s)
- Yao Zhao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Yueli Yun
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Yu Peng
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China.
| |
Collapse
|
4
|
Gao YJ, Zhu HJ, Chen Y, Li YH, Peng YF, Chen XP. Safety Assessment of Bacillus thuringiensis Insecticidal Proteins Cry1C and Cry2A with a Zebrafish Embryotoxicity Test. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:4336-4344. [PMID: 29653490 DOI: 10.1021/acs.jafc.8b01070] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
As a result of the large-scale planting of transgenic Bacillus thuringiensis (Bt) crops, fish would be exposed to freely soluble Bt insecticidal protein(s) that are released from Bt crop tissues into adjacent bodies of water or by way of direct feeding on deposited plant material. To assess the safety of two Bt proteins Cry1C and Cry2A to fish, we used zebrafish as a representative species and exposed their embryos to 0.1, 1, and 10 mg/L of the two Cry proteins until 132 h post-fertilization and then several developmental, biochemical, and molecular parameters were evaluated. Chlorpyrifos (CPF), a known toxicant to aquatic organisms, was used as a positive control. Although CPF exposure resulted in significant developmental, biochemical, and molecular changes in the zebrafish embryos, there were almost no significant differences after Cry1C or Cry2A exposure. Thus, we conclude that zebrafish embryos are not sensitive to Cry1C and Cry2A insecticidal proteins at test concentrations.
Collapse
Affiliation(s)
- Yan-Jie Gao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection , Chinese Academy of Agricultural Sciences , No. 2 West Yuanmingyuan Road , Haidian District, Beijing 100193 , People's Republic of China
| | - Hao-Jun Zhu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection , Chinese Academy of Agricultural Sciences , No. 2 West Yuanmingyuan Road , Haidian District, Beijing 100193 , People's Republic of China
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center , Chinese Academy of Fishery Sciences , Wuxi , Jiangsu 214081 , People's Republic of China
| | - Yi Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection , Chinese Academy of Agricultural Sciences , No. 2 West Yuanmingyuan Road , Haidian District, Beijing 100193 , People's Republic of China
- Research Division Agroecology and Environment , Agroscope , 8046 Zurich , Switzerland
| | - Yun-He Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection , Chinese Academy of Agricultural Sciences , No. 2 West Yuanmingyuan Road , Haidian District, Beijing 100193 , People's Republic of China
| | - Yu-Fa Peng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection , Chinese Academy of Agricultural Sciences , No. 2 West Yuanmingyuan Road , Haidian District, Beijing 100193 , People's Republic of China
| | - Xiu-Ping Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection , Chinese Academy of Agricultural Sciences , No. 2 West Yuanmingyuan Road , Haidian District, Beijing 100193 , People's Republic of China
| |
Collapse
|
5
|
Zhu J, Li Y, Jiang H, Liu C, Lu W, Dai W, Xu J, Liu F. Selective toxicity of the mesoionic insecticide, triflumezopyrim, to rice planthoppers and beneficial arthropods. ECOTOXICOLOGY (LONDON, ENGLAND) 2018; 27:411-419. [PMID: 29404868 DOI: 10.1007/s10646-018-1904-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/14/2018] [Indexed: 06/07/2023]
Abstract
The novel mesoionic insecticide triflumezopyrim was highly effective in controlling both imidacloprid-susceptible and resistant planthopper populations in Malaysia. However, the toxicity of triflumezopyrim to planthopper populations and their natural enemies has been under-investigated in China. In this study, the median lethal concentrations (LC50) of triflumezopyrim were determined in eight field populations of Nilaparvata lugens and one population of Sogatella furcifera from China under laboratory conditions. Triflumezopyrim showed higher toxicity to planthopper populations than the commonly-used insecticide, imidacloprid. Furthermore, the lethal effect of triflumezopyrim on eight beneficial arthropods of planthoppers was investigated in the laboratory and compared with three commonly-used insecticides, thiamethoxam, chlorpyrifos and abamectin. Triflumezopyrim was harmless to Anagrus nilaparvatae, Cyrtorhinus lividipennis and Paederus fuscipes, while thiamethoxam, chlorpyrifos and abamectin were moderately harmful or harmful to the insect parasitoid and predators. Triflumezopyrim and thiamethoxam were harmless to the predatory spiders Pirata subpiraticus, Ummeliata insecticeps, Hylyphantes graminicola and Pardosa pseudoannulata, and slightly harmful to Theridion octomaculatum. Chlorpyrifos caused slight to high toxicity to four spider species except U. insecticeps. Abamectin was moderately to highly toxic to all five spider species. Our results indicate that triflumezopyrim has high efficacy for rice planthoppers populations and is compatibile with their natural enemies in China.
Collapse
Affiliation(s)
- Jun Zhu
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China
| | - Yao Li
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China
| | - Hua Jiang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China
| | - Chen Liu
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China
| | - Weiwei Lu
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China
| | - Wei Dai
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China
| | - Jianxiang Xu
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China
| | - Fang Liu
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China.
- Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou, 225009, China.
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
6
|
Chen Y, Yang Y, Zhu H, Romeis J, Li Y, Peng Y, Chen X. Safety of Bacillus thuringiensis Cry1C protein for Daphnia magna based on different functional traits. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 147:631-636. [PMID: 28926817 DOI: 10.1016/j.ecoenv.2017.08.065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 08/22/2017] [Accepted: 08/24/2017] [Indexed: 06/07/2023]
Abstract
Cry1C is a Bacillus thuringiensis (Bt) insecticidal protein and it can be produced by transgenic rice lines developed in China. Cladocera species are common aquatic arthropods that may be exposed to insecticidal proteins produced in Bt-transgenic plants through ingestion of pollen or crop residues in water. As the cladoceran Daphnia magna plays an important role in the aquatic food chain, it is important to assess the possible effects of Bt crops to this species. To evaluate the safety of the Cry1C protein for D. magna, individuals were exposed to different concentrations of purified Cry1C protein in M4 medium for 21 days. Potassium dichromate (K2Cr2O7), a known toxicant to D. magna, was added to M4 medium as a positive control treatment, and pure M4 medium was used as a negative control. Our results show that developmental, reproductive, and biochemical parameters of D. magna were not significantly different between Cry1C and negative control treatments but were significantly inhibited by the positive control. We thus conclude that D. magna is insensitive to Cry1C.
Collapse
Affiliation(s)
- Yi Chen
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yan Yang
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Haojun Zhu
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Jörg Romeis
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Agroscope, Research Division Agroecology and Environment, 8046 Zurich, Switzerland
| | - Yunhe Li
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yufa Peng
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiuping Chen
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
7
|
Li R, Yan Z, Wang J, Song Q, Wang Z. De novo characterization of venom apparatus transcriptome of Pardosa pseudoannulata and analysis of its gene expression in response to Bt protein. BMC Biotechnol 2017; 17:73. [PMID: 29115956 PMCID: PMC5678584 DOI: 10.1186/s12896-017-0392-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 10/30/2017] [Indexed: 12/20/2022] Open
Abstract
Background Pardosa pseudoannulata is a prevailing spider species, and has been regarded as an important bio-control agent of insect pests in farmland of China. However, the available genomic and transcriptomic databases of P. pseudoannulata and their venom are limited, which severely hampers functional genomic analysis of P. pseudoannulata. Recently high-throughput sequencing technology has been proved to be an efficient tool for profiling the transcriptome of relevant non-target organisms exposed to Bacillus thuringiensis (Bt) protein through food webs. Results In this study, the transcriptome of the venom apparatus was analyzed. A total of 113,358 non-redundant unigenes were yielded, among which 34,041 unigenes with complete or various length encoding regions were assigned biological function annotations and annotated with gene ontology and karyotic orthologous group terms. In addition, 3726 unigenes involved in response to stimulus and 720 unigenes associated with immune-response pathways were identified. Furthermore, we investigated transcriptomic changes in the venom apparatus using tag-based DGE technique. A total of 1724 differentially expressed genes (DEGs) were detected, while 75 and 372 DEGs were functionally annotated with KEGG pathways and GO terms, respectively. qPCR analyses were performed to verify the DEGs directly or indirectly related to immune and stress responses, including genes encoding heat shock protein, toll-like receptor, GST and NADH dehydrogenase. Conclusion This is the first study conducted to specifically investigate the venom apparatus of P. pseudoannulata in response to Bt protein exposure through tritrophic chain. A substantial fraction of transcript sequences was generated by high-throughput sequencing of the venom apparatus of P. pseudoannulata. Then a comparative transcriptome analysis showing a large number of candidate genes involved in immune response were identified by the tag-based DGE technology. This transcriptome dataset will provide a comprehensive sequence resource for furture molecular genetic research of the venom apparatus of P. pseudoannulata. Electronic supplementary material The online version of this article (10.1186/s12896-017-0392-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rong Li
- College of Bioscience & Biotechnology, Hunan Agriculture University, Changsha, 410128, China.,Department of Biosciences, Hunan University of Arts and Science, Changde, 415000, China
| | - Zhenzhen Yan
- College of Bioscience & Biotechnology, Hunan Agriculture University, Changsha, 410128, China
| | - Juan Wang
- College of Bioscience & Biotechnology, Hunan Agriculture University, Changsha, 410128, China
| | - Qisheng Song
- Division of Plant Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Zhi Wang
- College of Bioscience & Biotechnology, Hunan Agriculture University, Changsha, 410128, China.
| |
Collapse
|
8
|
Niu L, Mannakkara A, Qiu L, Wang X, Hua H, Lei C, Jurat-Fuentes JL, Ma W. Transgenic Bt rice lines producing Cry1Ac, Cry2Aa or Cry1Ca have no detrimental effects on Brown Planthopper and Pond Wolf Spider. Sci Rep 2017; 7:1940. [PMID: 28512299 PMCID: PMC5434062 DOI: 10.1038/s41598-017-02207-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 04/11/2017] [Indexed: 12/28/2022] Open
Abstract
Transgenic rice expressing cry genes from the bacterium Bacillus thuringiensis (Bt rice) is highly resistant to lepidopteran pests. The brown planthopper (BPH, Nilaparvata lugens) is the main non-target sap-sucking insect pest of Bt transgenic rice. The pond wolf spider (PWS, Pardosa pseudoannulata) is one of the most dominant predators of BPH in rice fields. Consequently, the safety evaluation of Bt rice on BPH and PWS should be conducted before commercialization. In the current study, two experiments were performed to assess the potential ecological effects of Bt rice on BPH and PWS: (1) a tritrophic experiment to evaluate the transmission of Cry1Ac, Cry2Aa and Cry1Ca protein in the food chain; and (2) binding assays of Cry1Ac, Cry2Aa and Cry1Ca to midgut brush border membrane proteins from BPH and PWS. Trace amounts of the three Cry proteins were detected in BPH feeding on Bt rice cultivars, but only Cry1Ac and Cry2Aa proteins could be transferred to PWS through feeding on BPH. In vitro binding of biotinylated Cry proteins and competition assays in midgut protein vesicles showed weak binding, and ligand blot analysis confirmed the binding specificity. Thus, we inferred that the tested Bt rice varieties have negligible effects on BPH and PWS.
Collapse
Affiliation(s)
- Lin Niu
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Amani Mannakkara
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- Department of Agricultural Biology, Faculty of Agriculture, University of Ruhuna, Kamburupitiya, 81100, Sri Lanka
| | - Lin Qiu
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Xiaoping Wang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Hongxia Hua
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Chaoliang Lei
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Juan Luis Jurat-Fuentes
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN, 37996, USA
| | - Weihua Ma
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| |
Collapse
|
9
|
Yang H, Peng Y, Tian J, Wang J, Hu J, Song Q, Wang Z. Review: biosafety assessment of Bt rice and other Bt crops using spiders as example for non-target arthropods in China. PLANT CELL REPORTS 2017; 36:505-517. [PMID: 28210764 DOI: 10.1007/s00299-017-2108-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 01/12/2017] [Indexed: 06/06/2023]
Abstract
Since the birth of transgenic crops expressing Bacillus thuringiensis (Bt) toxin for pest control, the public debate regarding ecological and environmental risks as well as benefits of Bt crops has continued unabated. The impact of Bt crops, especially on non-target invertebrates, has received particular attention. In this review, we summarize and analyze evidences for non-target effects of Bt rice on spiders, major predators in rice fields. Bt rice has been genetically modified to express the Bt protein, which has been shown to be transferred and accumulate in spiders as part of their food chain. Moreover, the Bt protein exhibits unintended effects on the physiology of spiders and spreads to higher trophic levels. Spiders possess unique physiological and ecological characteristics, revealing traits of surrogate species, and are thus considered to be excellent non-target arthropod model systems for study of Bt protein impacts. Due to the complexities of Bt protein transfer and accumulation mechanisms, as well as the apparent lack of information about resulting physiological, biochemical, and ecological effects on spiders, we raise questions and provide recommendations for promising further research.
Collapse
Affiliation(s)
- Huilin Yang
- College of Bioscience and Biotechnology, Hunan Agriculture University, No. 1 Nongda Road, Changsha, 410128, Hunan, China
- College of Orient Science & Technology, Hunan Agriculture University, No. 1 Nongda Road, Changsha, 410128, Hunan, China
| | - Yuande Peng
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, Hunan, China
| | - Jianxiang Tian
- College of Continuing Education, Hunan Agriculture University, No. 1 Nongda Road, Changsha, 410128, Hunan, China
| | - Juan Wang
- College of Bioscience and Biotechnology, Hunan Agriculture University, No. 1 Nongda Road, Changsha, 410128, Hunan, China
| | - Jilin Hu
- College of Bioscience and Biotechnology, Hunan Agriculture University, No. 1 Nongda Road, Changsha, 410128, Hunan, China
| | - Qisheng Song
- Division of Plant Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Zhi Wang
- College of Bioscience and Biotechnology, Hunan Agriculture University, No. 1 Nongda Road, Changsha, 410128, Hunan, China.
| |
Collapse
|
10
|
Kim YJ, Lee JH, Harn CH, Kim CG. Transgenic Cabbage Expressing Cry1Ac1 Does Not Affect the Survival and Growth of the Wolf Spider, Pardosa astrigera L. Koch (Araneae: Lycosidae). PLoS One 2016; 11:e0153395. [PMID: 27055120 PMCID: PMC4824485 DOI: 10.1371/journal.pone.0153395] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 03/29/2016] [Indexed: 11/18/2022] Open
Abstract
Both herbivores that consume transgenic crops and their predators can be exposed to insecticidal proteins expressed in those crops. We conducted a tritrophic bioassay to evaluate the ecotoxicological impacts that Bt cabbage (Brassica oleracea var. capitata) expressing Cry1Ac1 protein might have on the wolf spider (Pardosa astrigera), a non-target generalist predator. Enzyme-Linked Immunosorbent Assays indicated that protein levels were 4.61 ng g-1 dry weight in fruit flies (Drosophila melanogaster) fed with the transgenic cabbage and 1.86 ng g-1 dry weight in the wolf spiders that preyed upon them. We also compared the life history traits of spiders collected from Bt versus non-Bt cabbage and found no significant differences in their growth, survival, and developmental rates. Because Bt cabbage did not affect the growth of fruit flies, we conclude that any indirect effects that this crop had on the wolf spider were probably not mediated by prey quality. Therefore, exposure to Cry1Ac1 protein when feeding upon prey containing that substance from transgenic cabbage has only a negligible influence on those non-target predatory spiders.
Collapse
Affiliation(s)
- Young-Joong Kim
- Bio-Evaluation Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea
- Entomology program, Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea
| | - Joon-Ho Lee
- Entomology program, Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Chee Hark Harn
- R&D Headquarters, Nongwoo Bio Co., Yeoju 12648, Republic of Korea
| | - Chang-Gi Kim
- Bio-Evaluation Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea
- * E-mail:
| |
Collapse
|
11
|
Lin S, Vasseur L, You MS. Seasonal Variability in Spider Assemblages in Traditional and Transgenic Rice Fields. ENVIRONMENTAL ENTOMOLOGY 2016; 45:537-546. [PMID: 26856757 DOI: 10.1093/ee/nvw002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 01/11/2016] [Indexed: 06/05/2023]
Abstract
The use of Bt transgenic rice (or Bt rice) remains controversial in several countries, including China. Risk assessments are a prerequisite to confirm the safety of Bt rice for ecosystems before a commercial release. This study was conducted to compare the responses of spider assemblages to Bt rice and nontransgenic rice. Two experiments with different locations and times were conducted, and the data were analyzed using standard diversity indices and multivariate community analysis. With both analytical approaches, spider diversity and assemblage composition were not significantly different between Bt and non transgenic rice fields. However, based on principal component analyses, temporal (seasonal) variations occurred in the composition of the spider assemblage. In this study, Bt rice had no detrimental effects on the spider assemblages, although assemblage composition and species abundance varied during the growing season. This study demonstrated an advantage in using community assemblages and repeated sampling to compare fields over a growing season because changes in the assemblages, and more specifically for some species, not always the most dominant, may vary over time. To more accurately assess the changes in composition and structure of spider assemblages through time, particularly for those species that may require a longer period to detect a response, an increase in sampling effort and longer-term experiments might be required.
Collapse
Affiliation(s)
- Sheng Lin
- Institute of Applied Ecology and Research Centre for Biodiversity and Eco-Safety, Fujian Agriculture and Forestry University, Fuzhou 350002, China, Fujian-Taiwan Joint Centre for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou 350002, China, Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, China, Fuzhou 350002, China, Fujian Provincial Key Laboratory of Insect Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China, Department of Biological Sciences, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Ontario L2S 3A1, Canada
| | - Liette Vasseur
- Institute of Applied Ecology and Research Centre for Biodiversity and Eco-Safety, Fujian Agriculture and Forestry University, Fuzhou 350002, China, Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, China, Fuzhou 350002, China, Fujian Provincial Key Laboratory of Insect Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China, Department of Biological Sciences, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Ontario L2S 3A1, Canada
| | - Min-Sheng You
- Institute of Applied Ecology and Research Centre for Biodiversity and Eco-Safety, Fujian Agriculture and Forestry University, Fuzhou 350002, China, Fujian-Taiwan Joint Centre for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou 350002, China, Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, China, Fuzhou 350002, China, Fujian Provincial Key Laboratory of Insect Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China,
| |
Collapse
|
12
|
Paula DP, Andow DA. Uptake and bioaccumulation of Cry toxins by an aphidophagous predator. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 209:164-8. [PMID: 26686057 DOI: 10.1016/j.envpol.2015.11.036] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 11/08/2015] [Accepted: 11/20/2015] [Indexed: 05/16/2023]
Abstract
Uptake of Cry toxins by insect natural enemies has rarely been considered and bioaccumulation has not yet been demonstrated. Uptake can be demonstrated by the continued presence of Cry toxin after exposure has stopped and gut contents eliminated. Bioaccumulation can be demonstrated by showing uptake and that the concentration of Cry toxin in the natural enemy exceeds that in its food. We exposed larvae of the aphidophagous predator, Harmonia axyridis, to Cry1Ac and Cry1F through uniform and constant tritrophic exposure via an aphid, Myzus persicae, and looked for toxin presence in the pupae. We repeated the experiment using only Cry1F and tested newly emerged adults. Both Cry toxins were detected in pupae, and Cry1F was detected in recently emerged, unfed adults. Cry1Ac was present 2.05 times and Cry1F 3.09 times higher in predator pupae than in the aphid prey. Uptake and bioaccumulation in the third trophic level might increase the persistence of Cry toxins in the food web and mediate new exposure routes to natural enemies.
Collapse
Affiliation(s)
- Débora P Paula
- Embrapa Genetic Resources and Biotechnology, Parque Estação Biológica, W5 Norte, P.O. Box 02372, Brasília, DF, 70770-917, Brazil.
| | - David A Andow
- Department of Entomology, University of Minnesota, 219 Hodson Hall, 1980 Folwell Ave., St. Paul, MN, 55108, USA
| |
Collapse
|
13
|
Chen X, Wang J, Zhu H, Li Y, Ding J, Peng Y. Effects of Transgenic cry1Ca Rice on the Development of Xenopus laevis. PLoS One 2015; 10:e0145412. [PMID: 26695426 PMCID: PMC4690606 DOI: 10.1371/journal.pone.0145412] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2015] [Accepted: 12/03/2015] [Indexed: 11/29/2022] Open
Abstract
In fields of genetically modified, insect-resistant rice expressing Bacillus thuringiensis (Bt) proteins, frogs are exposed to Bt Cry proteins by consuming both target and non-target insects, and through their highly permeable skin. In the present study, we assessed the potential risk posed by transgenic cry1Ca rice (T1C-19) on the development of a frog species by adding purified Cry1Ca protein or T1C-19 rice straw into the rearing water of Xenopus laevis tadpoles, and by feeding X. laevis froglets diets containing rice grains of T1C-19 or its non-transformed counterpart MH63. Our results showed that there were no significant differences among groups receiving 100 μg L–1 or 10 μg L–1 Cry1Ca and the blank control in terms of time to completed metamorphosis, survival rate, body weight, body length, organ weight and liver enzyme activity after being exposed to the Cry1Ca (P > 0.05). Although some detection indices in the rice straw groups were significantly different from those of the blank control group (P < 0.05), there was no significant difference between the T1C-19 and MH63 rice straw groups. Moreover, there were no significant differences in the mortality rate, body weight, daily weight gain, liver and fat body weight of the froglets between the T1C-19 and MH63 dietary groups after 90 days, and there were no abnormal pathological changes in the stomach, intestines, livers, spleens and gonads. Thus, we conclude that the planting of transgenic cry1Ca rice will not adversely affect frog development.
Collapse
Affiliation(s)
- Xiuping Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- * E-mail: (XC); (YP)
| | - Jiamei Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Jiangsu Agri-animal Husbandry Vocational College, Taizhou 225300, China
| | - Haojun Zhu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Yunhe Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jiatong Ding
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Yufa Peng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- * E-mail: (XC); (YP)
| |
Collapse
|
14
|
Statement on a request from the European Commission related to an emergency measure notified by France under Article 34 of Regulation (EC) 1829/2003 to prohibit the cultivation of genetically modified maize MON 810. EFSA J 2014. [DOI: 10.2903/j.efsa.2014.3809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|