1
|
Loriette V, Fragola A, Kruglik SG, Sridhar S, Hubert A, Orieux F, Sepulveda E, Sureau F, Bonneau S. Dynamics of mitochondrial membranes under photo-oxidative stress with high spatiotemporal resolution. Front Cell Dev Biol 2023; 11:1307502. [PMID: 38046667 PMCID: PMC10691360 DOI: 10.3389/fcell.2023.1307502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 11/08/2023] [Indexed: 12/05/2023] Open
Abstract
In our study, we harnessed an original Enhanced Speed Structured Illumination Microscopy (Fast-SIM) imaging setup to explore the dynamics of mitochondrial and inner membrane ultrastructure under specific photo-oxidation stress induced by Chlorin-e6 and light irradiation. Notably, our Fast-SIM system allowed us to observe and quantify a distinct remodeling and shortening of the mitochondrial structure after 60-80 s of irradiation. These changes were accompanied by fusion events of adjacent inner membrane cristae and global swelling of the organelle. Preceding these alterations, a larger sequence was characterized by heightened dynamics within the mitochondrial network, featuring events such as mitochondrial fission, rapid formation of tubular prolongations, and fluctuations in cristae structure. Our findings provide compelling evidence that, among enhanced-resolution microscopy techniques, Fast-SIM emerges as the most suitable approach for non-invasive dynamic studies of mitochondrial structure in living cells. For the first time, this approach allows quantitative and qualitative characterization of successive steps in the photo-induced oxidation process with sufficient spatial and temporal resolution.
Collapse
Affiliation(s)
- Vincent Loriette
- ESPCI, PSL Research University, Sorbonne Université, CNRS, Laboratoire de Physique et D’Étude des Matériaux (LPEM), Paris, France
| | - Alexandra Fragola
- ESPCI, PSL Research University, Sorbonne Université, CNRS, Laboratoire de Physique et D’Étude des Matériaux (LPEM), Paris, France
| | - Sergei G. Kruglik
- Sorbonne Université, CNRS, Laboratoire Jean Perrin (LJP), Paris, France
| | - Susmita Sridhar
- ESPCI, PSL Research University, Sorbonne Université, CNRS, Laboratoire de Physique et D’Étude des Matériaux (LPEM), Paris, France
- Sorbonne Université, CNRS, Laboratoire Jean Perrin (LJP), Paris, France
| | - Antoine Hubert
- ESPCI, PSL Research University, Sorbonne Université, CNRS, Laboratoire de Physique et D’Étude des Matériaux (LPEM), Paris, France
- Sorbonne Université, CNRS, Laboratoire Jean Perrin (LJP), Paris, France
| | - François Orieux
- Centrale Supelec, Université Paris Saclay, CNRS, Laboratoire des Signaux et Systémes (L2S), Gif-sur-Yvette, France
| | - Eduardo Sepulveda
- Sorbonne Université, Université Paris Cité, CNRS, Laboratoire de physique nucléaire et de hautes énergies (LPNHE), Paris, France
| | - Franck Sureau
- Sorbonne Université, CNRS, Laboratoire Jean Perrin (LJP), Paris, France
| | - Stephanie Bonneau
- Sorbonne Université, CNRS, Laboratoire Jean Perrin (LJP), Paris, France
| |
Collapse
|
2
|
Mapping the microscale origins of magnetic resonance image contrast with subcellular diamond magnetometry. Nat Commun 2018; 9:131. [PMID: 29317627 PMCID: PMC5760582 DOI: 10.1038/s41467-017-02471-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Accepted: 12/03/2017] [Indexed: 12/18/2022] Open
Abstract
Magnetic resonance imaging (MRI) is a widely used biomedical imaging modality that derives much of its contrast from microscale magnetic field patterns in tissues. However, the connection between these patterns and the appearance of macroscale MR images has not been the subject of direct experimental study due to a lack of methods to map microscopic fields in biological samples. Here, we optically probe magnetic fields in mammalian cells and tissues with submicron resolution and nanotesla sensitivity using nitrogen-vacancy diamond magnetometry, and combine these measurements with simulations of nuclear spin precession to predict the corresponding MRI contrast. We demonstrate the utility of this technology in an in vitro model of macrophage iron uptake and histological samples from a mouse model of hepatic iron overload. In addition, we follow magnetic particle endocytosis in live cells. This approach bridges a fundamental gap between an MRI voxel and its microscopic constituents. Magnetic resonance imaging derives its contrast from local magnetic fields, however the connection between these fields and macroscale contrast has not been established through direct experiments. Here, Davis et al. use diamond magnetometry to map local magnetic fields within mammalian cells with sub-micron resolution and predict macroscale contrast.
Collapse
|
3
|
Aubertin K, Tailleur J, Wilhelm C, Gallet F. Impact of a mechanical shear stress on intracellular trafficking. SOFT MATTER 2017; 13:5298-5306. [PMID: 28682417 DOI: 10.1039/c7sm00732a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Intracellular trafficking mainly takes place along the microtubules, and its efficiency depends on the local architecture and organization of the cytoskeletal network. In this work, the cytoplasm of stem cells is subjected to mechanical vortexing at a frequency of up to 1 Hz, by using magnetic chains of endosomes embedded in the cell body, in order to locally perturb the network structure. The consequences are evaluated on the directionality and processivity of the spontaneous motion of endosomes. When the same chains are used both to shear the cell medium and to probe the intracellular traffic, a substantial decrease in transport efficiency is detected after applying the mechanical shear. Interestingly, when using different objects to apply the shear and to probe the spontaneous motion, no alteration of the transport efficiency can be detected. We conclude that shaking the vesicles mainly causes their unbinding from the cytoskeletal tracks, but has little influence on the integrity of the network itself. This is corroborated by active microrheology measurements, performed with chains actuated by a magnetic field, and showing that the mechanical compliance of the cytoplasm is similar before and after slow vortexing.
Collapse
Affiliation(s)
- Kelly Aubertin
- Laboratoire Matière et Systèmes Complexes (MSC), UMR 7057, CNRS and Université Paris Diderot, Paris, France.
| | | | | | | |
Collapse
|
4
|
Di Corato R, Béalle G, Kolosnjaj-Tabi J, Espinosa A, Clément O, Silva AKA, Ménager C, Wilhelm C. Combining magnetic hyperthermia and photodynamic therapy for tumor ablation with photoresponsive magnetic liposomes. ACS NANO 2015; 9:2904-16. [PMID: 25695371 DOI: 10.1021/nn506949t] [Citation(s) in RCA: 205] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The ongoing nanotech revolution has the potential to transform diagnostic and therapeutic methods. Stimuli-triggered nanotherapies based on remotely activated agents have become attractive alternatives to conventional chemotherapy. Herein, we designed an optimized smart nanoplatform based on dually loaded hybrid liposomes to achieve enhanced tumor therapy. The aqueous core was highly loaded with iron oxide nanoparticles, while the lipid bilayer was supplied with a photosensitizer payload. The double cargo translated into double functionality: generation of singlet oxygen under laser excitation and heat production under alternating magnetic field stimulation, coupling photodynamic therapy (PDT) to magnetic hyperthermia (MHT). These liposomes address both therapeutic agents within tumor cells, and the combined PDT/MHT therapy resulted in complete cancer cell death in vitro while total solid-tumor ablation was achieved in an in vivo rodent model.
Collapse
Affiliation(s)
- Riccardo Di Corato
- †Laboratoire Matière et Systèmes Complexes, UMR 7057, CNRS and University Paris Diderot, 75205 Paris cedex 13, France
| | - Gaëlle Béalle
- ‡Laboratoire PHENIX, Sorbonne Universités, UPMC, University Paris 06, UMR CNRS 8234, 4 place Jussieu 75005 Paris, France
| | - Jelena Kolosnjaj-Tabi
- †Laboratoire Matière et Systèmes Complexes, UMR 7057, CNRS and University Paris Diderot, 75205 Paris cedex 13, France
- §Inserm U970, Paris Cardiovascular Research Center-PARCC/Université Paris-Descartes, 75006 Paris, France
| | - Ana Espinosa
- †Laboratoire Matière et Systèmes Complexes, UMR 7057, CNRS and University Paris Diderot, 75205 Paris cedex 13, France
| | - Olivier Clément
- §Inserm U970, Paris Cardiovascular Research Center-PARCC/Université Paris-Descartes, 75006 Paris, France
| | - Amanda K A Silva
- †Laboratoire Matière et Systèmes Complexes, UMR 7057, CNRS and University Paris Diderot, 75205 Paris cedex 13, France
| | - Christine Ménager
- ‡Laboratoire PHENIX, Sorbonne Universités, UPMC, University Paris 06, UMR CNRS 8234, 4 place Jussieu 75005 Paris, France
| | - Claire Wilhelm
- †Laboratoire Matière et Systèmes Complexes, UMR 7057, CNRS and University Paris Diderot, 75205 Paris cedex 13, France
| |
Collapse
|
5
|
Mazuel F, Reffay M, Du V, Bacri JC, Rieu JP, Wilhelm C. Magnetic flattening of stem-cell spheroids indicates a size-dependent elastocapillary transition. PHYSICAL REVIEW LETTERS 2015; 114:098105. [PMID: 25793856 DOI: 10.1103/physrevlett.114.098105] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Indexed: 06/04/2023]
Abstract
Cellular aggregates (spheroids) are widely used in biophysics and tissue engineering as model systems for biological tissues. In this Letter we propose novel methods for molding stem-cell spheroids, deforming them, and measuring their interfacial and elastic properties with a single method based on cell tagging with magnetic nanoparticles and application of a magnetic field gradient. Magnetic molding yields spheroids of unprecedented sizes (up to a few mm in diameter) and preserves tissue integrity. On subjecting these spheroids to magnetic flattening (over 150g), we observed a size-dependent elastocapillary transition with two modes of deformation: liquid-drop-like behavior for small spheroids, and elastic-sphere-like behavior for larger spheroids, followed by relaxation to a liquidlike drop.
Collapse
Affiliation(s)
- Francois Mazuel
- Laboratoire Matière et Systèmes Complexes, UMR 7057, CNRS, Université Paris Diderot, 75013 Paris, France
| | - Myriam Reffay
- Laboratoire Matière et Systèmes Complexes, UMR 7057, CNRS, Université Paris Diderot, 75013 Paris, France
| | - Vicard Du
- Laboratoire Matière et Systèmes Complexes, UMR 7057, CNRS, Université Paris Diderot, 75013 Paris, France
| | - Jean-Claude Bacri
- Laboratoire Matière et Systèmes Complexes, UMR 7057, CNRS, Université Paris Diderot, 75013 Paris, France
| | - Jean-Paul Rieu
- Institut Lumière Matière, UMR 5306, Université Lyon 1-CNRS, Université de Lyon, 69622 Villeurbanne cedex, France
| | - Claire Wilhelm
- Laboratoire Matière et Systèmes Complexes, UMR 7057, CNRS, Université Paris Diderot, 75013 Paris, France
| |
Collapse
|