1
|
Miller GK, Kuruvilla S, Jacob B, LaFranco-Scheuch L, Bakthavatchalu V, Flor J, Flor K, Ziegler J, Reichard C, Manfre P, Firner S, McNutt T, Quay D, Bellum S, Doto G, Ciaccio PJ, Pearson K, Valentine J, Fuller P, Fell M, Tsuchiya T, Williamson T, Wollenberg G. Effects of LRRK2 Inhibitors in Nonhuman Primates. Toxicol Pathol 2023; 51:232-245. [PMID: 37916535 DOI: 10.1177/01926233231205895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Toxicology studies in nonhuman primates were conducted to evaluate selective, brain penetrant inhibitors of LRRK2. GNE 7915 was limited to 7-day administration in cynomolgus monkeys at 65 mg/kg/day or limited to 14 days in rhesus at 22.5 mg/kg b.i.d. due to physical signs. Compound 25 demonstrated acceptable tolerability at 50 and 225 mg/kg b.i.d. for 7 days in rhesus monkeys. MK-1468 was tolerated during 7-day administration at 100, 200 or 800 mg/kg/day or for 30-day administration at 30, 100, or 500 mg/kg b.i.d. in rhesus monkeys. The lungs revealed hypertrophy of type 2 pneumocytes, with accumulation of intra-alveolar macrophages. Transmission electron microscopy confirmed increased lamellar structures within hypertrophic type 2 pneumocytes. Hypertrophy and hyperplasia of type 2 pneumocytes with accumulation of intra-alveolar macrophages admixed with neutrophils were prominent at peripheral lungs of animals receiving compound 25 or MK-1468. Affected type 2 pneumocytes were immuno-positive for pro-surfactant C, but negative for CD11c, a marker for intra-alveolar macrophages. Accumulation of collagen within alveolar walls, confirmed by histochemical trichrome stain, accompanied changes described for compound 25 and MK-1468. Following a 12-week treatment-free interval, animals previously receiving MK-1468 for 30 days exhibited remodeling of alveolar structure and interstitial components that did not demonstrate reversibility.
Collapse
Affiliation(s)
| | | | | | | | | | - Jason Flor
- Merck & Co., Inc., Rahway, New Jersey, USA
| | | | | | | | | | | | | | - Diane Quay
- Merck & Co., Inc., Rahway, New Jersey, USA
| | | | - Greg Doto
- Merck & Co., Inc., Rahway, New Jersey, USA
| | | | | | | | | | - Matt Fell
- Merck & Co., Inc., Rahway, New Jersey, USA
| | | | | | | |
Collapse
|
2
|
Gu YZ, Vlasakova K, Miller G, Gatto NT, Ciaccio PJ, Kuruvilla S, Besteman EG, Smith R, Reynolds SJ, Amin RP, Glaab WE, Wollenberg G, Lebron J, Sistare FD. Early-Onset albuminuria and Associated Renal Pathology in Leucine-Rich Repeat Kinase 2 Knockout Rats. Toxicol Pathol 2023; 51:15-26. [PMID: 37078689 DOI: 10.1177/01926233231162809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2023]
Abstract
Activating mutations of the leucine-rich repeat kinase 2 (LRRK2) gene are associated with Parkinson disease (PD), prompting development of LRRK2 inhibitors as potential treatment for PD. However, kidney safety concerns have surfaced from LRRK2 knockout (KO) mice and rats and from repeat-dose studies in rodents administered LRRK2 inhibitors. To support drug development of this therapeutic target, we conducted a study of 26 weeks' duration in 2-month-old wild-type and LRRK2 KO Long-Evans Hooded rats to systematically examine the performance of urinary safety biomarkers and to characterize the nature of the morphological changes in the kidneys by light microscopy and by ultrastructural evaluation. Our data reveal the time course of early-onset albuminuria at 3 and 4 months in LRRK2 KO female and male rats, respectively. The increases in urine albumin were not accompanied by concurrent increases in serum creatinine, blood urea nitrogen, or renal safety biomarkers such as kidney injury molecule 1 or clusterin, although morphological alterations in both glomerular and tubular structure were identified by light and transmission electron microscopy at 8 months of age. Diet optimization with controlled food intake attenuated the progression of albuminuria and associated renal changes.
Collapse
Affiliation(s)
- Yi-Zhong Gu
- Merck & Co., Inc., West Point, Pennsylvania, USA
| | | | - Glen Miller
- Merck & Co., Inc., West Point, Pennsylvania, USA
| | | | | | | | | | - Roger Smith
- Merck & Co., Inc., West Point, Pennsylvania, USA
| | | | | | | | | | - Jose Lebron
- Merck & Co., Inc., West Point, Pennsylvania, USA
| | | |
Collapse
|
3
|
Ho PWL, Chang EES, Leung CT, Liu H, Malki Y, Pang SYY, Choi ZYK, Liang Y, Lai WS, Ruan Y, Leung KMY, Yung S, Mak JCW, Kung MHW, Ramsden DB, Ho SL. Long-term inhibition of mutant LRRK2 hyper-kinase activity reduced mouse brain α-synuclein oligomers without adverse effects. NPJ Parkinsons Dis 2022; 8:115. [PMID: 36088364 PMCID: PMC9464237 DOI: 10.1038/s41531-022-00386-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 08/30/2022] [Indexed: 11/30/2022] Open
Abstract
Parkinson’s disease (PD) is characterized by dopaminergic neurodegeneration in nigrostriatal and cortical brain regions associated with pathogenic α-synuclein (αSyn) aggregate/oligomer accumulation. LRRK2 hyperactivity is a disease-modifying therapeutic target in PD. However, LRRK2 inhibition may be associated with peripheral effects, albeit with unclear clinical consequences. Here, we significantly reduced αSyn oligomer accumulation in mouse striatum through long-term LRRK2 inhibition using GNE-7915 (specific brain-penetrant LRRK2 inhibitor) without causing adverse peripheral effects. GNE-7915 concentrations in wild-type (WT) mouse sera and brain samples reached a peak at 1 h, which gradually decreased over 24 h following a single subcutaneous (100 mg/kg) injection. The same dose in young WT and LRRK2R1441G mutant mice significantly inhibited LRRK2 kinase activity (Thr73-Rab10 and Ser106-Rab12 phosphorylation) in the lung, which dissipated by 72 h post-injection. 14-month-old mutant mice injected with GNE-7915 twice weekly for 18 weeks (equivalent to ~13 human years) exhibited reduced striatal αSyn oligomer and cortical pSer129-αSyn levels, correlating with inhibition of LRRK2 hyperactivity in brain and lung to WT levels. No GNE-7915-treated mice showed increased mortality or morbidity. Unlike reports of abnormalities in lung and kidney at acute high doses of LRRK2 inhibitors, our GNE-7915-treated mice did not exhibit swollen lamellar bodies in type II pneumocytes or abnormal vacuolation in the kidney. Functional and histopathological assessments of lung, kidney and liver, including whole-body plethysmography, urinary albumin-creatinine ratio (ACR), serum alanine aminotransferase (ALT) and serum interleukin-6 (inflammatory marker) did not reveal abnormalities after long-term GNE-7915 treatment. Long-term inhibition of mutant LRRK2 hyper-kinase activity to physiological levels presents an efficacious and safe disease-modifying therapy to ameliorate synucleinopathy in PD.
Collapse
|
4
|
Araki M, Ito K, Takatori S, Ito G, Tomita T. BORCS6 is involved in the enlargement of lung lamellar bodies in Lrrk2 knockout mice. Hum Mol Genet 2021; 30:1618-1631. [PMID: 34077533 DOI: 10.1093/hmg/ddab146] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 12/12/2022] Open
Abstract
Leucine-rich repeat kinase 2 (LRRK2) has been implicated in the pathogenesis of Parkinson disease. It has been shown that Lrrk2 knockout (KO) rodents have enlarged lamellar bodies (LBs) in their alveolar epithelial type II cells, although the underlying mechanisms remain unclear. Here we performed proteomic analyses on LBs isolated from Lrrk2 KO mice and found that the LB proteome is substantially different in Lrrk2 KO mice compared with wild-type mice. In Lrrk2 KO LBs, several Rab proteins were increased, and subunit proteins of BLOC-1-related complex (BORC) were decreased. The amount of surfactant protein C was significantly decreased in the bronchoalveolar lavage fluid obtained from Lrrk2 KO mice, suggesting that LB exocytosis is impaired in Lrrk2 KO mice. We also found that the enlargement of LBs is recapitulated in A549 cells upon KO of LRRK2 or by treating cells with LRRK2 inhibitors. Using this model, we show that KO of BORCS6, a BORC subunit gene, but not other BORC genes, causes LB enlargement. Our findings implicate the LRRK2-BORCS6 pathway in the maintenance of LB morphology.
Collapse
Affiliation(s)
- Miho Araki
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Kyohei Ito
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Sho Takatori
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Genta Ito
- Social Cooperation Program of Brain and Neurological Disorders, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Taisuke Tomita
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
- Social Cooperation Program of Brain and Neurological Disorders, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| |
Collapse
|
5
|
Abstract
Parkinson's disease (PD) is a common neurodegenerative disorder characterized by degeneration of the substantia nigra pars compacta and by accumulation of α-synuclein in Lewy bodies. PD is caused by a combination of environmental factors and genetic variants. These variants range from highly penetrant Mendelian alleles to alleles that only modestly increase disease risk. Here, we review what is known about the genetics of PD. We also describe how PD genetics have solidified the role of endosomal, lysosomal, and mitochondrial dysfunction in PD pathophysiology. Finally, we highlight how all three pathways are affected by α-synuclein and how this knowledge may be harnessed for the development of disease-modifying therapeutics.
Collapse
Affiliation(s)
- Gabriel E Vázquez-Vélez
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas 77030, USA.,Program in Developmental Biology and Medical Scientist Training Program, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Huda Y Zoghbi
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas 77030, USA.,Program in Developmental Biology and Medical Scientist Training Program, Baylor College of Medicine, Houston, Texas 77030, USA.,Departments of Molecular and Human Genetics and Pediatrics, Baylor College of Medicine, Houston, Texas 77030, USA; .,Howard Hughes Medical Institute, Houston, Texas 77030, USA
| |
Collapse
|
6
|
Baptista MAS, Merchant K, Barrett T, Bhargava S, Bryce DK, Ellis JM, Estrada AA, Fell MJ, Fiske BK, Fuji RN, Galatsis P, Henry AG, Hill S, Hirst W, Houle C, Kennedy ME, Liu X, Maddess ML, Markgraf C, Mei H, Meier WA, Needle E, Ploch S, Royer C, Rudolph K, Sharma AK, Stepan A, Steyn S, Trost C, Yin Z, Yu H, Wang X, Sherer TB. LRRK2 inhibitors induce reversible changes in nonhuman primate lungs without measurable pulmonary deficits. Sci Transl Med 2021; 12:12/540/eaav0820. [PMID: 32321864 DOI: 10.1126/scitranslmed.aav0820] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 07/22/2019] [Indexed: 12/27/2022]
Abstract
The kinase-activating mutation G2019S in leucine-rich repeat kinase 2 (LRRK2) is one of the most common genetic causes of Parkinson's disease (PD) and has spurred development of LRRK2 inhibitors. Preclinical studies have raised concerns about the safety of LRRK2 inhibitors due to histopathological changes in the lungs of nonhuman primates treated with two of these compounds. Here, we investigated whether these lung effects represented on-target pharmacology and whether they were reversible after drug withdrawal in macaques. We also examined whether treatment was associated with pulmonary function deficits. We conducted a 2-week repeat-dose toxicology study in macaques comparing three different LRRK2 inhibitors: GNE-7915 (30 mg/kg, twice daily as a positive control), MLi-2 (15 and 50 mg/kg, once daily), and PFE-360 (3 and 6 mg/kg, once daily). Subsets of animals dosed with GNE-7915 or MLi-2 were evaluated 2 weeks after drug withdrawal for lung function. All compounds induced mild cytoplasmic vacuolation of type II lung pneumocytes without signs of lung degeneration, implicating on-target pharmacology. At low doses of PFE-360 or MLi-2, there was ~50 or 100% LRRK2 inhibition in brain tissue, respectively, but histopathological lung changes were either absent or minimal. The lung effect was reversible after dosing ceased. Lung function tests demonstrated that the histological changes in lung tissue induced by MLi-2 and GNE-7915 did not result in pulmonary deficits. Our results suggest that the observed lung effects in nonhuman primates in response to LRRK2 inhibitors should not preclude clinical testing of these compounds for PD.
Collapse
Affiliation(s)
- Marco A S Baptista
- The Michael J. Fox Foundation for Parkinson's Research, Grand Central Station, P.O. Box 4777, New York, NY 10001, USA.
| | - Kalpana Merchant
- Northwestern University School of Medicine, Chicago, IL 60611, USA
| | - Ted Barrett
- Lovelace Respiratory Research Institute, Albuquerque, NM 87108, USA
| | - Sakshi Bhargava
- Pfizer Inc., Neuroscience Research Unit, Cambridge, MA 02139, USA
| | - Dianne K Bryce
- Merck Research Laboratories, Early Discovery Neuroscience, Boston, MA 02115, USA
| | - J Michael Ellis
- Merck Research Laboratories, Early Discovery Neuroscience, Boston, MA 02115, USA
| | | | - Matthew J Fell
- Merck Research Laboratories, Early Discovery Neuroscience, Boston, MA 02115, USA
| | - Brian K Fiske
- The Michael J. Fox Foundation for Parkinson's Research, Grand Central Station, P.O. Box 4777, New York, NY 10001, USA
| | - Reina N Fuji
- Genentech, Inc., South San Francisco, CA 94080, USA
| | - Paul Galatsis
- Pfizer Inc., Neuroscience Research Unit, Cambridge, MA 02139, USA
| | | | - Sue Hill
- Merck Research Laboratories, Early Discovery Neuroscience, Boston, MA 02115, USA
| | - Warren Hirst
- Pfizer Inc., Neuroscience Research Unit, Cambridge, MA 02139, USA
| | | | - Matthew E Kennedy
- Merck Research Laboratories, Early Discovery Neuroscience, Boston, MA 02115, USA
| | - Xingrong Liu
- Genentech, Inc., South San Francisco, CA 94080, USA
| | - Matthew L Maddess
- Merck Research Laboratories, Early Discovery Neuroscience, Boston, MA 02115, USA
| | - Carrie Markgraf
- Merck Research Laboratories, Early Discovery Neuroscience, Boston, MA 02115, USA
| | - Hong Mei
- Merck Research Laboratories, Early Discovery Neuroscience, Boston, MA 02115, USA
| | | | - Elie Needle
- Pfizer Inc., Neuroscience Research Unit, Cambridge, MA 02139, USA
| | | | | | - Karin Rudolph
- Lovelace Respiratory Research Institute, Albuquerque, NM 87108, USA
| | | | - Antonia Stepan
- Pfizer Inc., Neuroscience Research Unit, Cambridge, MA 02139, USA
| | - Stefan Steyn
- Pfizer Inc., Neuroscience Research Unit, Cambridge, MA 02139, USA
| | - Craig Trost
- Covance Laboratories, Inc., Madison, WI 53704, USA
| | - Zhizhang Yin
- Merck Research Laboratories, Early Discovery Neuroscience, Boston, MA 02115, USA
| | - Hongshi Yu
- Merck Research Laboratories, Early Discovery Neuroscience, Boston, MA 02115, USA
| | - Xiang Wang
- Denali Therapeutics, South San Francisco, CA 94080, USA
| | - Todd B Sherer
- The Michael J. Fox Foundation for Parkinson's Research, Grand Central Station, P.O. Box 4777, New York, NY 10001, USA
| |
Collapse
|
7
|
Harney J, Bajaj P, Finley JE, Kopec AK, Koza-Taylor PH, Boucher GG, Lanz TA, Doshna CM, Somps CJ, Adkins K, Houle C. An in vitro alveolar epithelial cell model recapitulates LRRK2 inhibitor-induced increases in lamellar body size observed in preclinical models. Toxicol In Vitro 2021; 70:105012. [DOI: 10.1016/j.tiv.2020.105012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 09/14/2020] [Accepted: 10/05/2020] [Indexed: 01/28/2023]
|
8
|
Autophagy Is Required for Maturation of Surfactant-Containing Lamellar Bodies in the Lung and Swim Bladder. Cell Rep 2020; 33:108477. [PMID: 33296658 DOI: 10.1016/j.celrep.2020.108477] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 10/20/2020] [Accepted: 11/11/2020] [Indexed: 01/02/2023] Open
Abstract
Autophagy is an intracellular degradation system, but its physiological functions in vertebrates are not yet fully understood. Here, we show that autophagy is required for inflation of air-filled organs: zebrafish swim bladder and mouse lung. In wild-type zebrafish swim bladder and mouse lung type II pulmonary epithelial cells, autophagosomes are formed and frequently fuse with lamellar bodies. The lamellar body is a lysosome-related organelle that stores a phospholipid-containing surfactant complex that lines the air-liquid interface and reduces surface tension. We find that autophagy is critical for maturation of the lamellar body. Accordingly, atg-deficient zebrafish fail to maintain their position in the water, and type-II-pneumocyte-specific Fip200-deficient mice show neonatal lethality with respiratory failure. Autophagy suppression does not affect synthesis of the surfactant phospholipid, suggesting that autophagy supplies lipids and membranes to lamellar bodies. These results demonstrate an evolutionarily conserved role of autophagy in lamellar body maturation.
Collapse
|
9
|
Ke T, Santamaria A, Rocha JBT, Tinkov AA, Lu R, Bowman AB, Aschner M. The Role of Human LRRK2 in Methylmercury-Induced Inhibition of Microvesicle Formation of Cephalic Neurons in Caenorhabditis elegans. Neurotox Res 2020; 38:751-764. [PMID: 32725544 DOI: 10.1007/s12640-020-00262-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 07/21/2020] [Accepted: 07/22/2020] [Indexed: 02/07/2023]
Abstract
In a previous study, we have shown that methylmercury (MeHg) exposure causes focal aggregation of intracellular transgenic mCherry protein in dendrites of cephalic (CEP) neurons in Caenorhabditis elegans (C. elegans). However, the underlying mechanism is unknown. We hypothesized that reduced cellular release of mCherry via extracellular vesicles by MeHg contributes to its accumulation and intracellular aggregation. Thus, we characterized vesicular structures in CEP dendrites, which were 1-3 μm in diameter and could readily bud off from the plasma membrane of the dendrites. Chronic treatment of C. elegans with MeHg (5 μM, 4-10 days) reduced the number of vesicles attached to CEP dendrites (attached vesicles) and vesicles unattached to CEP dendrites (unattached vesicles), as well as the presence of extracellular mCherry, supporting the hypothesis that release of mCherry by microvesicle formation is inhibited by MeHg. Leucine-rich repeat kinase 2 (LRRK2) has an important function in membrane biology. Further investigation showed that the effects of MeHg were modified by human LRRK2. In worms with the wild-type LRRK2, the vesicle numbers were significantly reduced by MeHg (0.5 and 5 μM). The effects of MeHg on the presence of extracellular mCherry and attached vesicles were modified by the human wild-type LRRK2. Independent of MeHg treatment, the G2019S mutant LRRK2 showed reduced number of unattached vesicles; however, the levels of extracellular mCherry were increased. Knockdown of C. elegans irk-1, the homolog of human LRRK2, reduced the number of attached vesicles, corroborating that LRRK2 plays an important role in the formation of microvesicles.
Collapse
Affiliation(s)
- Tao Ke
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Forchheimer Building, Room 209, Bronx, NY, 10461, USA
| | - Abel Santamaria
- Laboratorio de Aminoácidos Excitadores, Instituto Nacional de Neurología y Neurocirugía, 14269, Mexico City, Mexico
| | - Joao B T Rocha
- Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Alexey A Tinkov
- Yaroslavl State University, Sovetskaya St., 14, Yaroslavl, Russia, 150000.,IM Sechenov First Moscow State Medical University, Sechenov University, Moscow, Russia
| | - Rongzhu Lu
- Department of Preventive Medicine and Public Health Laboratory Sciences, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Aaron B Bowman
- School of Health Sciences, Purdue University, West Lafayette, IN, 47907-2051, USA
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Forchheimer Building, Room 209, Bronx, NY, 10461, USA. .,IM Sechenov First Moscow State Medical University, Sechenov University, Moscow, Russia.
| |
Collapse
|
10
|
Seegobin SP, Heaton GR, Liang D, Choi I, Blanca Ramirez M, Tang B, Yue Z. Progress in LRRK2-Associated Parkinson's Disease Animal Models. Front Neurosci 2020; 14:674. [PMID: 32765209 PMCID: PMC7381130 DOI: 10.3389/fnins.2020.00674] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 06/02/2020] [Indexed: 12/19/2022] Open
Abstract
Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene are the most frequent cause of familial Parkinson's disease (PD). Several genetic manipulations of the LRRK2 gene have been developed in animal models such as rodents, Drosophila, Caenorhabditis elegans, and zebrafish. These models can help us further understand the biological function and derive potential pathological mechanisms for LRRK2. Here we discuss common phenotypic themes found in LRRK2-associated PD animal models, highlight several issues that should be addressed in future models, and discuss emerging areas to guide their future development.
Collapse
Affiliation(s)
- Steven P. Seegobin
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - George R. Heaton
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Dongxiao Liang
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Neurology, Xiangya Hospital, Central South University, Hunan, China
| | - Insup Choi
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Marian Blanca Ramirez
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Hunan, China
| | - Zhenyu Yue
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
11
|
Analysis of purine receptor expression and functionality in alveolar epithelial cells. Purinergic Signal 2020; 16:213-229. [PMID: 32236789 DOI: 10.1007/s11302-020-09696-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 03/06/2020] [Indexed: 02/07/2023] Open
Abstract
Despite its fundamental role in providing an extensive surface for gas exchange, the alveolar epithelium (AE) serves as an immunological barrier through, e.g., the release of proinflammatory cytokines and secretion of surfactant to prevent alveolar collapse. Thus, AE is important for sustaining lung homeostasis. Extracellular ATP secreted by alveolar epithelial cells (AECs) is involved in physiological and pathological conditions and acts mainly through the activation of purine receptors (P2Rs). When studying P2R-mediated processes, primary isolated type II AECs (piAECs) still represent the gold standard in in vitro research, although their preparation is time-consuming and requires the sacrifice of many animals. Hence, cultivated immortalized and tumor-derived AEC lines may constitute a valuable alternative. In this work, we examined P2R expression and functionality in piAECs, in immortalized and tumor-derived AEC lines with the purpose of gaining a better understanding of purinergic signaling in different cell systems and assisting researchers in the choice of a suitable cell line with a certain P2R in demand. We combined mRNA and protein analysis to evaluate the expression of P2R. For pharmacological testing, we conducted calcium ([Ca2+]) measurements and siRNA receptor knockdown. Interestingly, the mRNA and protein levels of P2Y2, P2Y6, and P2X4 were detected on all cell lines. Concerning functionality, P2XR could be narrowed to L2 and piAECs while P2YR were active in all cell lines.
Collapse
|
12
|
Cogo S, Manzoni C, Lewis PA, Greggio E. Leucine-rich repeat kinase 2 and lysosomal dyshomeostasis in Parkinson disease. J Neurochem 2020; 152:273-283. [PMID: 31693760 DOI: 10.1111/jnc.14908] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 10/26/2019] [Accepted: 10/31/2019] [Indexed: 12/24/2022]
Abstract
Over the last two decades, a number of studies have underlined the importance of lysosomal-based degradative pathways in maintaining the homeostasis of post-mitotic cells, and revealed the remarkable contribution of a functional autophagic machinery in the promotion of longevity. In contrast, defects in the clearance of organelles and aberrant protein aggregates have been linked to accelerated neuronal loss and neurological dysfunction. Several neurodegenerative disorders, among which Alzheimer disease (AD), Frontotemporal dementia, and Amyotrophic Lateral Sclerosis to name a few, are associated with alterations of the autophagy and endo-lysosomal pathways. In Parkinson disease (PD), the most prevalent genetic determinant, Leucine-rich repeat kinase 2 (LRRK2), is believed to be involved in the regulation of intracellular vesicle traffic, autophagy and lysosomal function. Here, we review the current understanding of the mechanisms by which LRRK2 regulates lysosomal-based degradative pathways in neuronal and non-neuronal cells and discuss the impact of pathogenic PD mutations in contributing to lysosomal dyshomeostasis.
Collapse
Affiliation(s)
- Susanna Cogo
- Department of Biology, University of Padova, Padova, Italy
| | - Claudia Manzoni
- School of Pharmacy, University of Reading, Reading, UK
- Department of Neurodegenerative Diseases, University College London, London, UK
| | - Patrick A Lewis
- School of Pharmacy, University of Reading, Reading, UK
- Department of Neurodegenerative Diseases, University College London, London, UK
| | - Elisa Greggio
- Department of Biology, University of Padova, Padova, Italy
| |
Collapse
|
13
|
Guttuso T, Andrzejewski KL, Lichter DG, Andersen JK. Targeting kinases in Parkinson's disease: A mechanism shared by LRRK2, neurotrophins, exenatide, urate, nilotinib and lithium. J Neurol Sci 2019; 402:121-130. [PMID: 31129265 DOI: 10.1016/j.jns.2019.05.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 05/10/2019] [Accepted: 05/14/2019] [Indexed: 12/16/2022]
Abstract
Several kinases have been implicated in the pathogenesis of Parkinson's disease (PD), most notably leucine-rich repeat kinase 2 (LRRK2), as LRRK2 mutations are the most common genetic cause of a late-onset parkinsonism that is clinically indistinguishable from sporadic PD. More recently, several other kinases have emerged as promising disease-modifying targets in PD based on both preclinical studies and clinical reports on exenatide, the urate precursor inosine, nilotinib and lithium use in PD patients. These kinases include protein kinase B (Akt), glycogen synthase kinases-3β and -3α (GSK-3β and GSK-3α), c-Abelson kinase (c-Abl) and cyclin-dependent kinase 5 (cdk5). Activities of each of these kinases are involved either directly or indirectly in phosphorylating tau or increasing α-synuclein levels, intracellular proteins whose toxic oligomeric forms are strongly implicated in the pathogenesis of PD. GSK-3β, GSK-3α and cdk5 are the principle kinases involved in phosphorylating tau at sites critical for the formation of tau oligomers. Exenatide analogues, urate, nilotinib and lithium have been shown to affect one or more of the above kinases, actions that can decrease the formation and increase the clearance of intraneuronal phosphorylated tau and α-synuclein. Here we review the current preclinical and clinical evidence supporting kinase-targeting agents as potential disease-modifying therapies for PD patients enriched with these therapeutic targets and incorporate LRRK2 physiology into this novel model.
Collapse
Affiliation(s)
- Thomas Guttuso
- Jacobs School of Medicine & Biomedical Sciences, University at Buffalo, Buffalo, NY, United States of America.
| | - Kelly L Andrzejewski
- Jacobs School of Medicine & Biomedical Sciences, University at Buffalo, Buffalo, NY, United States of America.
| | - David G Lichter
- Jacobs School of Medicine & Biomedical Sciences, University at Buffalo, Buffalo, NY, United States of America.
| | - Julie K Andersen
- The Buck Institute for Research on Aging, Novato, CA, United States of America.
| |
Collapse
|
14
|
Tremblay ME, Cookson MR, Civiero L. Glial phagocytic clearance in Parkinson's disease. Mol Neurodegener 2019; 14:16. [PMID: 30953527 PMCID: PMC6451240 DOI: 10.1186/s13024-019-0314-8] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 03/15/2019] [Indexed: 12/21/2022] Open
Abstract
An emerging picture suggests that glial cells' loss of beneficial roles or gain of toxic functions can contribute to neurodegenerative conditions. Among glial cells, microglia and astrocytes have been shown to play phagocytic roles by engulfing synapses, apoptotic cells, cell debris, and released toxic proteins. As pathogenic protein accumulation is a key feature in Parkinson's disease (PD), compromised phagocytic clearance might participate in PD pathogenesis. In contrast, enhanced, uncontrolled and potentially toxic glial clearance capacity could contribute to synaptic degeneration. Here, we summarize the current knowledge of the molecular mechanisms underlying microglial and astrocytic phagocytosis, focusing on the possible implication of phagocytic dysfunction in neuronal degeneration. Several endo-lysosomal proteins displaying genetic variants in PD are highly expressed by microglia and astrocytes. We also present the evidence that lysosomal defects can affect phagocytic clearance and discuss the therapeutic relevance of restoring or enhancing lysosomal function in PD.
Collapse
Affiliation(s)
- Marie-Eve Tremblay
- Axe Neurosciences, Centre de Recherche du CHU de Québec, Université Laval, Quebec, QC Canada
- Département de Médecine Moléculaire, Faculté de Médecine, Université Laval, Quebec, QC Canada
| | - Mark R. Cookson
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD USA
| | - Laura Civiero
- Department of Biology, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy
| |
Collapse
|
15
|
Araki M, Ito G, Tomita T. Physiological and pathological functions of LRRK2: implications from substrate proteins. Neuronal Signal 2018; 2:NS20180005. [PMID: 32714591 PMCID: PMC7373236 DOI: 10.1042/ns20180005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 09/18/2018] [Accepted: 09/19/2018] [Indexed: 02/06/2023] Open
Abstract
Leucine-rich repeat kinase 2 (LRRK2) encodes a 2527-amino acid (aa) protein composed of multiple functional domains, including a Ras of complex proteins (ROC)-type GTP-binding domain, a carboxyl terminal of ROC (COR) domain, a serine/threonine protein kinase domain, and several repeat domains. LRRK2 is genetically involved in the pathogenesis of both sporadic and familial Parkinson's disease (FPD). Parkinson's disease (PD) is the second most common neurodegenerative disorder, manifesting progressive motor dysfunction. PD is pathologically characterized by the loss of dopaminergic neurons in the substantia nigra pars compacta, and the presence of intracellular inclusion bodies called Lewy bodies (LB) in the remaining neurons. As the most frequent PD-causing mutation in LRRK2, G2019S, increases the kinase activity of LRRK2, an abnormal increase in LRRK2 kinase activity is believed to contribute to PD pathology; however, the precise biological functions of LRRK2 involved in PD pathogenesis remain unknown. Although biochemical studies have discovered several substrate proteins of LRRK2 including Rab GTPases and tau, little is known about whether excess phosphorylation of these substrates is the cause of the neurodegeneration in PD. In this review, we summarize latest findings regarding the physiological and pathological functions of LRRK2, and discuss the possible molecular mechanisms of neurodegeneration caused by LRRK2 and its substrates.
Collapse
Affiliation(s)
- Miho Araki
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Genta Ito
- Laboratory of Brain and Neurological Disorders, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Taisuke Tomita
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Laboratory of Brain and Neurological Disorders, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
16
|
Assmus F, Houston JB, Galetin A. Incorporation of lysosomal sequestration in the mechanistic model for prediction of tissue distribution of basic drugs. Eur J Pharm Sci 2017; 109:419-430. [DOI: 10.1016/j.ejps.2017.08.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 07/03/2017] [Accepted: 08/15/2017] [Indexed: 12/11/2022]
|
17
|
Yamamoto Y, Gotoh S, Korogi Y, Seki M, Konishi S, Ikeo S, Sone N, Nagasaki T, Matsumoto H, Muro S, Ito I, Hirai T, Kohno T, Suzuki Y, Mishima M. Long-term expansion of alveolar stem cells derived from human iPS cells in organoids. Nat Methods 2017; 14:1097-1106. [DOI: 10.1038/nmeth.4448] [Citation(s) in RCA: 139] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 08/13/2017] [Indexed: 12/19/2022]
|
18
|
Abstract
INTRODUCTION Leucine-rich repeat kinase 2 (LRRK2) is a member of the Tyrosine Kinase-Like (TKL) branch of the kinome tree and is a multi-domain protein that includes GTPase and kinase activity. While genome-wide association studies (GWAS) has linked LRRK2 with Crohn's disease and leprosy, it has received the greatest attention due to it being implicated as one of the genetic loci associated with autosomal dominant inheritance in Parkinson's disease (PD). Areas covered: In this review, the small molecule patent literature from 2014-2016 with a focus on composition of matter and use patents was surveyed. Scifinder was primarily searched using 'LRRK2' as the query to identify all relevant literature and then triaged for small molecule patents. Expert opinion: The patent landscape around LRRK2 continues to develop. The early patents covered using existing kinase inhibitors for use against LRRK2. This evolved to compounds specifically designed for selectivity against LRRK2, but key exemplified compounds lacked sufficient brain exposure to affect sufficient efficacy. More recent compounds have addressed this deficiency and show greater potential for treating PD. While potency will be necessary to generate medicines with low human daily doses, brain penetration and safety will be the key differentiators for ultimately determining the most effective LRRK2 disease-modifying treatment for PD.
Collapse
Affiliation(s)
- Paul Galatsis
- a Worldwide Medicinal Chemistry , Pfizer Worldwide Research & Development , Cambridge , MA , USA
| |
Collapse
|
19
|
Christensen KV, Smith GP, Williamson DS. Development of LRRK2 Inhibitors for the Treatment of Parkinson's Disease. PROGRESS IN MEDICINAL CHEMISTRY 2017; 56:37-80. [PMID: 28314412 DOI: 10.1016/bs.pmch.2016.11.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Linkage and genome-wide association studies have identified a genetic risk locus for late-onset Parkinson's disease in chromosome 12, originally identified as PARK6. The causative gene was identified to code for a large multifunctional protein, LRRK2 (leucine-rich repeat kinase 2). The combined genetic and biochemical evidence supports a hypothesis in which the LRRK2 kinase function is causally involved in the pathogenesis of sporadic and familial forms of PD, and therefore that LRRK2 kinase inhibitors could be useful for treatment. Although LRRK2 has so far not been crystallised, the use of homology modelling and crystallographic surrogates has allowed the optimisation of chemical structures such that compounds of high selectivity with good brain penetration and appropriate pharmacokinetic properties are now available for understanding the biology of LRRK2 in vitro and in vivo. This chapter reviews LRRK2 biology, the structural biology of LRRK2 and gives an overview of inhibitors of LRRK2.
Collapse
Affiliation(s)
- K V Christensen
- Neuroscience Drug Discovery, H. Lundbeck A/S, Valby, Denmark
| | - G P Smith
- Neuroscience Drug Discovery, H. Lundbeck A/S, Valby, Denmark
| | | |
Collapse
|
20
|
Abstract
The early/recycling endosomes of an eukaryotic cell perform diverse cellular functions. In addition, the endosomal system generates multiple organelles, including certain cell type-specific organelles called lysosome-related organelles (LROs). The biosynthesis of these organelles possibly occurs through a sequential maturation process in which the cargo-containing endosomal vesicular/tubular structures are fused with the maturing organelle. The molecular machinery that regulates the cargo delivery or the membrane fusion during LRO biogenesis is poorly understood. Here, we describe the known key molecules, such as SNAREs, that regulate both the biogenesis and secretion of multiple LROs. Moreover, we also describe other regulatory molecules, such as Rab GTPases and their effectors that modulate the SNARE activity for cargo delivery to one such LRO, the melanosome. Overall, this review will increase our current understanding of LRO biogenesis and function.
Collapse
Affiliation(s)
- Riddhi Atul Jani
- a Department of Microbiology and Cell Biology ; Indian Institute of Science ; Bangalore , India
| | - Sarmistha Mahanty
- a Department of Microbiology and Cell Biology ; Indian Institute of Science ; Bangalore , India
| | - Subba Rao Gangi Setty
- a Department of Microbiology and Cell Biology ; Indian Institute of Science ; Bangalore , India
| |
Collapse
|
21
|
Lobbestael E, Civiero L, De Wit T, Taymans JM, Greggio E, Baekelandt V. Pharmacological LRRK2 kinase inhibition induces LRRK2 protein destabilization and proteasomal degradation. Sci Rep 2016; 6:33897. [PMID: 27658356 PMCID: PMC5034242 DOI: 10.1038/srep33897] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 09/06/2016] [Indexed: 02/07/2023] Open
Abstract
Leucine-rich repeat kinase 2 (LRRK2) kinase activity is increased in several pathogenic mutations, including the most common mutation, G2019S, and is known to play a role in Parkinson’s disease (PD) pathobiology. This has stimulated the development of potent, selective LRRK2 kinase inhibitors as one of the most prevailing disease-modifying therapeutic PD strategies. Although several lines of evidence support beneficial effects of LRRK2 kinase inhibitors, many questions need to be answered before clinical applications can be envisaged. Using six different LRRK2 kinase inhibitors, we show that LRRK2 kinase inhibition induces LRRK2 dephosphorylation and can reduce LRRK2 protein levels of overexpressed wild type and G2019S, but not A2016T or K1906M, LRRK2 as well as endogenous LRRK2 in mouse brain, lung and kidney. The inhibitor-induced reduction in LRRK2 levels could be reversed by proteasomal inhibition, but not by lysosomal inhibition, while mRNA levels remained unaffected. In addition, using LRRK2 S910A and S935A phosphorylation mutants, we show that dephosphorylation of these sites is not required for LRRK2 degradation. Increasing our insight in the molecular and cellular consequences of LRRK2 kinase inhibition will be crucial in the further development of LRRK2-based PD therapies.
Collapse
Affiliation(s)
- E Lobbestael
- Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, KU Leuven, Kapucijnenvoer 33, 3000 Leuven, Belgium
| | - L Civiero
- Department of Biology, University of Padova, 35131 Padova, Italy
| | - T De Wit
- Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, KU Leuven, Kapucijnenvoer 33, 3000 Leuven, Belgium
| | - J-M Taymans
- UMR-S1172 Jean-Pierre Aubert Research Center - (INSERM - CHRU de Lille - Université de Lille), Early Stages of Parkinson's Disease Team, Lille, France
| | - E Greggio
- Department of Biology, University of Padova, 35131 Padova, Italy
| | - V Baekelandt
- Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, KU Leuven, Kapucijnenvoer 33, 3000 Leuven, Belgium
| |
Collapse
|
22
|
Rivero-Ríos P, Fernández B, Madero-Pérez J, Lozano MR, Hilfiker S. Two-Pore Channels and Parkinson's Disease: Where's the Link? MESSENGER (LOS ANGELES, CALIF. : PRINT) 2016; 5:67-75. [PMID: 28529828 PMCID: PMC5436604 DOI: 10.1166/msr.2016.1051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Two-pore channels are endolysosomal Ca2+ release channels involved in proper trafficking to and from those organelles. They are the likely targets for the Ca2+-mobilizing messenger NAADP, and are further regulated by a variety of mechanisms including phosphoinositide levels and Rab proteins. As discussed here, recent studies highlight a role for these channels in the pathomechanism(s) underlying Parkinson's disease, with important implications for possible alternative treatment strategies.
Collapse
Affiliation(s)
- Pilar Rivero-Ríos
- Institute of Parasitology and Biomedicine “López-Neyra,” Consejo Superior de Investigaciones Científicas (CSIC), Avda del Conocimiento s/n, 18016 Granada, Spain
| | - Belén Fernández
- Institute of Parasitology and Biomedicine “López-Neyra,” Consejo Superior de Investigaciones Científicas (CSIC), Avda del Conocimiento s/n, 18016 Granada, Spain
| | - Jesús Madero-Pérez
- Institute of Parasitology and Biomedicine “López-Neyra,” Consejo Superior de Investigaciones Científicas (CSIC), Avda del Conocimiento s/n, 18016 Granada, Spain
| | - María Romo Lozano
- Institute of Parasitology and Biomedicine “López-Neyra,” Consejo Superior de Investigaciones Científicas (CSIC), Avda del Conocimiento s/n, 18016 Granada, Spain
| | - Sabine Hilfiker
- Institute of Parasitology and Biomedicine “López-Neyra,” Consejo Superior de Investigaciones Científicas (CSIC), Avda del Conocimiento s/n, 18016 Granada, Spain
| |
Collapse
|
23
|
Russo I, Berti G, Plotegher N, Bernardo G, Filograna R, Bubacco L, Greggio E. Leucine-rich repeat kinase 2 positively regulates inflammation and down-regulates NF-κB p50 signaling in cultured microglia cells. J Neuroinflammation 2015; 12:230. [PMID: 26646749 PMCID: PMC4673731 DOI: 10.1186/s12974-015-0449-7] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 12/01/2015] [Indexed: 01/12/2023] Open
Abstract
Background Over-activated microglia and chronic neuroinflammation contribute to dopaminergic neuron degeneration and progression of Parkinson’s disease (PD). Leucine-rich repeat kinase 2 (LRRK2), a kinase mutated in autosomal dominantly inherited and sporadic PD cases, is highly expressed in immune cells, in which it regulates inflammation through a yet unclear mechanism. Methods Here, using pharmacological inhibition and cultured Lrrk2−/− primary microglia cells, we validated LRRK2 as a positive modulator of inflammation and we investigated its specific function in microglia cells. Results Inhibition or genetic deletion of LRRK2 causes reduction of interleukin-1β and cyclooxygenase-2 expression upon lipopolysaccharide-mediated inflammation. LRRK2 also takes part of the signaling trigged by α-synuclein fibrils, which culminates in induction of inflammatory mediators. At the molecular level, loss of LRRK2 or inhibition of its kinase activity results in increased phosphorylation of nuclear factor kappa-B (NF-κB) inhibitory subunit p50 at S337, a protein kinase A (PKA)-specific phosphorylation site, with consequent accumulation of p50 in the nucleus. Conclusions Taken together, these findings point to a role of LRRK2 in microglia activation and sustainment of neuroinflammation and in controlling of NF-κB p50 inhibitory signaling. Understanding the molecular pathways coordinated by LRRK2 in activated microglia cells after pathological stimuli such us fibrillar α-synuclein holds the potential to provide novel targets for PD therapeutics.
Collapse
Affiliation(s)
- Isabella Russo
- Department of Biology, University of Padova, via Ugo Bassi 58/B, 35131, Padova, Italy
| | - Giulia Berti
- Department of Biology, University of Padova, via Ugo Bassi 58/B, 35131, Padova, Italy
| | - Nicoletta Plotegher
- Department of Biology, University of Padova, via Ugo Bassi 58/B, 35131, Padova, Italy.,Current address: Department of Cell and Developmental Biology, University College London, London, UK
| | - Greta Bernardo
- Department of Biology, University of Padova, via Ugo Bassi 58/B, 35131, Padova, Italy
| | - Roberta Filograna
- Department of Biology, University of Padova, via Ugo Bassi 58/B, 35131, Padova, Italy.,Current address: Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
| | - Luigi Bubacco
- Department of Biology, University of Padova, via Ugo Bassi 58/B, 35131, Padova, Italy
| | - Elisa Greggio
- Department of Biology, University of Padova, via Ugo Bassi 58/B, 35131, Padova, Italy.
| |
Collapse
|
24
|
A new role for an old drug: Ambroxol triggers lysosomal exocytosis via pH-dependent Ca²⁺ release from acidic Ca²⁺ stores. Cell Calcium 2015; 58:628-37. [PMID: 26560688 DOI: 10.1016/j.ceca.2015.10.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 10/20/2015] [Accepted: 10/22/2015] [Indexed: 12/21/2022]
Abstract
Ambroxol (Ax) is a frequently prescribed drug used to facilitate mucociliary clearance, but its mode of action is yet poorly understood. Here we show by X-ray spectroscopy that Ax accumulates in lamellar bodies (LBs), the surfactant storing, secretory lysosomes of type II pneumocytes. Using lyso- and acidotropic substances in combination with fluorescence imaging we confirm that these vesicles belong to the class of acidic Ca(2+) stores. Ax lead to a significant neutralization of LB pH, followed by intracellular Ca(2+) release, and to a dose-dependent surfactant exocytosis. Ax-induced Ca(2+) release was significantly reduced and slowed down by pretreatment of the cells with bafilomycin A1 (Baf A1), an inhibitor of the vesicular H(+) ATPase. These results could be nearly reproduced with NH3/NH4(+). The findings suggest that Ax accumulates within LBs and severely affects their H(+) and Ca(2+) homeostasis. This is further supported by an Ax-induced change of nanostructural assembly of surfactant layers. We conclude that Ax profoundly affects LBs presumably by disordering lipid bilayers and by acting as a weak base. The pH change triggers - at least in part - Ca(2+) release from stores and secretion of surfactant from type II cells. This novel mechanism of Ax as a lysosomal secretagogue may also play a role for its recently discussed use for lysosomal storage and other degenerative diseases.
Collapse
|
25
|
Estrada AA, Sweeney ZK. Chemical Biology of Leucine-Rich Repeat Kinase 2 (LRRK2) Inhibitors. J Med Chem 2015; 58:6733-46. [PMID: 25915084 DOI: 10.1021/acs.jmedchem.5b00261] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
There is an urgent need for the development of Parkinson's disease (PD) treatments that can slow disease progression. The leucine-rich repeat kinase 2 (LRRK2) protein has been genetically and functionally linked to PD, and modulation of LRRK2 enzymatic activity has been proposed as a novel therapeutic strategy. In this review, we describe the bioactivity of selected small molecules that have been used to inhibit LRRK2 kinase activity in vitro or in vivo. These compounds are important tools for understanding the cellular biology of LRRK2 and for evaluating the potential of LRRK2 inhibitors as disease-modifying PD therapies.
Collapse
Affiliation(s)
- Anthony A Estrada
- Department of Discovery Chemistry, Genentech, Inc. , 1 DNA Way, South San Francisco, California 94080, United States
| | - Zachary K Sweeney
- Department of Discovery Chemistry, Genentech, Inc. , 1 DNA Way, South San Francisco, California 94080, United States
| |
Collapse
|
26
|
Wallings R, Manzoni C, Bandopadhyay R. Cellular processes associated with LRRK2 function and dysfunction. FEBS J 2015; 282:2806-26. [PMID: 25899482 PMCID: PMC4522467 DOI: 10.1111/febs.13305] [Citation(s) in RCA: 124] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 03/23/2015] [Accepted: 04/20/2015] [Indexed: 02/07/2023]
Abstract
Mutations in the leucine-rich repeat kinase 2 (LRRK2)-encoding gene are the most common cause of monogenic Parkinson's disease. The identification of LRRK2 polymorphisms associated with increased risk for sporadic Parkinson's disease, as well as the observation that LRRK2-Parkinson's disease has a pathological phenotype that is almost indistinguishable from the sporadic form of disease, suggested LRRK2 as the culprit to provide understanding for both familial and sporadic Parkinson's disease cases. LRRK2 is a large protein with both GTPase and kinase functions. Mutations segregating with Parkinson's disease reside within the enzymatic core of LRRK2, suggesting that modification of its activity impacts greatly on disease onset and progression. Although progress has been made since its discovery in 2004, there is still much to be understood regarding LRRK2's physiological and neurotoxic properties. Unsurprisingly, given the presence of multiple enzymatic domains, LRRK2 has been associated with a diverse set of cellular functions and signalling pathways including mitochondrial function, vesicle trafficking together with endocytosis, retromer complex modulation and autophagy. This review discusses the state of current knowledge on the role of LRRK2 in health and disease with discussion of potential substrates of phosphorylation and functional partners with particular emphasis on signalling mechanisms. In addition, the use of immune cells in LRRK2 research and the role of oxidative stress as a regulator of LRRK2 activity and cellular function are also discussed.
Collapse
Affiliation(s)
- Rebecca Wallings
- Reta Lila Weston Institute of Neurological Studies and Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
| | - Claudia Manzoni
- School of Pharmacy, University of Reading, UK.,UCL Institute of Neurology, London, UK
| | - Rina Bandopadhyay
- Reta Lila Weston Institute of Neurological Studies and Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
| |
Collapse
|
27
|
Abstract
Activating mutations in the leucine rich repeat protein kinase 2 (LRRK2) gene are the most common cause of inherited Parkinson's disease (PD). LRRK2 is phosphorylated on a cluster of phosphosites including Ser(910), Ser(935), Ser(955) and Ser(973), which are dephosphorylated in several PD-related LRRK2 mutants (N1437H, R1441C/G, Y1699C and I2020T) linking the regulation of these sites to PD. These serine residues are also dephosphorylated after kinase inhibition and lose 14-3-3 binding, which serves as a pharmacodynamic marker for inhibited LRRK2. Loss of 14-3-3 binding is well established, but the consequences of dephosphorylation are only now being uncovered. In the present study, we found that potent and selective inhibition of LRRK2 kinase activity leads to dephosphorylation of Ser(935) then ubiquitination and degradation of a significant fraction of LRRK2. GNE1023 treatment decreased the phosphorylation and stability of LRRK2 in expression systems and endogenous LRRK2 in A549 cells and in mouse dosing studies. We next established that LRRK2 is ubiquitinated through at least Lys(48) and Lys(63) ubiquitin linkages in response to inhibition. To investigate the link between dephosphorylation induced by inhibitor treatment and LRRK2 ubiquitination, we studied LRRK2 in conditions where it is dephosphorylated such as expression of PD mutants [R1441G, Y1699C and I2020T] or by blocking 14-3-3 binding to LRRK2 via difopein expression, and found LRRK2 is hyper-ubiquitinated. Calyculin A treatment prevents inhibitor and PD mutant induced dephosphorylation and reverts LRRK2 to a lesser ubiquitinated species, thus directly implicating phosphatase activity in LRRK2 ubiquitination. This dynamic dephosphorylation-ubiquitination cycle could explain detrimental loss-of-function phenotypes found in peripheral tissues of LRRK2 kinase inactive mutants, LRRK2 KO (knockout) animals and following LRRK2 inhibitor administration.
Collapse
|
28
|
Progressive dopaminergic alterations and mitochondrial abnormalities in LRRK2 G2019S knock-in mice. Neurobiol Dis 2015; 78:172-95. [PMID: 25836420 DOI: 10.1016/j.nbd.2015.02.031] [Citation(s) in RCA: 166] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 02/19/2015] [Accepted: 02/21/2015] [Indexed: 01/19/2023] Open
Abstract
Mutations in the LRRK2 gene represent the most common genetic cause of late onset Parkinson's disease. The physiological and pathological roles of LRRK2 are yet to be fully determined but evidence points towards LRRK2 mutations causing a gain in kinase function, impacting on neuronal maintenance, vesicular dynamics and neurotransmitter release. To explore the role of physiological levels of mutant LRRK2, we created knock-in (KI) mice harboring the most common LRRK2 mutation G2019S in their own genome. We have performed comprehensive dopaminergic, behavioral and neuropathological analyses in this model up to 24months of age. We find elevated kinase activity in the brain of both heterozygous and homozygous mice. Although normal at 6months, by 12months of age, basal and pharmacologically induced extracellular release of dopamine is impaired in both heterozygous and homozygous mice, corroborating previous findings in transgenic models over-expressing mutant LRRK2. Via in vivo microdialysis measurement of basal and drug-evoked extracellular release of dopamine and its metabolites, our findings indicate that exocytotic release from the vesicular pool is impaired. Furthermore, profound mitochondrial abnormalities are evident in the striatum of older homozygous G2019S KI mice, which are consistent with mitochondrial fission arrest. We anticipate that this G2019S mouse line will be a useful pre-clinical model for further evaluation of early mechanistic events in LRRK2 pathogenesis and for second-hit approaches to model disease progression.
Collapse
|
29
|
Fuji RN, Flagella M, Baca M, S. Baptista MA, Brodbeck J, Chan BK, Fiske BK, Honigberg L, Jubb AM, Katavolos P, Lee DW, Lewin-Koh SC, Lin T, Liu X, Liu S, Lyssikatos JP, O’Mahony J, Reichelt M, Roose-Girma M, Sheng Z, Sherer T, Smith A, Solon M, Sweeney ZK, Tarrant J, Urkowitz A, Warming S, Yaylaoglu M, Zhang S, Zhu H, Estrada AA, Watts RJ. Effect of selective LRRK2 kinase inhibition on nonhuman primate lung. Sci Transl Med 2015; 7:273ra15. [DOI: 10.1126/scitranslmed.aaa3634] [Citation(s) in RCA: 242] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
30
|
Miklavc P, Ehinger K, Sultan A, Felder T, Paul P, Gottschalk KE, Frick M. Actin depolymerisation and crosslinking join forces with myosin II to contract actin coats on fused secretory vesicles. J Cell Sci 2015; 128:1193-203. [PMID: 25637593 PMCID: PMC4359923 DOI: 10.1242/jcs.165571] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
In many secretory cells actin and myosin are specifically recruited to the surface of secretory granules following their fusion with the plasma membrane. Actomyosin-dependent compression of fused granules is essential to promote active extrusion of cargo. However, little is known about molecular mechanisms regulating actin coat formation and contraction. Here, we provide a detailed kinetic analysis of the molecules regulating actin coat contraction on fused lamellar bodies in primary alveolar type II cells. We demonstrate that ROCK1 and myosin light chain kinase 1 (MLCK1, also known as MYLK) translocate to fused lamellar bodies and activate myosin II on actin coats. However, myosin II activity is not sufficient for efficient actin coat contraction. In addition, cofilin-1 and α-actinin translocate to actin coats. ROCK1-dependent regulated actin depolymerisation by cofilin-1 in cooperation with actin crosslinking by α-actinin is essential for complete coat contraction. In summary, our data suggest a complementary role for regulated actin depolymerisation and crosslinking, and myosin II activity, to contract actin coats and drive secretion.
Collapse
Affiliation(s)
- Pika Miklavc
- Department of General Physiology, University of Ulm, Albert-Einstein Allee 11, 89081 Ulm, Germany
| | - Konstantin Ehinger
- Department of General Physiology, University of Ulm, Albert-Einstein Allee 11, 89081 Ulm, Germany
| | - Ayesha Sultan
- Department of General Physiology, University of Ulm, Albert-Einstein Allee 11, 89081 Ulm, Germany
| | - Tatiana Felder
- Department of General Physiology, University of Ulm, Albert-Einstein Allee 11, 89081 Ulm, Germany
| | - Patrick Paul
- Institute for Experimental Physics, University of Ulm, Albert-Einstein Allee 11, 89081 Ulm, Germany
| | - Kay-Eberhard Gottschalk
- Institute for Experimental Physics, University of Ulm, Albert-Einstein Allee 11, 89081 Ulm, Germany
| | - Manfred Frick
- Department of General Physiology, University of Ulm, Albert-Einstein Allee 11, 89081 Ulm, Germany
| |
Collapse
|
31
|
Yan J, Almilaji A, Schmid E, Elvira B, Shimshek DR, van der Putten H, Wagner CA, Shumilina E, Lang F. Leucine-rich repeat kinase 2-sensitive Na+/Ca2+ exchanger activity in dendritic cells. FASEB J 2015; 29:1701-10. [PMID: 25609428 DOI: 10.1096/fj.14-264028] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 12/12/2014] [Indexed: 11/11/2022]
Abstract
Gene variants of the leucine-rich repeat kinase 2 (LRRK2) are associated with susceptibility to Parkinson's disease (PD). Besides brain and periphery, LRRK2 is expressed in various immune cells including dendritic cells (DCs), antigen-presenting cells linking innate and adaptive immunity. However, the function of LRRK2 in the immune system is still incompletely understood. Here, Ca(2+)-signaling was analyzed in DCs isolated from gene-targeted mice lacking lrrk2 (Lrrk2(-/-)) and their wild-type littermates (Lrrk2(+/+)). According to Western blotting, Lrrk2 was expressed in Lrrk2(+/+) DCs but not in Lrrk2(-/-)DCs. Cytosolic Ca(2+) levels ([Ca(2+)]i) were determined utilizing Fura-2 fluorescence and whole cell currents to decipher electrogenic transport. The increase of [Ca(2+)]i following inhibition of sarcoendoplasmatic Ca(2+)-ATPase with thapsigargin (1 µM) in the absence of extracellular Ca(2+) (Ca(2+)-release) and the increase of [Ca(2+)]i following subsequent readdition of extracellular Ca(2+) (SOCE) were both significantly larger in Lrrk2(-/-) than in Lrrk2(+/+) DCs. The augmented increase of [Ca(2+)]i could have been due to impaired Ca(2+) extrusion by K(+)-independent (NCX) and/or K(+)-dependent (NCKX) Na(+)/Ca(2+)-exchanger activity, which was thus determined from the increase of [Ca(2+)]i, (Δ[Ca(2+)]i), and current following abrupt replacement of Na(+) containing (130 mM) and Ca(2+) free (0 mM) extracellular perfusate by Na(+) free (0 mM) and Ca(2+) containing (2 mM) extracellular perfusate. As a result, both slope and peak of Δ[Ca(2+)]i as well as Na(+)/Ca(2+) exchanger-induced current were significantly lower in Lrrk2(-/-) than in Lrrk2(+/+) DCs. A 6 or 24 hour treatment with the LRRK2 inhibitor GSK2578215A (1 µM) significantly decreased NCX1 and NCKX1 transcript levels, significantly blunted Na(+)/Ca(2+)-exchanger activity, and significantly augmented the increase of [Ca(2+)]i following Ca(2+)-release and SOCE. In conclusion, the present observations disclose a completely novel functional significance of LRRK2, i.e., the up-regulation of Na(+)/Ca(2+) exchanger transcription and activity leading to attenuation of Ca(2+)-signals in DCs.
Collapse
Affiliation(s)
- Jing Yan
- *Department of Physiology, University of Tübingen, Tübingen, Germany; Department of Neuroscience, Novartis Institutes for BioMedical Research, Basel, Switzerland; Institute of Physiology, University of Zurich, Zurich, Switzerland; National Contest for Life Foundation, Hamburg, Germany; and Department of Pediatric Surgery and Pediatric Urology, University Children's Hospital Tübingen, Tübingen, Germany
| | - Ahmad Almilaji
- *Department of Physiology, University of Tübingen, Tübingen, Germany; Department of Neuroscience, Novartis Institutes for BioMedical Research, Basel, Switzerland; Institute of Physiology, University of Zurich, Zurich, Switzerland; National Contest for Life Foundation, Hamburg, Germany; and Department of Pediatric Surgery and Pediatric Urology, University Children's Hospital Tübingen, Tübingen, Germany
| | - Evi Schmid
- *Department of Physiology, University of Tübingen, Tübingen, Germany; Department of Neuroscience, Novartis Institutes for BioMedical Research, Basel, Switzerland; Institute of Physiology, University of Zurich, Zurich, Switzerland; National Contest for Life Foundation, Hamburg, Germany; and Department of Pediatric Surgery and Pediatric Urology, University Children's Hospital Tübingen, Tübingen, Germany
| | - Bernat Elvira
- *Department of Physiology, University of Tübingen, Tübingen, Germany; Department of Neuroscience, Novartis Institutes for BioMedical Research, Basel, Switzerland; Institute of Physiology, University of Zurich, Zurich, Switzerland; National Contest for Life Foundation, Hamburg, Germany; and Department of Pediatric Surgery and Pediatric Urology, University Children's Hospital Tübingen, Tübingen, Germany
| | - Derya R Shimshek
- *Department of Physiology, University of Tübingen, Tübingen, Germany; Department of Neuroscience, Novartis Institutes for BioMedical Research, Basel, Switzerland; Institute of Physiology, University of Zurich, Zurich, Switzerland; National Contest for Life Foundation, Hamburg, Germany; and Department of Pediatric Surgery and Pediatric Urology, University Children's Hospital Tübingen, Tübingen, Germany
| | - Herman van der Putten
- *Department of Physiology, University of Tübingen, Tübingen, Germany; Department of Neuroscience, Novartis Institutes for BioMedical Research, Basel, Switzerland; Institute of Physiology, University of Zurich, Zurich, Switzerland; National Contest for Life Foundation, Hamburg, Germany; and Department of Pediatric Surgery and Pediatric Urology, University Children's Hospital Tübingen, Tübingen, Germany
| | - Carsten A Wagner
- *Department of Physiology, University of Tübingen, Tübingen, Germany; Department of Neuroscience, Novartis Institutes for BioMedical Research, Basel, Switzerland; Institute of Physiology, University of Zurich, Zurich, Switzerland; National Contest for Life Foundation, Hamburg, Germany; and Department of Pediatric Surgery and Pediatric Urology, University Children's Hospital Tübingen, Tübingen, Germany
| | - Ekaterina Shumilina
- *Department of Physiology, University of Tübingen, Tübingen, Germany; Department of Neuroscience, Novartis Institutes for BioMedical Research, Basel, Switzerland; Institute of Physiology, University of Zurich, Zurich, Switzerland; National Contest for Life Foundation, Hamburg, Germany; and Department of Pediatric Surgery and Pediatric Urology, University Children's Hospital Tübingen, Tübingen, Germany
| | - Florian Lang
- *Department of Physiology, University of Tübingen, Tübingen, Germany; Department of Neuroscience, Novartis Institutes for BioMedical Research, Basel, Switzerland; Institute of Physiology, University of Zurich, Zurich, Switzerland; National Contest for Life Foundation, Hamburg, Germany; and Department of Pediatric Surgery and Pediatric Urology, University Children's Hospital Tübingen, Tübingen, Germany
| |
Collapse
|
32
|
Dhungel N, Eleuteri S, Li LB, Kramer NJ, Chartron J, Spencer B, Kosberg K, Fields JA, Klodjan S, Adame A, Lashuel H, Frydman J, Shen K, Masliah E, Gitler AD. Parkinson's disease genes VPS35 and EIF4G1 interact genetically and converge on α-synuclein. Neuron 2015; 85:76-87. [PMID: 25533483 PMCID: PMC4289081 DOI: 10.1016/j.neuron.2014.11.027] [Citation(s) in RCA: 138] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/17/2014] [Indexed: 01/07/2023]
Abstract
Parkinson's disease (PD) is a common neurodegenerative disorder. Functional interactions between some PD genes, like PINK1 and parkin, have been identified, but whether other ones interact remains elusive. Here we report an unexpected genetic interaction between two PD genes, VPS35 and EIF4G1. We provide evidence that EIF4G1 upregulation causes defects associated with protein misfolding. Expression of a sortilin protein rescues these defects, downstream of VPS35, suggesting a potential role for sortilins in PD. We also show interactions between VPS35, EIF4G1, and α-synuclein, a protein with a key role in PD. We extend our findings from yeast to an animal model and show that these interactions are conserved in neurons and in transgenic mice. Our studies reveal unexpected genetic and functional interactions between two seemingly unrelated PD genes and functionally connect them to α-synuclein pathobiology in yeast, worms, and mouse. Finally, we provide a resource of candidate PD genes for future interrogation. VIDEO ABSTRACT
Collapse
Affiliation(s)
- Nripesh Dhungel
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305 USA
| | - Simona Eleuteri
- Department of Neurosciences, School of Medicine, University of California at San Diego, La Jolla, California 92093 USA
| | - Ling-bo Li
- Department of Biology, Stanford University, Stanford, CA 94305 USA,Howard Hughes Medical Institute, Stanford, CA 94305 USA
| | - Nicholas J. Kramer
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305 USA
| | - Justin Chartron
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305 USA,Department of Biology, Stanford University, Stanford, CA 94305 USA
| | - Brian Spencer
- Department of Neurosciences, School of Medicine, University of California at San Diego, La Jolla, California 92093 USA
| | - Kori Kosberg
- Department of Neurosciences, School of Medicine, University of California at San Diego, La Jolla, California 92093 USA
| | - Jerel Adam Fields
- Department of Pathology, School of Medicine, University of California at San Diego, La Jolla, California 92093 USA
| | - Stafa Klodjan
- Department of Pathology, School of Medicine, University of California at San Diego, La Jolla, California 92093 USA
| | - Anthony Adame
- Department of Neurosciences, School of Medicine, University of California at San Diego, La Jolla, California 92093 USA
| | - Hilal Lashuel
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute, Station 19, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, (EPFL) CH-1015 Lausanne, Switzerland
| | - Judith Frydman
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305 USA,Department of Biology, Stanford University, Stanford, CA 94305 USA
| | - Kang Shen
- Department of Biology, Stanford University, Stanford, CA 94305 USA,Howard Hughes Medical Institute, Stanford, CA 94305 USA
| | - Eliezer Masliah
- Department of Neurosciences, School of Medicine, University of California at San Diego, La Jolla, California 92093 USA,Department of Pathology, School of Medicine, University of California at San Diego, La Jolla, California 92093 USA,Correspondence should be addressed to: A.D.G. or E.M., Aaron D. Gitler, 300 Pasteur Drive, M322 Alway Building, Stanford, CA 94305, 650-725-6991 (phone), 650-725-1534 (fax), , Eliezer Masliah, MTF Bldg, UCSD, 9500, La Jolla, CA 92093,
| | - Aaron D. Gitler
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305 USA,Correspondence should be addressed to: A.D.G. or E.M., Aaron D. Gitler, 300 Pasteur Drive, M322 Alway Building, Stanford, CA 94305, 650-725-6991 (phone), 650-725-1534 (fax), , Eliezer Masliah, MTF Bldg, UCSD, 9500, La Jolla, CA 92093,
| |
Collapse
|
33
|
Neuland K, Sharma N, Frick M. Synaptotagmin-7 links fusion-activated Ca²⁺ entry and fusion pore dilation. J Cell Sci 2014; 127:5218-27. [PMID: 25344253 PMCID: PMC4265738 DOI: 10.1242/jcs.153742] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Ca(2+)-dependent regulation of fusion pore dilation and closure is a key mechanism determining the output of cellular secretion. We have recently described 'fusion-activated' Ca(2+) entry (FACE) following exocytosis of lamellar bodies in alveolar type II cells. FACE regulates fusion pore expansion and facilitates secretion. However, the mechanisms linking this locally restricted Ca(2+) signal and fusion pore expansion were still elusive. Here, we demonstrate that synaptotagmin-7 (Syt7) is expressed on lamellar bodies and links FACE and fusion pore dilation. We directly assessed dynamic changes in fusion pore diameters by analysing diffusion of fluorophores across fusion pores. Expressing wild-type Syt7 or a mutant Syt7 with impaired Ca(2+)-binding to the C2 domains revealed that binding of Ca(2+) to the C2A domain facilitates FACE-induced pore dilation, probably by inhibiting translocation of complexin-2 to fused vesicles. However, the C2A domain hampered Ca(2+)-dependent exocytosis of lamellar bodies. These findings support the hypothesis that Syt7 modulates fusion pore expansion in large secretory organelles and extend our picture that lamellar bodies contain the necessary molecular inventory to facilitate secretion during the exocytic post-fusion phase. Moreover, regulating Syt7 levels on lamellar bodies appears to be essential in order that exocytosis is not impeded during the pre-fusion phase.
Collapse
Affiliation(s)
- Kathrin Neuland
- Institute of General Physiology, University of Ulm, Albert-Einstein Allee 11, 89081 Ulm, Germany
| | - Neeti Sharma
- Institute of General Physiology, University of Ulm, Albert-Einstein Allee 11, 89081 Ulm, Germany
| | - Manfred Frick
- Institute of General Physiology, University of Ulm, Albert-Einstein Allee 11, 89081 Ulm, Germany
| |
Collapse
|
34
|
Schapansky J, Nardozzi JD, LaVoie MJ. The complex relationships between microglia, alpha-synuclein, and LRRK2 in Parkinson's disease. Neuroscience 2014; 302:74-88. [PMID: 25284317 DOI: 10.1016/j.neuroscience.2014.09.049] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 09/22/2014] [Accepted: 09/23/2014] [Indexed: 12/19/2022]
Abstract
The proteins alpha-synuclein (αSyn) and leucine rich repeat kinase 2 (LRRK2) are both key players in the pathogenesis of the neurodegenerative disorder Parkinson's disease (PD), but establishing a functional link between the two proteins has proven elusive. Research studies for these two proteins have traditionally and justifiably focused in neuronal cells, but recent studies indicate that each protein could play a greater pathological role elsewhere. αSyn is expressed at high levels within neurons, but they also secrete the protein into the extracellular milieu, where it can have broad ranging effects in the nervous system and relevance to disease etiology. Similarly, low neuronal LRRK2 expression and activity suggests that LRRK2-related functions could be more relevant in cells with higher expression, such as brain-resident microglia. Microglia are monocytic immune cells that protect neurons from noxious stimuli, including pathological αSyn species, and microglial activation is believed to contribute to neuroinflammation and neuronal death in PD. Interestingly, both αSyn and LRRK2 can be linked to microglial function. Secreted αSyn can directly activate microglia, and can be taken up by microglia for clearance, while LRRK2 has been implicated in the intrinsic regulation of microglial activation and of lysosomal degradation processes. Based on these observations, the present review will focus on how PD-associated mutations in LRRK2 could potentially alter microglial biology with respect to neuronally secreted αSyn, resulting in cell dysfunction and neurodegeneration.
Collapse
Affiliation(s)
- J Schapansky
- Center for Neurologic Diseases, Harvard Medical School, and Brigham and Women's Hospital, Boston, MA 02115, United States
| | - J D Nardozzi
- Center for Neurologic Diseases, Harvard Medical School, and Brigham and Women's Hospital, Boston, MA 02115, United States
| | - M J LaVoie
- Center for Neurologic Diseases, Harvard Medical School, and Brigham and Women's Hospital, Boston, MA 02115, United States.
| |
Collapse
|
35
|
Galatsis P, Henderson JL, Kormos BL, Han S, Kurumbail RG, Wager TT, Verhoest PR, Noell GS, Chen Y, Needle E, Berger Z, Steyn SJ, Houle C, Hirst WD. Kinase domain inhibition of leucine rich repeat kinase 2 (LRRK2) using a [1,2,4]triazolo[4,3-b]pyridazine scaffold. Bioorg Med Chem Lett 2014; 24:4132-40. [DOI: 10.1016/j.bmcl.2014.07.052] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 07/18/2014] [Indexed: 01/10/2023]
|
36
|
Schapansky J, Nardozzi JD, Felizia F, LaVoie MJ. Membrane recruitment of endogenous LRRK2 precedes its potent regulation of autophagy. Hum Mol Genet 2014; 23:4201-14. [PMID: 24682598 DOI: 10.1093/hmg/ddu138] [Citation(s) in RCA: 179] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Mutations in leucine-rich repeat kinase 2 (LRRK2) are the most common cause of familial and idiopathic Parkinson's disease. However, the mechanisms for activating its physiological function are not known, hindering identification of the biological role of endogenous LRRK2. The recent discovery that LRRK2 is highly expressed in cells of the innate immune system and genetic association is a risk factor for autoimmune disorders implies an important role for LRRK2 in pathology outside of the central nervous system. Thus, an examination of endogenous LRRK2 in immune cells could provide insight into the protein's function. Here, we establish that stimulation of specific Toll-like receptors results in a complex biochemical activation of endogenous LRRK2, with early phosphorylation of LRRK2 preceding its dimerization and membrane translocation. Membrane-associated LRRK2 co-localized to autophagosome membranes following either TLR4 stimulation or mTOR inhibition with rapamycin. Silencing of endogenous LRRK2 expression resulted in deficits in the induction of autophagy and clearance of a well-described macroautophagy substrate, demonstrating the critical role of endogenous LRRK2 in regulating autophagy. Inhibition of LRRK2 kinase activity also reduced autophagic degradation and suggested the importance of the kinase domain in the regulation of autophagy. Our results demonstrate a well-orchestrated series of biochemical events involved in the activation of LRRK2 important to its physiological function. With similarities observed across multiple cell types and stimuli, these findings are likely relevant in all cell types that natively express endogenous LRRK2, and provide insights into LRRK2 function and its role in human disease.
Collapse
Affiliation(s)
- Jason Schapansky
- Center for Neurologic Diseases, Harvard Medical School, Boston, MA 02115, USA and Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Jonathan D Nardozzi
- Center for Neurologic Diseases, Harvard Medical School, Boston, MA 02115, USA and Brigham and Women's Hospital, Boston, MA 02115, USA
| | | | - Matthew J LaVoie
- Center for Neurologic Diseases, Harvard Medical School, Boston, MA 02115, USA and Brigham and Women's Hospital, Boston, MA 02115, USA
| |
Collapse
|
37
|
|