1
|
Szablewski L. Associations Between Diabetes Mellitus and Neurodegenerative Diseases. Int J Mol Sci 2025; 26:542. [PMID: 39859258 PMCID: PMC11765393 DOI: 10.3390/ijms26020542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/03/2025] [Accepted: 01/07/2025] [Indexed: 01/27/2025] Open
Abstract
Diabetes mellitus (DM) and neurodegenerative diseases/disturbances are worldwide health problems. The most common chronic conditions diagnosed in persons 60 years and older are type 2 diabetes mellitus (T2DM) and cognitive impairment. It was found that diabetes mellitus is a major risk for cognitive decline, dementia, Parkinson's disease (PD), Alzheimer's disease (AD), Huntington's disease (HD), amyotrophic lateral sclerosis (ALS) and other neurodegenerative disorders. Different mechanisms of associations between these diseases and diabetes mellitus have been suggested. For example, it is postulated that an impaired intracellular insulin signaling pathway, together with hyperglycemia and hyperinsulinemia, may cause pathological changes, such as dysfunction of the mitochondria, oxidative stress inflammatory responses, etc. The association between diabetes mellitus and neurodegenerative diseases, as well as the mechanisms of these associations, needs further investigation. The aim of this review is to describe the associations between diabetes mellitus, especially type 1 (T1DM) and type 2 diabetes mellitus, and selected neurodegenerative diseases, i.e., Alzheimer's disease, Parkinson's disease, Huntington's disease and amyotrophic lateral sclerosis. Suggested mechanisms of these associations are also described.
Collapse
Affiliation(s)
- Leszek Szablewski
- Chair and Department of General Biology and Parasitology, Medical University of Warsaw, Chałubińskiego 5, 02-004 Warsaw, Poland
| |
Collapse
|
2
|
Lista S, Santos-Lozano A, Emanuele E, Mercuri NB, Gabelle A, López-Ortiz S, Martín-Hernández J, Maisto N, Imbimbo C, Caraci F, Imbimbo BP, Zetterberg H, Nisticò R. Monitoring synaptic pathology in Alzheimer's disease through fluid and PET imaging biomarkers: a comprehensive review and future perspectives. Mol Psychiatry 2024; 29:847-857. [PMID: 38228892 DOI: 10.1038/s41380-023-02376-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 12/04/2023] [Accepted: 12/12/2023] [Indexed: 01/18/2024]
Abstract
Alzheimer's disease (AD) is currently constrained by limited clinical treatment options. The initial pathophysiological event, which can be traced back to decades before the clinical symptoms become apparent, involves the excessive accumulation of amyloid-beta (Aβ), a peptide comprised of 40-42 amino acids, in extraneuronal plaques within the brain. Biochemical and histological studies have shown that overaccumulation of Aβ instigates an aberrant escalation in the phosphorylation and secretion of tau, a microtubule-binding axonal protein. The accumulation of hyperphosphorylated tau into intraneuronal neurofibrillary tangles is in turn correlated with microglial dysfunction and reactive astrocytosis, culminating in synaptic dysfunction and neurodegeneration. As neurodegeneration progresses, it gives rise to mild clinical symptoms of AD, which may eventually evolve into overt dementia. Synaptic loss in AD may develop even before tau alteration and in response to possible elevations in soluble oligomeric forms of Aβ associated with early AD. These findings largely rely on post-mortem autopsy examinations, which typically involve a limited number of patients. Over the past decade, a range of fluid biomarkers such as neurogranin, α-synuclein, visinin-like protein 1 (VILIP-1), neuronal pentraxin 2, and β-synuclein, along with positron emission tomography (PET) markers like synaptic vesicle glycoprotein 2A, have been developed. These advancements have facilitated the exploration of how synaptic markers in AD patients correlate with cognitive impairment. However, fluid biomarkers indicating synaptic loss have only been validated in cerebrospinal fluid (CSF), not in plasma, with the exception of VILIP-1. The most promising PET radiotracer, [11C]UCB-J, currently faces significant challenges hindering its widespread clinical use, primarily due to the necessity of a cyclotron. As such, additional research geared toward the exploration of synaptic pathology biomarkers is crucial. This will not only enable their extensive clinical application, but also refine the optimization process of AD pharmacological trials.
Collapse
Affiliation(s)
- Simone Lista
- i+HeALTH Strategic Research Group, Department of Health Sciences, Miguel de Cervantes European University (UEMC), 47012, Valladolid, Spain.
| | - Alejandro Santos-Lozano
- i+HeALTH Strategic Research Group, Department of Health Sciences, Miguel de Cervantes European University (UEMC), 47012, Valladolid, Spain
- Physical Activity and Health Research Group (PaHerg), Research Institute of the Hospital 12 de Octubre ('imas12'), 28041, Madrid, Spain
| | | | - Nicola B Mercuri
- Experimental Neurology Laboratory, IRCCS Santa Lucia Foundation, 00143, Rome, Italy
- Department of Systems Medicine, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Audrey Gabelle
- CMRR, Memory Resources and Research Center, Montpellier University of Excellence i-site, 34295, Montpellier, France
| | - Susana López-Ortiz
- i+HeALTH Strategic Research Group, Department of Health Sciences, Miguel de Cervantes European University (UEMC), 47012, Valladolid, Spain
| | - Juan Martín-Hernández
- i+HeALTH Strategic Research Group, Department of Health Sciences, Miguel de Cervantes European University (UEMC), 47012, Valladolid, Spain
| | - Nunzia Maisto
- Laboratory of Pharmacology of Synaptic Plasticity, EBRI Rita Levi-Montalcini Foundation, 00143, Rome, Italy
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, 00185, Rome, Italy
| | - Camillo Imbimbo
- Department of Brain and Behavioral Sciences, University of Pavia, 27100, Pavia, Italy
| | - Filippo Caraci
- Department of Drug and Health Sciences, University of Catania, 95125, Catania, Italy
- Neuropharmacology and Translational Neurosciences Research Unit, Oasi Research Institute-IRCCS, 94018, Troina, Italy
| | - Bruno P Imbimbo
- Department of Research and Development, Chiesi Farmaceutici, 43122, Parma, Italy
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, 431 80, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, 431 80, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, WC1N, London, UK
- UK Dementia Research Institute at UCL, WC1E 6BT, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, 53726, WI, USA
| | - Robert Nisticò
- Laboratory of Pharmacology of Synaptic Plasticity, EBRI Rita Levi-Montalcini Foundation, 00143, Rome, Italy.
- School of Pharmacy, University of Rome "Tor Vergata", 00133, Rome, Italy.
| |
Collapse
|
3
|
Patil RS, Tupe RS. Communal interaction of glycation and gut microbes in diabetes mellitus, Alzheimer's disease, and Parkinson's disease pathogenesis. Med Res Rev 2024; 44:365-405. [PMID: 37589449 DOI: 10.1002/med.21987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 07/12/2023] [Accepted: 08/06/2023] [Indexed: 08/18/2023]
Abstract
Diabetes and its complications, Alzheimer's disease (AD), and Parkinson's disease (PD) are increasing gradually, reflecting a global threat vis-à-vis expressing the essentiality of a substantial paradigm shift in research and remedial actions. Protein glycation is influenced by several factors, like time, temperature, pH, metal ions, and the half-life of the protein. Surprisingly, most proteins associated with metabolic and neurodegenerative disorders are generally long-lived and hence susceptible to glycation. Remarkably, proteins linked with diabetes, AD, and PD share this characteristic. This modulates protein's structure, aggregation tendency, and toxicity, highlighting renovated attention. Gut microbes and microbial metabolites marked their importance in human health and diseases. Though many scientific shreds of evidence are proposed for possible change and dysbiosis in gut flora in these diseases, very little is known about the mechanisms. Screening and unfolding their functionality in metabolic and neurodegenerative disorders is essential in hunting the gut treasure. Therefore, it is imperative to evaluate the role of glycation as a common link in diabetes and neurodegenerative diseases, which helps to clarify if modulation of nonenzymatic glycation may act as a beneficial therapeutic strategy and gut microbes/metabolites may answer some of the crucial questions. This review briefly emphasizes the common functional attributes of glycation and gut microbes, the possible linkages, and discusses current treatment options and therapeutic challenges.
Collapse
Affiliation(s)
- Rahul Shivaji Patil
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Rashmi Santosh Tupe
- Symbiosis School of Biological Sciences (SSBS), Symbiosis International (Deemed University) (SIU), Pune, Maharashtra, India
| |
Collapse
|
4
|
Bigi A, Cascella R, Cecchi C. α-Synuclein oligomers and fibrils: partners in crime in synucleinopathies. Neural Regen Res 2023; 18:2332-2342. [PMID: 37282450 PMCID: PMC10360081 DOI: 10.4103/1673-5374.371345] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023] Open
Abstract
The misfolding and aggregation of α-synuclein is the general hallmark of a group of devastating neurodegenerative pathologies referred to as synucleinopathies, such as Parkinson's disease, dementia with Lewy bodies, and multiple system atrophy. In such conditions, a range of different misfolded aggregates, including oligomers, protofibrils, and fibrils, are present both in neurons and glial cells. Growing experimental evidence supports the proposition that soluble oligomeric assemblies, formed during the early phases of the aggregation process, are the major culprits of neuronal toxicity; at the same time, fibrillar conformers appear to be the most efficient at propagating among interconnected neurons, thus contributing to the spreading of α-synuclein pathology. Moreover, α-synuclein fibrils have been recently reported to release soluble and highly toxic oligomeric species, responsible for an immediate dysfunction in the recipient neurons. In this review, we discuss the current knowledge about the plethora of mechanisms of cellular dysfunction caused by α-synuclein oligomers and fibrils, both contributing to neurodegeneration in synucleinopathies.
Collapse
Affiliation(s)
- Alessandra Bigi
- Department of Experimental and Clinical Biomedical Sciences, Section of Biochemistry, University of Florence, Florence, Italy
| | - Roberta Cascella
- Department of Experimental and Clinical Biomedical Sciences, Section of Biochemistry, University of Florence, Florence, Italy
| | - Cristina Cecchi
- Department of Experimental and Clinical Biomedical Sciences, Section of Biochemistry, University of Florence, Florence, Italy
| |
Collapse
|
5
|
Shim KH, Kang MJ, Youn YC, An SSA, Kim S. Alpha-synuclein: a pathological factor with Aβ and tau and biomarker in Alzheimer's disease. Alzheimers Res Ther 2022; 14:201. [PMID: 36587215 PMCID: PMC9805257 DOI: 10.1186/s13195-022-01150-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 12/20/2022] [Indexed: 01/01/2023]
Abstract
BACKGROUND Alpha-synuclein (α-syn) is considered the main pathophysiological protein component of Lewy bodies in synucleinopathies. α-Syn is an intrinsically disordered protein (IDP), and several types of structural conformations have been reported, depending on environmental factors. Since IDPs may have distinctive functions depending on their structures, α-syn can play different roles and interact with several proteins, including amyloid-beta (Aβ) and tau, in Alzheimer's disease (AD) and other neurodegenerative disorders. MAIN BODY In previous studies, α-syn aggregates in AD brains suggested a close relationship between AD and α-syn. In addition, α-syn directly interacts with Aβ and tau, promoting mutual aggregation and exacerbating the cognitive decline. The interaction of α-syn with Aβ and tau presented different consequences depending on the structural forms of the proteins. In AD, α-syn and tau levels in CSF were both elevated and revealed a high positive correlation. Especially, the CSF α-syn concentration was significantly elevated in the early stages of AD. Therefore, it could be a diagnostic marker of AD and help distinguish AD from other neurodegenerative disorders by incorporating other biomarkers. CONCLUSION The overall physiological and pathophysiological functions, structures, and genetics of α-syn in AD are reviewed and summarized. The numerous associations of α-syn with Aβ and tau suggested the significance of α-syn, as a partner of the pathophysiological roles in AD. Understanding the involvements of α-syn in the pathology of Aβ and tau could help address the unresolved issues of AD. In particular, the current status of the CSF α-syn in AD recommends it as an additional biomarker in the panel for AD diagnosis.
Collapse
Affiliation(s)
- Kyu Hwan Shim
- grid.256155.00000 0004 0647 2973Department of Bionano Technology, Gachon University, Seongnam-Si, Gyeonggi-Do Republic of Korea
| | - Min Ju Kang
- Department of Neurology, Veterans Health Service Medical Center, Veterans Medical Research Institute, Seoul, Republic of Korea
| | - Young Chul Youn
- grid.411651.60000 0004 0647 4960Department of Neurology, Chung-Ang University Hospital, Seoul, Republic of Korea
| | - Seong Soo A. An
- grid.256155.00000 0004 0647 2973Department of Bionano Technology, Gachon University, Seongnam-Si, Gyeonggi-Do Republic of Korea
| | - SangYun Kim
- grid.412480.b0000 0004 0647 3378Department of Neurology, Seoul National University Bundang Hospital and Seoul National University College of Medicine, Seongnam-Si, Gyeonggi-Do Republic of Korea
| |
Collapse
|
6
|
Sengupta U, Kayed R. Amyloid β, Tau, and α-Synuclein aggregates in the pathogenesis, prognosis, and therapeutics for neurodegenerative diseases. Prog Neurobiol 2022; 214:102270. [DOI: 10.1016/j.pneurobio.2022.102270] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/28/2022] [Accepted: 04/13/2022] [Indexed: 12/11/2022]
|
7
|
Tsai CF, Chen CC, Wu EHK, Chung CR, Huang CY, Tsai PY, Yeh SC. A Machine-Learning-Based Assessment Method for Early-Stage Neurocognitive Impairment by an Immersive Virtual Supermarket. IEEE Trans Neural Syst Rehabil Eng 2021; 29:2124-2132. [PMID: 34623270 DOI: 10.1109/tnsre.2021.3118918] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder. Though it is not yet curable or reversible, research has shown that clinical intervention or intensive cognitive training at an early stage may effectively delay the progress of the disease. As a result, screening populations with mild cognitive impairment (MCI) or early AD via efficient, effective and low-cost cognitive assessments is important. Currently, a cognitive assessment relies mostly on cognitive tests, such as the Mini-Mental State Examination (MMSE) or the Montreal Cognitive Assessment (MoCA), which must be performed by therapists. Also, cognitive functions can be divided into a variety of dimensions, such as memory, attention, executive function, visual spatial and so on. Executive functions (EF), also known as executive control or cognitive control, refer to a set of skills necessary to perform higher-order cognitive processes, including working memory, planning, attention, cognitive flexibility, and inhibitory control. Along with the fast progress of virtual reality (VR) and artificial intelligence (AI), this study proposes an intelligent assessment method aimed at assessing executive functions. Utilizing machine learning to develop an automatic evidence-based assessment model, behavioral information is acquired through performing executive-function tasks in a VR supermarket. Clinical trials were performed individuals with MCI or early AD and six healthy participants. Statistical analysis showed that 45 out of 46 indices derived from behavioral information were found to differ significantly between individuals with neurocognitive disorder and healthy participants. This analysis indicates these indices may be potential bio-markers. Further, machine-learning methods were applied to build classifiers that differentiate between individuals with MCI or early AD and healthy participants. The accuracy of the classifier is up to 100%, demonstrating the derived features from the VR system were highly related to diagnosis of individuals with MCI or early AD.
Collapse
|
8
|
Torok J, Maia PD, Powell F, Pandya S, Raj A. A method for inferring regional origins of neurodegeneration. Brain 2019; 141:863-876. [PMID: 29409009 DOI: 10.1093/brain/awx371] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Accepted: 11/08/2017] [Indexed: 01/20/2023] Open
Abstract
Alzheimer's disease, the most common form of dementia, is characterized by the emergence and spread of senile plaques and neurofibrillary tangles, causing widespread neurodegeneration. Though the progression of Alzheimer's disease is considered to be stereotyped, the significant variability within clinical populations obscures this interpretation on the individual level. Of particular clinical importance is understanding where exactly pathology, e.g. tau, emerges in each patient and how the incipient atrophy pattern relates to future spread of disease. Here we demonstrate a newly developed graph theoretical method of inferring prior disease states in patients with Alzheimer's disease and mild cognitive impairment using an established network diffusion model and an L1-penalized optimization algorithm. Although the 'seeds' of origin using our inference method successfully reproduce known trends in Alzheimer's disease staging on a population level, we observed that the high degree of heterogeneity between patients at baseline is also reflected in their seeds. Additionally, the individualized seeds are significantly more predictive of future atrophy than a single seed placed at the hippocampus. Our findings illustrate that understanding where disease originates in individuals is critical to determining how it progresses and that our method allows us to infer early stages of disease from atrophy patterns observed at diagnosis.
Collapse
Affiliation(s)
- Justin Torok
- Department of Radiology, Weill Cornell Medical College of Cornell University, 407 E. 61 Street, RR106, New York, NY 10065, USA
| | - Pedro D Maia
- Department of Radiology, Weill Cornell Medical College of Cornell University, 407 E. 61 Street, RR106, New York, NY 10065, USA
| | - Fon Powell
- Department of Radiology, Weill Cornell Medical College of Cornell University, 407 E. 61 Street, RR106, New York, NY 10065, USA
| | - Sneha Pandya
- Department of Radiology, Weill Cornell Medical College of Cornell University, 407 E. 61 Street, RR106, New York, NY 10065, USA
| | - Ashish Raj
- Department of Radiology, Weill Cornell Medical College of Cornell University, 407 E. 61 Street, RR106, New York, NY 10065, USA
| |
Collapse
|
9
|
Potential Diagnostic Value of Red Blood Cells α-Synuclein Heteroaggregates in Alzheimer's Disease. Mol Neurobiol 2019; 56:6451-6459. [PMID: 30826968 DOI: 10.1007/s12035-019-1531-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 02/15/2019] [Indexed: 12/31/2022]
Abstract
A plethora of complex misfolded protein combinations have been found in Alzheimer disease (AD) brains besides the classical pathological hallmarks. Recently, α-synuclein (α-syn) and its heterocomplexes with amyloid-β (Aβ) and tau have been suggested to be involved in the pathophysiological processes of neurodegenerative diseases. These pathological features are not limited to the brain, but can be also found in peripheral fluids. In this respect, red blood cells (RBCs) have been suggested as a good model to investigate the biochemical alterations of neurodegeneration. Our aim is to find whether RBC concentrations of α-syn and its heterocomplexes (i.e., α-syn/Aβ and α-syn/tau) were different in AD patients compared with healthy controls (HC). The levels of homo- and heteroaggregates of α-syn, Aβ and tau, were analyzed in a cohort of AD patients at early stage either with dementia or prodromal symptoms (N = 39) and age-matched healthy controls (N = 39). All AD patients received a biomarker-based diagnosis (low cerebrospinal fluid levels of Aβ peptide combined with high cerebrospinal fluid concentrations of total tau and/or phospho-tau proteins; alternatively, a positivity to cerebral amyloid-PET scan). Our results showed lower concentrations of α-syn and its heterocomplexes (i.e., α-syn/Aβ and α-syn/tau) in RBCs of AD patients with respect to HC. RBC α-syn/Aβ as well as RBC α-syn/tau heterodimers discriminated AD participants from HC with fair accuracy, whereas RBC α-syn concentrations differentiated poorly the two groups. Although additional investigations are required, these data suggest α-syn heteroaggregates in RBCs as potential tool in the diagnostic work-up of early AD diagnosis.
Collapse
|
10
|
Vergallo A, Bun RS, Toschi N, Baldacci F, Zetterberg H, Blennow K, Cavedo E, Lamari F, Habert MO, Dubois B, Floris R, Garaci F, Lista S, Hampel H. Association of cerebrospinal fluid α-synuclein with total and phospho-tau 181 protein concentrations and brain amyloid load in cognitively normal subjective memory complainers stratified by Alzheimer's disease biomarkers. Alzheimers Dement 2018; 14:1623-1631. [PMID: 30055132 DOI: 10.1016/j.jalz.2018.06.3053] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 04/30/2018] [Accepted: 06/15/2018] [Indexed: 11/16/2022]
Abstract
INTRODUCTION Several neurodegenerative brain proteinopathies, including Alzheimer's disease (AD), are associated with cerebral deposition of insoluble aggregates of α-synuclein. Previous studies reported a trend toward increased cerebrospinal fluid (CSF) α-synuclein (α-syn) concentrations in AD compared with other neurodegenerative diseases and healthy controls. METHODS The pathophysiological role of CSF α-syn in asymptomatic subjects at risk of AD has not been explored. We performed a large-scale cross-sectional observational monocentric study of preclinical individuals at risk for AD (INSIGHT-preAD). RESULTS We found a positive association between CSF α-syn concentrations and brain β-amyloid deposition measures as mean cortical standard uptake value ratios. We demonstrate positive correlations between CSF α-syn and both CSF t-tau and p-tau181 concentrations. DISCUSSION Animal models presented evidence, indicating that α-syn may synergistically and directly induce fibrillization of both tau and β-amyloid. Our data indicate an association of CSF α-syn with AD-related pathophysiological mechanisms, during the preclinical phase of the disease.
Collapse
Affiliation(s)
- Andrea Vergallo
- AXA Research Fund & Sorbonne University Chair, Paris, France; Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Boulevard de l'hôpital, Paris, France; Brain & Spine Institute (ICM), INSERM U 1127, CNRS UMR 7225, Boulevard de l'hôpital, Paris, France; Institute of Memory and Alzheimer's Disease (IM2A), Department of Neurology, Pitié-Salpêtrière Hospital, AP-HP, Boulevard de l'hôpital, Paris, France.
| | - René-Sosata Bun
- AXA Research Fund & Sorbonne University Chair, Paris, France; Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Boulevard de l'hôpital, Paris, France; Brain & Spine Institute (ICM), INSERM U 1127, CNRS UMR 7225, Boulevard de l'hôpital, Paris, France; Institute of Memory and Alzheimer's Disease (IM2A), Department of Neurology, Pitié-Salpêtrière Hospital, AP-HP, Boulevard de l'hôpital, Paris, France
| | - Nicola Toschi
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy; Department of Radiology, "Athinoula A. Martinos" Center for Biomedical Imaging, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Filippo Baldacci
- AXA Research Fund & Sorbonne University Chair, Paris, France; Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Boulevard de l'hôpital, Paris, France; Brain & Spine Institute (ICM), INSERM U 1127, CNRS UMR 7225, Boulevard de l'hôpital, Paris, France; Institute of Memory and Alzheimer's Disease (IM2A), Department of Neurology, Pitié-Salpêtrière Hospital, AP-HP, Boulevard de l'hôpital, Paris, France; Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Henrik Zetterberg
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden; Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, UK; UK Dementia Research Institute, London, UK
| | - Kaj Blennow
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Enrica Cavedo
- AXA Research Fund & Sorbonne University Chair, Paris, France; Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Boulevard de l'hôpital, Paris, France; Brain & Spine Institute (ICM), INSERM U 1127, CNRS UMR 7225, Boulevard de l'hôpital, Paris, France; Institute of Memory and Alzheimer's Disease (IM2A), Department of Neurology, Pitié-Salpêtrière Hospital, AP-HP, Boulevard de l'hôpital, Paris, France; Laboratory of Alzheimer's Neuroimaging and Epidemiology, IRCCS Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Foudil Lamari
- AP-HP, UF Biochimie des Maladies Neuro-métaboliques, Service de Biochimie Métabolique, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | - Marie-Odile Habert
- Sorbonne Université, CNRS, INSERM, Laboratoire d'Imagerie Biomédicale, Paris, France; Centre pour l'Acquisition et le Traitement des Images (www.cati-neuroimaging.com), France; AP-HP, Hôpital Pitié-Salpêtrière, Département de Médecine Nucléaire, Paris, France
| | - Bruno Dubois
- Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Boulevard de l'hôpital, Paris, France; Brain & Spine Institute (ICM), INSERM U 1127, CNRS UMR 7225, Boulevard de l'hôpital, Paris, France; Institute of Memory and Alzheimer's Disease (IM2A), Department of Neurology, Pitié-Salpêtrière Hospital, AP-HP, Boulevard de l'hôpital, Paris, France
| | - Roberto Floris
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy
| | - Francesco Garaci
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy; Casa di Cura "San Raffaele Cassino", Cassino, Italy
| | - Simone Lista
- AXA Research Fund & Sorbonne University Chair, Paris, France; Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Boulevard de l'hôpital, Paris, France; Brain & Spine Institute (ICM), INSERM U 1127, CNRS UMR 7225, Boulevard de l'hôpital, Paris, France; Institute of Memory and Alzheimer's Disease (IM2A), Department of Neurology, Pitié-Salpêtrière Hospital, AP-HP, Boulevard de l'hôpital, Paris, France
| | - Harald Hampel
- AXA Research Fund & Sorbonne University Chair, Paris, France; Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Boulevard de l'hôpital, Paris, France; Brain & Spine Institute (ICM), INSERM U 1127, CNRS UMR 7225, Boulevard de l'hôpital, Paris, France; Institute of Memory and Alzheimer's Disease (IM2A), Department of Neurology, Pitié-Salpêtrière Hospital, AP-HP, Boulevard de l'hôpital, Paris, France
| | | | | |
Collapse
|
11
|
Mak E, Su L, Williams GB, Firbank MJ, Lawson RA, Yarnall AJ, Duncan GW, Mollenhauer B, Owen AM, Khoo TK, Brooks DJ, Rowe JB, Barker RA, Burn DJ, O'Brien JT. Longitudinal whole-brain atrophy and ventricular enlargement in nondemented Parkinson's disease. Neurobiol Aging 2017; 55:78-90. [PMID: 28431288 PMCID: PMC5454799 DOI: 10.1016/j.neurobiolaging.2017.03.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Revised: 03/05/2017] [Accepted: 03/08/2017] [Indexed: 11/28/2022]
Abstract
We investigated whole-brain atrophy and ventricular enlargement over 18 months in nondemented Parkinson's disease (PD) and examined their associations with clinical measures and baseline CSF markers. PD subjects (n = 100) were classified at baseline into those with mild cognitive impairment (MCI; PD-MCI, n = 36) and no cognitive impairment (PD-NC, n = 64). Percentage of whole-brain volume change (PBVC) and ventricular expansion over 18 months were assessed with FSL-SIENA and ventricular enlargement (VIENA) respectively. PD-MCI showed increased global atrophy (-1.1% ± 0.8%) and ventricular enlargement (6.9 % ± 5.2%) compared with both PD-NC (PBVC: -0.4 ± 0.5, p < 0.01; VIENA: 2.1% ± 4.3%, p < 0.01) and healthy controls. In a subset of 35 PD subjects, CSF levels of tau, and Aβ42/Aβ40 ratio were correlated with PBVC and ventricular enlargement respectively. The sample size required to demonstrate a 20% reduction in PBVC and VIENA was approximately 1/15th of that required to detect equivalent changes in cognitive decline. These findings suggest that longitudinal MRI measurements have potential to serve as surrogate markers to complement clinical assessments for future disease-modifying trials in PD.
Collapse
Affiliation(s)
- Elijah Mak
- Department of Psychiatry, University of Cambridge, Cambridgeshire, UK
| | - Li Su
- Department of Psychiatry, University of Cambridge, Cambridgeshire, UK
| | - Guy B Williams
- Wolfson Brain Imaging Centre, University of Cambridge, Cambridgeshire, UK
| | - Michael J Firbank
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK
| | - Rachael A Lawson
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK
| | - Alison J Yarnall
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK
| | - Gordon W Duncan
- Medicine of the Elderly, Western General Hospital, Edinburgh, UK
| | - Brit Mollenhauer
- Paracelsus-Elena-Klinik, Kassel, Germany; University Medical Center Goettingen, Institute of Neuropathology, Goettingen, Germany
| | - Adrian M Owen
- Brain and Mind Institute, University of Western Ontario, London, Canada; Department of Psychology, University of Western Ontario, London, Canada
| | - Tien K Khoo
- Menzies Health Institute, Queensland and School of Medicine, Griffith University, Gold Coast, Australia
| | - David J Brooks
- Division of Neuroscience, Imperial College London, London, UK; Institute of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - James B Rowe
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK; Medical Research Council, Cognition and Brain Sciences Unit, Cambridge, UK; Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK
| | - Roger A Barker
- John van Geest Centre for Brain Repair, University of Cambridge, Cambridge, UK
| | - David J Burn
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK
| | - John T O'Brien
- Department of Psychiatry, University of Cambridge, Cambridgeshire, UK.
| |
Collapse
|
12
|
Aging modifies the effect of GCH1 RS11158026 on DAT uptake and Parkinson's disease clinical severity. Neurobiol Aging 2016; 50:39-46. [PMID: 27871051 DOI: 10.1016/j.neurobiolaging.2016.10.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 09/23/2016] [Accepted: 10/01/2016] [Indexed: 11/27/2022]
Abstract
Novel single nucleotide polymorphisms within Parkinson's disease (PD) can predict disease risk, but their influence on clinical, cognitive, and neurobiological indices remains unexplored. We investigated differences between functional polymorphisms at RS11158026 coding for guanosine triphosphate cyclohydrolase-1 (GCH1), an essential enzyme for dopamine production in nigrostriatal cells. Among newly diagnosed, untreated PD subjects and age-matched controls from the Parkinson's Progression Markers Initiative, T allele carriers showed higher PD risk (odds ratio = 1.23, p = 0.048), earlier age of onset by 5 years (p = 0.003), and lower striatal dopamine reuptake transporter uptake (p = 0.003). Carriers also had increased cerebrospinal fluid α-synuclein (p = 0.016), worse motor function (p = 0.041), anxiety (p = 0.038), and executive function (p < 0.001). Strikingly, these effects were only in younger T carriers (<50 years), where aging quells the effects of these genetic factors. This suggests GCH1 variants affect early PD risk through altered dopamine uptake, and aging alters how genetic factors contribute to disease development. Future studies should investigate how aging modifies genotypes' contributions on PD risk and sequelae.
Collapse
|
13
|
Vicente Miranda H, El-Agnaf OMA, Outeiro TF. Glycation in Parkinson's disease and Alzheimer's disease. Mov Disord 2016; 31:782-90. [PMID: 26946341 DOI: 10.1002/mds.26566] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Revised: 12/21/2015] [Accepted: 01/07/2016] [Indexed: 12/14/2022] Open
Abstract
Glycation is a spontaneous age-dependent posttranslational modification that can impact the structure and function of several proteins. Interestingly, glycation can be detected at the periphery of Lewy bodies in the brain in Parkinson's disease. Moreover, α-synuclein can be glycated, at least under experimental conditions. In Alzheimer's disease, glycation of amyloid β peptide exacerbates its toxicity and contributes to neurodegeneration. Recent studies establish diabetes mellitus as a risk factor for several neurodegenerative disorders, including Parkinson's and Alzheimer's diseases. However, the mechanisms underlying this connection remain unclear. We hypothesize that hyperglycemia might play an important role in the development of these disorders, possibly by also inducing protein glycation and thereby dysfunction, aggregation, and deposition. Here, we explore protein glycation as a common player in Parkinson's and Alzheimer's diseases and propose it may constitute a novel target for the development of strategies for neuroprotective therapeutic interventions. © 2016 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
| | - Omar M A El-Agnaf
- Neurological Disorders Center, Qatar Biomedical Research Institute, and College of Science and Engineering, Hamad Bin Khalifa University (HBKU), Education City, Qatar Foundation, P.O. Box 5825 Doha, Qatar
| | - Tiago Fleming Outeiro
- CEDOC - Chronic Diseases Research Center, NOVA Medical School, Lisboa, Portugal.,Department of Neurodegeneration and Restorative Research, Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), University Medical Center Goettingen, Goettingen, Germany.,Max Planck Institute for Experimental Medicine, Goettingen, Germany
| |
Collapse
|
14
|
Mackin RS, Insel P, Zhang J, Mohlenhoff B, Galasko D, Weiner M, Mattsson N. Cerebrospinal fluid α-synuclein and Lewy body-like symptoms in normal controls, mild cognitive impairment, and Alzheimer's disease. J Alzheimers Dis 2015; 43:1007-16. [PMID: 25125463 DOI: 10.3233/jad-141287] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND Reduced cerebrospinal fluid (CSF) α-synuclein has been described in synucleinopathies, including dementia with Lewy bodies (DLB). Common symptoms of DLB include visual hallucinations and visuospatial and executive deficits. Co-occurrence of Lewy body pathology is common in Alzheimer's disease (AD) patients, but it is unknown if reduced CSF α-synuclein is associated with Lewy body-like symptomatology in AD. OBJECTIVE Determine associations between CSF α-synuclein and Lewy body-like symptomatology. METHODS We included 73 controls (NC), 121 mild cognitive impairment (MCI) patients, and 61 AD patients (median follow-up 3.5 years, range 0.6-7.8). We tested associations between baseline CSF α-synuclein and visual hallucinations and (longitudinal) cognition. Models were tested with and without co-varying for CSF total tau (T-tau), which is elevated in AD patients, and believed to reflect neurodegeneration. RESULTS Hallucinations were reported in 20% of AD patients, 13% of MCI patients, and 8% of NC. In AD, low CSF α-synuclein was associated with hallucinations. When adjusting for CSF T-tau, low CSF α-synuclein was associated with accelerated decline of executive function (NC, MCI, and AD), memory (MCI and AD), and language (MCI). CONCLUSION The associations of low CSF α-synuclein with hallucinations and poor executive function, which are hallmarks of DLB, indirectly suggest that this biomarker may reflect underlying synuclein pathology. The associations with memory and language in MCI and AD suggests either that reduced CSF α-synuclein also partly reflects global impaired neuronal/synaptic function, or that non-specific overall cognitive deterioration is accelerated in the presence of synuclein related pathology. The findings will require autopsy verification.
Collapse
Affiliation(s)
- R Scott Mackin
- Department of Veterans Affairs Medical Center, Center for Imaging of Neurodegenerative Diseases, San Francisco, CA, USA Department of Psychiatry, University of California, San Francisco, CA, USA
| | - Philip Insel
- Department of Veterans Affairs Medical Center, Center for Imaging of Neurodegenerative Diseases, San Francisco, CA, USA
| | - Jing Zhang
- Department of Pathology, University of Washington, Seattle, WA, USA
| | - Brian Mohlenhoff
- Department of Veterans Affairs Medical Center, Center for Imaging of Neurodegenerative Diseases, San Francisco, CA, USA Department of Psychiatry, University of California, San Francisco, CA, USA Mental Health Service, Veterans Affairs Medical Center, San Francisco, CA, USA
| | - Douglas Galasko
- Department of Neurosciences, University of California, San Diego, CA, USA
| | - Michael Weiner
- Department of Veterans Affairs Medical Center, Center for Imaging of Neurodegenerative Diseases, San Francisco, CA, USA Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Niklas Mattsson
- Department of Veterans Affairs Medical Center, Center for Imaging of Neurodegenerative Diseases, San Francisco, CA, USA Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA Clinical Neurochemistry Laboratory, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| |
Collapse
|
15
|
Schade S, Mollenhauer B. Biomarkers in biological fluids for dementia with Lewy bodies. ALZHEIMERS RESEARCH & THERAPY 2014; 6:72. [PMID: 25478030 PMCID: PMC4255553 DOI: 10.1186/s13195-014-0072-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Dementia with Lewy bodies (DLB) has become the second most common neurodegenerative dementia due to demographic ageing. Differential diagnosis is still troublesome especially in early stages of the disease, since there is a great clinical and neuropathological overlap primarily with Alzheimer's disease and Parkinson's disease. Therefore, more specific biomarkers, not only for scientific reasons but also for clinical therapeutic decision-making, are urgently needed. In this review, we summarize the knowledge on fluid biomarkers for DLB, derived predominantly from cerebrospinal fluid. We discuss the value of well-defined markers (β-amyloid, (phosphorylated) tau, α-synuclein) as well as some promising 'upcoming' substances, which still have to be further evaluated.
Collapse
Affiliation(s)
- Sebastian Schade
- Paracelsus-Elena-Klinik, Klinikstraße 16, Kassel, D-34128, Germany ; Department of Clinical Neurophysiology, University Medical Center, Georg-August University, Robert-Koch Straße 40, Göttingen, 37075, Germany
| | - Brit Mollenhauer
- Paracelsus-Elena-Klinik, Klinikstraße 16, Kassel, D-34128, Germany ; Department of Neurosurgery, University Medical Center, Georg-August University, Robert-Koch Straße 40, Göttingen, 37075, Germany ; Department of Neuropathology, University Medical Center, Georg-August University, Robert-Koch Straße 40, Göttingen, 37075, Germany
| |
Collapse
|
16
|
Shared mechanisms of neurodegeneration in Alzheimer's disease and Parkinson's disease. BIOMED RESEARCH INTERNATIONAL 2014; 2014:648740. [PMID: 24900975 PMCID: PMC4037122 DOI: 10.1155/2014/648740] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Revised: 04/16/2014] [Accepted: 04/20/2014] [Indexed: 12/03/2022]
Abstract
Alzheimer's disease (AD) and Parkinson's disease (PD) have markedly different clinical and pathological features, but these two diseases are the most common neurodegenerative disorders. Previous studies have showed that there are common mechanisms in AD and PD. Several genetic studies have revealed mutations in genes associated with the risk of AD and PD. Circumstantial evidences have shown that dysregulation of brain iron homeostasis leads to abnormal iron accumulation and results in AD as well as PD. α-Synuclein and tau take part in the mechanisms of these diseases by oxidative stress and mitochondrial dysfunction. Some studies indicated that the loss of LC noradrenergic neurons may occur early in the progression of AD and PD. Nicotinic acetylcholine receptors (nAChRs) are members of the Cys-loop superfamily of pentameric ligand-gated ion channels; some evidence showed that nicotinic receptors may be associated with AD and PD. These experimental and clinical studies may provide a scientific foundation for common shared mechanisms in AD and PD.
Collapse
|