1
|
Huang J, Xiong X, Zhang W, Chen X, Wei Y, Li H, Xie J, Wei Q, Zhou Q. Integrating miRNA and full-length transcriptome profiling to elucidate the mechanism of muscle growth in Muscovy ducks reveals key roles for miR-301a-3p/ANKRD1. BMC Genomics 2024; 25:340. [PMID: 38575872 PMCID: PMC10993543 DOI: 10.1186/s12864-024-10138-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 02/19/2024] [Indexed: 04/06/2024] Open
Abstract
BACKGROUND The popularity of Muscovy ducks is attributed not only to their conformation traits but also to their slightly higher content of breast and leg meat, as well as their stronger-tasting meat compared to that of typical domestic ducks. However, there is a lack of comprehensive systematic research on the development of breast muscle in Muscovy ducks. In addition, since the number of skeletal muscle myofibers is established during the embryonic period, this study conducted a full-length transcriptome sequencing and microRNA sequencing of the breast muscle. Muscovy ducks at four developmental stages, namely Embryonic Day 21 (E21), Embryonic Day 27 (E27), Hatching Day (D0), and Post-hatching Day 7 (D7), were used to isolate total RNA for analysis. RESULTS A total of 68,161 genes and 472 mature microRNAs were identified. In order to uncover deeper insights into the regulation of mRNA by miRNAs, we conducted an integration of the differentially expressed miRNAs (known as DEMs) with the differentially expressed genes (referred to as DEGs) across various developmental stages. This integration allowed us to make predictions regarding the interactions between miRNAs and mRNA. Through this analysis, we identified a total of 274 DEGs that may serve as potential targets for the 68 DEMs. In the predicted miRNA‒mRNA interaction networks, let-7b, miR-133a-3p, miR-301a-3p, and miR-338-3p were the hub miRNAs. In addition, multiple DEMs also showed predicted target relationships with the DEGs associated with skeletal system development. These identified DEGs and DEMs as well as their predicted interaction networks involved in the regulation of energy homeostasis and muscle development were most likely to play critical roles in facilitating the embryo-to-hatchling transition. A candidate miRNA, miR-301a-3p, exhibited increased expression during the differentiation of satellite cells and was downregulated in the breast muscle tissues of Muscovy ducks at E21 compared to E27. A dual-luciferase reporter assay suggested that the ANKRD1 gene, which encodes a transcription factor, is a direct target of miR-301a-3p. CONCLUSIONS miR-301a-3p suppressed the posttranscriptional activity of ANKRD1, which is an activator of satellite cell proliferation, as determined with gain- and loss-of-function experiments. miR-301a-3p functions as an inducer of myogenesis by targeting the ANKRD1 gene in Muscovy ducks. These results provide novel insights into the early developmental process of black Muscovy breast muscles and will improve understanding of the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Jiangnan Huang
- Institute of Animal Husbandry and Veterinary Medicine, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, China
| | - Xiaolan Xiong
- Institute of Animal Husbandry and Veterinary Medicine, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, China
| | - Weihong Zhang
- Institute of Animal Husbandry and Veterinary Medicine, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, China
| | - Xiaolian Chen
- Institute of Animal Husbandry and Veterinary Medicine, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, China
| | - Yue Wei
- Institute of Animal Husbandry and Veterinary Medicine, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, China
| | - Haiqin Li
- Institute of Animal Husbandry and Veterinary Medicine, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, China
| | - Jinfang Xie
- Institute of Animal Husbandry and Veterinary Medicine, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, China
| | - Qipeng Wei
- Institute of Animal Husbandry and Veterinary Medicine, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, China.
| | - Quanyong Zhou
- Institute of Animal Husbandry and Veterinary Medicine, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, China.
| |
Collapse
|
2
|
Zhang Y, Lu Y, Yu M, Wang J, Du X, Zhao D, Pian H, He Z, Wu G, Li S, Wang S, Yu D. Transcriptome Profiling Identifies Differentially Expressed Genes in Skeletal Muscle Development in Native Chinese Ducks. Genes (Basel) 2023; 15:52. [PMID: 38254942 PMCID: PMC10815232 DOI: 10.3390/genes15010052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/20/2023] [Accepted: 12/27/2023] [Indexed: 01/24/2024] Open
Abstract
China boasts a rich diversity of indigenous duck species, some of which exhibit desirable economic traits. Here, we generated transcriptome sequencing datasets of breast muscle tissue samples from 1D of four groups: Pekin duck pure breeding group (P), Jinling White duck breeding group (J), P ♂ × J ♀ orthogonal group (PJ) and J ♂ × P ♀ reciprocal-cross group (JP) (n = 3), chosen based on the distinctive characteristics of duck muscle development during the embryonic period. We identified 5053 differentially expressed genes (DEGs) among the four groups. Network prediction analysis showed that ribosome and oxidative phosphorylation-related genes were the most enriched, and muscular protein-related genes were found in the 14-day-old embryonic group. We found that previously characterized functional genes, such as FN1, AGRN, ADNAMST3, APOB and FGF9, were potentially involved in muscle development in 14-day-old embryos. Functional enrichment analysis suggested that genes that participated in molecular function and cell component and key signaling pathways (e.g., hippo, ribosome, oxidative phosphorylation) were significantly enriched in the development of skeletal muscle at 14 days of embryonic age. These results indicate a possible role of muscle metabolism and myoglobin synthesis in skeletal muscle development in both duck parents and hybrids.
Collapse
Affiliation(s)
- Yuchen Zhang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (Y.Z.)
| | - Yinglin Lu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (Y.Z.)
| | - Minli Yu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (Y.Z.)
| | - Jin Wang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (Y.Z.)
| | - Xubin Du
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (Y.Z.)
| | - Dong Zhao
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (Y.Z.)
- School of Animal Medical, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225300, China
| | - Huifang Pian
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (Y.Z.)
| | - Zongliang He
- Nanjing Academy of Animal Husbandry and Poultry, Nanjing 210095, China
| | - Guansuo Wu
- Nanjing Academy of Animal Husbandry and Poultry, Nanjing 210095, China
| | - Shiwei Li
- College of Animal Science, Xizang Agricultural and Animal Husbandry University, Linzhi 860000, China
| | - Sike Wang
- College of Animal Science, Xizang Agricultural and Animal Husbandry University, Linzhi 860000, China
| | - Debing Yu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (Y.Z.)
| |
Collapse
|
3
|
Gu L, Zhang S, Li B, Jiang Q, Xu T, Huang Y, Lin D, Xing M, Huang L, Zheng X, Wang F, Chao Z, Sun W. m6A and miRNA jointly regulate the development of breast muscles in duck embryonic stages. Front Vet Sci 2022; 9:933850. [PMID: 36353255 PMCID: PMC9637736 DOI: 10.3389/fvets.2022.933850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 09/28/2022] [Indexed: 12/01/2022] Open
Abstract
N6-methyladenosine (m6A) is an abundant internal mRNA modification and plays a crucial regulatory role in animal growth and development. In recent years, m6A modification has been found to play a key role in skeletal muscles. However, whether m6A modification contributes to embryonic breast muscle development of Pekin ducks has not been explored. To explore the role of m6A in embryonic breast muscle development of ducks, we performed m6A sequencing and miRNA sequencing for the breast muscle of duck embryos on the 19th (E19) and 27th (E27) days. A total of 12,717 m6A peaks were identified at E19, representing a total of 7,438 gene transcripts. A total of 14,703 m6A peaks were identified, which overlapped with the transcripts of 7,753 genes at E27. Comparing E19 and E27, we identified 2,347 differential m6A peaks, which overlapped with 1,605 m6A-modified genes (MMGs). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses revealed that MMGs were enriched in multiple muscle- or fat-related pathways, which was also revealed from our analysis of differentially expressed genes (DEGs). Conjoint analysis of m6A-seq and RNA-seq data showed that pathways related to β-oxidation of fatty acids and skeletal muscle development were significantly enriched, suggesting that m6A modification is involved in the regulation of fat deposition and skeletal muscle development. There were 90 upregulated and 102 downregulated miRNAs identified between the E19 and E27 stages. Through overlapping analysis of genes shared by MMGs and DEGs and the targets of differentially expressed miRNAs (DEMs), we identified six m6A-mRNA-regulated miRNAs. Finally, we found that m6A modification can regulate fat deposition and skeletal muscle development. In conclusion, our results suggest that m6A modification is a key regulator for embryonic breast muscle development and fat deposition of ducks by affecting expressions of mRNAs and miRNAs. This is the first study to comprehensively characterize the m6A patterns in the duck transcriptome. These data provide a solid basis for future work aimed at determining the potential functional roles of m6A modification in adipose deposition and muscle growth.
Collapse
Affiliation(s)
- Lihong Gu
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Institute of Animal Science and Veterinary Medicine, Hainan Academy of Agricultural Sciences, Haikou, China
| | - Shunjin Zhang
- College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Boling Li
- The Hainan Animal Husbandry Technology Promotion Station, Haikou, China
| | - Qicheng Jiang
- School of Life Science, Hainan University, Haikou, China
| | - Tieshan Xu
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- *Correspondence: Tieshan Xu
| | - Yongzhen Huang
- College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Dajie Lin
- Institute of Animal Science and Veterinary Medicine, Hainan Academy of Agricultural Sciences, Haikou, China
| | - Manping Xing
- Institute of Animal Science and Veterinary Medicine, Hainan Academy of Agricultural Sciences, Haikou, China
- Key Laboratory of Tropical Animal Breeding and Disease Research, Haikou, China
| | - Lili Huang
- Institute of Animal Science and Veterinary Medicine, Hainan Academy of Agricultural Sciences, Haikou, China
- Key Laboratory of Tropical Animal Breeding and Disease Research, Haikou, China
| | - Xinli Zheng
- Institute of Animal Science and Veterinary Medicine, Hainan Academy of Agricultural Sciences, Haikou, China
- Key Laboratory of Tropical Animal Breeding and Disease Research, Haikou, China
| | - Feng Wang
- Institute of Animal Science and Veterinary Medicine, Hainan Academy of Agricultural Sciences, Haikou, China
| | - Zhe Chao
- Institute of Animal Science and Veterinary Medicine, Hainan Academy of Agricultural Sciences, Haikou, China
- Key Laboratory of Tropical Animal Breeding and Disease Research, Haikou, China
| | - Weiping Sun
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| |
Collapse
|
4
|
Wang H, He K, Zeng X, Zhou X, Yan F, Yang S, Zhao A. Isolation and identification of goose skeletal muscle satellite cells and preliminary study on the function of C1q and tumor necrosis factor-related protein 3 gene. Anim Biosci 2020; 34:1078-1087. [PMID: 33152229 PMCID: PMC8100491 DOI: 10.5713/ajas.20.0430] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 09/02/2020] [Indexed: 11/30/2022] Open
Abstract
Objective Skeletal muscle satellite cells (SMSCs) are significant for the growth, regeneration, and maintenance of skeletal muscle after birth. However, currently, few studies have been performed on the isolation, culture and inducing differentiation of goose muscle satellite cells. Previous studies have shown that C1q and tumor necrosis factor-related protein 3 (CTRP3) participated in the process of muscle growth and development, but its role in the goose skeletal muscle development is not yet clear. This study aimed to isolate, culture, and identify the goose SMSCs in vitro. Additionally, to explore the function of CTRP3 in goose SMSCs. Methods Goose SMSCs were isolated using 0.25% trypsin from leg muscle (LM) of 15 to 20 day fertilized goose eggs. Cell differentiation was induced by transferring the cells to differentiation medium with 2% horse serum and 1% penicillin streptomycin. Immunofluorescence staining of Desmin and Pax7 was used to identify goose SMSCs. Quantitative realtime polymerase chain reaction and western blot were applied to explore developmental expression profile of CTRP3 in LM and the regulation of CTRP3 on myosin heavy chains (MyHC), myogenin (MyoG) expression and Notch signaling pathway related genes expression. Results The goose SMSCs were successfully isolated and cultured. The expression of Pax7 and Desmin were observed in the isolated cells. The expression of CTRP3 decreased significantly during leg muscle development. Overexpression of CTRP3 could enhance the expression of two myogenic differentiation marker genes, MyHC and MyoG. But knockdown of CTRP3 suppressed their expression. Furthermore, CTRP3 could repress the mRNA level of Notch signaling pathway-related genes, notch receptor 1, notch receptor 2 and hairy/enhancer-of-split related with YRPW motif 1, which previously showed a negative regulation in myoblast differentiation. Conclusion These findings provide a useful cell model for the future research on goose muscle development and suggest that CTRP3 may play an essential role in skeletal muscle growth of goose.
Collapse
Affiliation(s)
- Han Wang
- Key Laboratory of Applied Technology on Green-Eco Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Zhejiang 311300, China
| | - Ke He
- Key Laboratory of Applied Technology on Green-Eco Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Zhejiang 311300, China
| | - Xuehua Zeng
- Key Laboratory of Applied Technology on Green-Eco Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Zhejiang 311300, China
| | - Xiaolong Zhou
- Key Laboratory of Applied Technology on Green-Eco Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Zhejiang 311300, China
| | - Feifei Yan
- Key Laboratory of Applied Technology on Green-Eco Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Zhejiang 311300, China
| | - Songbai Yang
- Key Laboratory of Applied Technology on Green-Eco Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Zhejiang 311300, China
| | - Ayong Zhao
- Key Laboratory of Applied Technology on Green-Eco Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Zhejiang 311300, China
| |
Collapse
|
5
|
Li C, Xiong T, Zhou M, Wan L, Xi S, Liu Q, Chen Y, Mao H, Liu S, Chen B. Characterization of microRNAs during Embryonic Skeletal Muscle Development in the Shan Ma Duck. Animals (Basel) 2020; 10:ani10081417. [PMID: 32823859 PMCID: PMC7460075 DOI: 10.3390/ani10081417] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/12/2020] [Accepted: 08/13/2020] [Indexed: 01/21/2023] Open
Abstract
Simple Summary It is of great commercial interest to elucidate the genetic mechanisms associated with skeletal muscle development in the duck. In this study, we performed high throughput microRNA (miRNA) sequencing to identify the candidate miRNAs during two developmental stages of duck embryonic breast muscle. We detected 1091 miRNAs and 109 of them were differentially expressed between embryonic day 13 (E13) and E19. We also predicted the target genes of the differentially expressed miRNAs and subsequently analyzed the enriched gene ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) signaling pathways, and finally constructed a protein–protein interaction (PPI) network with the target genes. Luciferase reporter assay showed that the growth-related genes, Fibroblast growth factor receptor like 1 (FGFRL1) and Insulin like growth factor 2 mRNA binding protein 1 (IGF2BP1), were target genes of miR-214-5p. These results can supplement the duck miRNA database and provide several candidate miRNAs for future studies on the regulation of embryonic skeletal muscle development. Abstract Poultry skeletal muscle provides high quality protein for humans. Study of the genetic mechanisms during duck skeletal muscle development contribute to future duck breeding and meat production. In the current study, three breast muscle samples from Shan Ma ducks at embryonic day 13 (E13) and E19 were collected, respectively. We detected microRNA (miRNA) expression using high throughput sequencing following bioinformatic analysis. qRT-PCR validated the reliability of sequencing results. We also identified target prediction results using the luciferase reporter assay. A total of 812 known miRNAs and 279 novel miRNAs were detected in six samples; as a result, 61 up-regulated and 48 down-regulated differentially expressed miRNAs were identified between E13 and E19 (|log2 fold change| ≥ 1 and p ≤ 0.05). Enrichment analysis showed that target genes of the differentially expressed miRNAs were enriched on many muscle development-related gene ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, especially mitogen-activated protein kinase (MAPK) signaling pathways. An interaction network was constructed using the target genes of the differentially expressed miRNAs. These results complement the current duck miRNA database and offer several miRNA candidates for future studies of skeletal muscle development in the duck.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Biao Chen
- Correspondence: ; Tel.: +86-189-3150-7508
| |
Collapse
|
6
|
Qiu M, Zhang Z, Xiong X, Du H, Li Q, Yu C, Gan W, Liu H, Peng H, Xia B, Chen J, Hu C, Song X, Yang L, Jiang X, Yang C. High-throughput sequencing analysis identified microRNAs associated with egg production in ducks ovaries. PeerJ 2020; 8:e8440. [PMID: 32117609 PMCID: PMC7006514 DOI: 10.7717/peerj.8440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 12/19/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) exist widely and are involved in multiple biological processes in ducks, whereas the regulatory mechanism of miRNAs in egg laying of ducks has remained unclear. This study aims to reveal key miRNAs involved in the regulation of egg production in duck ovaries. METHODS High-throughput sequencing was performed on four egg-type duck ovaries and four egg-meat-type duck ovaries at the start of the egg-laying stage. Quantitative reverse transcription PCR (qRT-PCR) validation was performed on differentially expressed miRNAs (DE miRNAs). Gene network of DEmiRNA-mRNA-pathway was constructed by Cytoscape. RESULTS A total of 251 know miRNAs and 1,972 novel miRNAs were obtained from whole clean reads. Among the known miRNAs, we identified 21 DEmiRNAs, including eight down-regulated and 13 up-regulated miRNAs in egg-type ducks compared with egg-meat-type ducks. Among the novel miRNAs, we identified 70 DEmiRNAs, including 58 down-regulated and 12 up-regulated in egg-type ducks compared with egg-meat-type ducks. The expression patterns of four miRNAs were verified by qRT-PCR. The DEmiRNAs were involved in the function of response to folic acid and the pathway of valine, leucine and isoleucine degradation. Specific target genes of DEmiRNAs enrichment was found in some egg-laying regulation pathways, such as dopaminergic synapse, ovarian steroidogenesis and oocyte meiosis. The DEmiRNA-mRNA-pathway network including three DEmiRNAs, nine mRNAs and 11 pathways. apl-miR-194-5p and apl-miR-215-5p may be potential key miRNAs in regulating egg laying. CONCLUSIONS This study provided miRNAs profiles in ducks about egg laying and establish a theoretical basis for subsequent selection or modification of duck phenotypes at the molecular level.
Collapse
Affiliation(s)
- Mohan Qiu
- Sichuan Animal Science Academy, Chengdu, China
| | - Zengrong Zhang
- Sichuan Animal Science Academy, Chengdu, China.,Animal Breeding and Genetics Key Laboratory of Sichuan Province, Chengdu, China
| | - Xia Xiong
- Sichuan Animal Science Academy, Chengdu, China
| | - Huarui Du
- Sichuan Animal Science Academy, Chengdu, China
| | - Qingyun Li
- Sichuan Animal Science Academy, Chengdu, China
| | - Chunlin Yu
- Sichuan Animal Science Academy, Chengdu, China
| | - Wu Gan
- Shanghai Ying Biotechnology Company, Shanghai, China
| | - Hehe Liu
- Sichuan Agricultural University, Sichuan, China
| | - Han Peng
- Sichuan Animal Science Academy, Chengdu, China
| | - Bo Xia
- Sichuan Animal Science Academy, Chengdu, China
| | - Jialei Chen
- Sichuan Animal Science Academy, Chengdu, China
| | - Chenming Hu
- Sichuan Animal Science Academy, Chengdu, China
| | | | - Li Yang
- Sichuan Animal Science Academy, Chengdu, China
| | | | - Chaowu Yang
- Sichuan Animal Science Academy, Chengdu, China.,Animal Breeding and Genetics Key Laboratory of Sichuan Province, Chengdu, China
| |
Collapse
|
7
|
Mechanism and Functions of Identified miRNAs in Poultry Skeletal Muscle Development – A Review. ANNALS OF ANIMAL SCIENCE 2019. [DOI: 10.2478/aoas-2019-0049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Abstract
Development of the skeletal muscle goes through several complex processes regulated by numerous genetic factors. Although much efforts have been made to understand the mechanisms involved in increased muscle yield, little work is done about the miRNAs and candidate genes that are involved in the skeletal muscle development in poultry. Comprehensive research of candidate genes and single nucleotide related to poultry muscle growth is yet to be experimentally unraveled. However, over a few periods, studies in miRNA have disclosed that they actively participate in muscle formation, differentiation, and determination in poultry. Specifically, miR-1, miR-133, and miR-206 influence tissue development, and they are highly expressed in the skeletal muscles. Candidate genes such as CEBPB, MUSTN1, MSTN, IGF1, FOXO3, mTOR, and NFKB1, have also been identified to express in the poultry skeletal muscles development. However, further researches, analysis, and comprehensive studies should be made on the various miRNAs and gene regulatory factors that influence the skeletal muscle development in poultry. The objective of this review is to summarize recent knowledge in miRNAs and their mode of action as well as transcription and candidate genes identified to regulate poultry skeletal muscle development.
Collapse
|
8
|
He K, Ren T, Zhu S, Liang S, Zhao A. Transiently expressed pattern during myogenesis and candidate miRNAs of Tmem8C in goose. J Genet 2017; 96:39-46. [PMID: 28360388 DOI: 10.1007/s12041-016-0737-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Transmembrane protein 8C (Tmem8C) is a muscle-specific membrane protein that controls myoblast fusion, which is essential for the formation of multinucleated muscle fibres. As most of the birds can fly, they have enormous requirement for the muscle, but there are only a few studies of Tmem8C in birds. In this study, we obtained the coding sequence (CDS) of Tmem8C in goose, predicted miRNAs that can act on the 3'UTR, analysed expression profiles of this gene in breast and leg muscles (BM and LM) during the embryonic period and neonatal stages, and identified miRNAs that might affect the targeted gene. The results revealed a high homology between Tmem8C in goose and other animals (indicated by sequence comparisons and phylogenetic trees), some conservative characteristics (e.g., six transmembrane domains and two E-boxes in the 5'UTR might be the potential binding sites of muscle regulatory factors (MRFs)), and the dN/dS ratio indicated purifying selection acting on this gene, facilitating conservatism in vertebrates. Q-PCR indicated Tmem8C had a peak expression pattern, reaching its highest expression levels in stage E15 in LM and E19 in BM, and then dropping transiently in E23 (P < 0.05). We examined 13 candidate miRNAs, and negative relationships were detected both in BM and LM (mir-125b-5p, mir-15a, mir-16-1 and mir-n23). Notably, mir-16-1 significantly decreased luciferase activity in dual luciferase reporter gene (LRG) assay, suggesting that it can be identified as potential factors affecting Tmem8C. This study investigated Tmem8C in water bird for the first time, and provided useful information about this gene and its candidate miRNAs in goose.
Collapse
Affiliation(s)
- Ke He
- College of Animal Science and Technology, Zhejiang A&F University, Lin'an, Zhejiang Province, People's Republic of China.
| | | | | | | | | |
Collapse
|
9
|
Gene expression profiling in Pekin duck embryonic breast muscle. PLoS One 2017; 12:e0174612. [PMID: 28472139 PMCID: PMC5417483 DOI: 10.1371/journal.pone.0174612] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 03/13/2017] [Indexed: 12/18/2022] Open
Abstract
Lean-type Pekin duck is a breed gained through long-term selection and great effort has been exerted to understand the mechanisms underlying increased muscle yields. However, the genes involved in Pekin duck embryonic breast muscle development have not been explored to date. In this study, we investigated gene expression profiles in Pekin Duck embryonic breast muscle at hatched day 13 (E13), E19, and E27 using RNA-seq. In total, we produced 519,312,178 raw reads resulting in 497,348,158 high-quality reads after filtering. The mapping, distribution of reads along annotated genes, and consistency across replicates demonstrates the high quality of the RNA-seq data used in this study, allowing us to continue with the downstream analysis. Significantly fewer differentially expressed genes (DEGs) were identified between E13 and E19 (203 DEGs) compared to E27 and E19 (2,797 DEGs). Many DEGs highly expressed in E19 are involved in metabolic processes and cell division. KEGG analysis showed many pathways associated with fat development were significantly enriched for DEGs highly expressed in E27. These results provide a basis for the further investigation of the mechanisms involved in Pekin duck embryonic breast muscle development.
Collapse
|
10
|
Luo J, Liu J, Liu H, Zhang T, Wang J, He H, Han C. Enrichment and verification of differentially expressed miRNAs in bursa of Fabricius in two breeds of duck. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2016; 30:920-929. [PMID: 27660025 PMCID: PMC5495669 DOI: 10.5713/ajas.16.0325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 06/06/2016] [Accepted: 09/15/2016] [Indexed: 12/03/2022]
Abstract
Objective The bursa of Fabricius (BF) is a central humoral immune organ belonging specifically to avians. Recent studies had suggested that miRNAs were active regulators involved in the immune processes. This study was to investigate the possible differences of the BF at miRNA level between two genetically disparate duck breeds. Methods Using Illumina next-generation sequencing, the miRNAs libraries of ducks were established. Results The results showed that there were 66 differentially expressed miRNAs and 28 novel miRNAs in bursa. A set of abundant miRNAs (i.e., let-7, miR-146a-5p, miR-21-5p, miR-17~92) which are involved in immunity and disease were detected and the predicted target genes of the novel miRNAs were associated with duck high anti-adversity ability. By gene ontology analysis and enriching KEGG pathway, the targets of differential expressed miRNAs were mainly involved in immunity and disease, supporting that there were differences in the BF immune functions between the two duck breeds. In addition, the metabolic pathway had the maximum enriched target genes and some enriched pathways that were related to cell cycle, protein synthesis, cell proliferation and apoptosis. It indicted that the difference of metabolism may be one of the reasons leading the immune difference between the BF of two duck breeds. Conclusion This data lists the main differences in the BF at miRNAs level between two genetically disparate duck breeds and lays a foundation to carry out molecular assisted breeding of poultry in the future.
Collapse
Affiliation(s)
- Jun Luo
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
| | - Junying Liu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
| | - Hehe Liu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
| | - Tao Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
| | - Jiwen Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
| | - Hua He
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
| | - Chunchun Han
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
| |
Collapse
|
11
|
Transcriptional Profiling Identifies Location-Specific and Breed-Specific Differentially Expressed Genes in Embryonic Myogenesis in Anas Platyrhynchos. PLoS One 2015; 10:e0143378. [PMID: 26630129 PMCID: PMC4667915 DOI: 10.1371/journal.pone.0143378] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 11/04/2015] [Indexed: 12/18/2022] Open
Abstract
Skeletal muscle growth and development are highly orchestrated processes involving significant changes in gene expressions. Differences in the location-specific and breed-specific genes and pathways involved have important implications for meat productions and meat quality. Here, RNA-Seq was performed to identify differences in the muscle deposition between two muscle locations and two duck breeds for functional genomics studies. To achieve those goals, skeletal muscle samples were collected from the leg muscle (LM) and the pectoral muscle (PM) of two genetically different duck breeds, Heiwu duck (H) and Peking duck (P), at embryonic 15 days. Functional genomics studies were performed in two experiments: Experiment 1 directly compared the location-specific genes between PM and LM, and Experiment 2 compared the two breeds (H and P) at the same developmental stage (embryonic 15 days). Almost 13 million clean reads were generated using Illumina technology (Novogene, Beijing, China) on each library, and more than 70% of the reads mapped to the Peking duck (Anas platyrhynchos) genome. A total of 168 genes were differentially expressed between the two locations analyzed in Experiment 1, whereas only 8 genes were differentially expressed when comparing the same location between two breeds in Experiment 2. Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes pathways (KEGG) were used to functionally annotate DEGs (differentially expression genes). The DEGs identified in Experiment 1 were mainly involved in focal adhesion, the PI3K-Akt signaling pathway and ECM-receptor interaction pathways (corrected P-value<0.05). In Experiment 2, the DEGs were associated with only the ribosome signaling pathway (corrected P-value<0.05). In addition, quantitative real-time PCR was used to confirm 15 of the differentially expressed genes originally detected by RNA-Seq. A comparative transcript analysis of the leg and pectoral muscles of two duck breeds not only improves our understanding of the location-specific and breed-specific genes and pathways but also provides some candidate molecular targets for increasing muscle products and meat quality by genetic control.
Collapse
|
12
|
Apopo S, Liu H, Jing L, Du X, Xie S, Gong Y, Xu R, Li S. Identification and profiling of microRNAs associated with white and black plumage pigmentation in the white and black feather bulbs of ducks by RNA sequencing. Anim Genet 2015; 46:627-35. [PMID: 26369256 DOI: 10.1111/age.12343] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/29/2015] [Indexed: 11/29/2022]
Abstract
MicroRNAs (miRNAs) play important roles in many biological processes by regulating gene expression at the post-transcriptional level. However, the mechanism by which specific miRNAs may regulate plumage pigmentation has remained largely elusive. In this study, we sequenced miRNAs using Solexa sequencing and then performed a detailed analysis of their expression profiles between the black and white feather bulbs of ducks from Cui Hei, Kaiya, Liancheng pure breeds and a Kaiya-Liancheng F2 population. mirdeep2 software identified 121 conserved and eight novel miRNAs. Five differentially expressed miRNAs between the two tissues types were also identified by degseq software. Notably, miR-204 was predominantly expressed in black feather bulbs. To further validate the sequencing data, we applied stem-loop quantitative PCR of ten known miRNAs based on the identified sequences. Furthermore, in exploring the temporal expression pattern of miR-204, we performed profiling in nine duck tissues. The targets of these miRNAs were predicted using a PITA algorithm and were later grouped based on Gene Ontology and KEGG pathway analysis using the DAVID website. The melanogenesis pathway was among the identified signalling pathways, implying key roles of these miRNAs in plumage pigmentation. Expression analysis of the target genes in the melanogenesis pathways was also performed. This study provides the foundation for subsequent studies on the prospective practical role for such miRNAs in post-transcriptional gene regulation linked to plumage pigmentation.
Collapse
Affiliation(s)
- S Apopo
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, China
| | - H Liu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, China
| | - L Jing
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, China
| | - X Du
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, China.,College of Informatics, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, China
| | - S Xie
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, China
| | - Y Gong
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, China
| | - R Xu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, Jilin, China
| | - S Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, China
| |
Collapse
|
13
|
A Systematic Analysis on mRNA and MicroRNA Expression in Runting and Stunting Chickens. PLoS One 2015; 10:e0127342. [PMID: 26010155 PMCID: PMC4444097 DOI: 10.1371/journal.pone.0127342] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2014] [Accepted: 04/14/2015] [Indexed: 01/12/2023] Open
Abstract
Runting and stunting syndrome (RSS), which is characterized by lower body weight, widely occurs in broilers. Some RSS chickens simply exhibit slow growth without pathological changes. An increasing number of studies indicate that broiler strains differ in susceptibility to infectious diseases, most likely due to their genetic differences. The objective of this study was to detect the differentially expressed miRNAs and mRNAs in RSS and normal chickens. By integrating miRNA with mRNA expression profiling, potential molecular mechanisms involved in RSS could be further explored. Twenty-two known miRNAs and 1,159 genes were differentially expressed in RSS chickens compared with normal chickens (P < 0.05). qPCR validation results displayed similar patterns. The differentially expressed genes were primarily involved in energy metabolism pathways. The antisense transcripts were extensively expressed in chicken liver albeit with reduced abundance. Dual-luciferase reporter assay indicated that gga-miR-30b/c directly target CARS through binding to its 3′UTR. The miR-30b/c: CARS regulation mainly occurred in liver. In thigh muscle and the hypothalamus, miR-30b/c are expressed at higher levels in RSS chickens compared with normal chickens from 2 to 6 w of age, and notably significant differences are observed at 4 w of age.
Collapse
|
14
|
Wang Y, Zhang C, Fang X, Zhao Y, Chen X, Sun J, Zhou Y, Wang J, Wang Y, Lan X, Chen H. Identification and profiling of microRNAs and their target genes from developing caprine skeletal Muscle. PLoS One 2014; 9:e96857. [PMID: 24818606 PMCID: PMC4018397 DOI: 10.1371/journal.pone.0096857] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Accepted: 04/12/2014] [Indexed: 11/19/2022] Open
Abstract
Goat is an important agricultural animal for meat production. Functional studies have demonstrated that microRNAs (miRNAs) regulate gene expression at the post-transcriptional level and play an important role in various biological processes. Although studies on miRNAs expression profiles have been performed in various animals, relatively limited information about goat muscle miRNAs has been reported. To investigate the miRNAs involved in regulating different periods of skeletal muscle development, we herein performed a comprehensive research for expression profiles of caprine miRNAs during two developmental stages of skeletal muscles: fetal stage and six month-old stage. As a result, 15,627,457 and 15,593,721 clean reads were obtained from the fetal goat library (FC) and the six month old goat library (SMC), respectively. 464 known miRNAs and 83 novel miRNA candidates were identified. Furthermore, by comparing the miRNA profile, 336 differentially expressed miRNAs were identified and then the potential targets of the differentially expressed miRNAs were predicted. To understand the regulatory network of miRNAs during muscle development, the mRNA expression profiles for the two development stages were characterized and 7322 differentially expressed genes (DEGs) were identified. Then the potential targets of miRNAs were compared to the DEGs, the intersection of the two gene sets were screened out and called differentially expressed targets (DE-targets), which were involved in 231 pathways. Ten of the 231 pathways that have smallest P-value were shown as network figures. Based on the analysis of pathways and networks, we found that miR-424-5p and miR-29a might have important regulatory effect on muscle development, which needed to be further studied. This study provided the first global view of the miRNAs in caprine muscle tissues. Our results help elucidation of complex regulatory networks between miRNAs and mRNAs and for the study of muscle development.
Collapse
Affiliation(s)
- Yanhong Wang
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi, China
- Institute of Cellular and Molecular Biology, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Chunlei Zhang
- Institute of Cellular and Molecular Biology, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Xingtang Fang
- Institute of Cellular and Molecular Biology, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Yulong Zhao
- Institute of Cellular and Molecular Biology, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Xiaohui Chen
- Institute of Cellular and Molecular Biology, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Jiajie Sun
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi, China
| | - Yang Zhou
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi, China
| | - Jianjin Wang
- Institute of Cellular and Molecular Biology, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Yongan Wang
- Institute of Cellular and Molecular Biology, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Xianyong Lan
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi, China
| | - Hong Chen
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi, China
- * E-mail:
| |
Collapse
|