1
|
Burgos-Valencia E, Echevarría-Machado I, Ortega-Lule G, Medina-Lara F, García-Laynes F, Martínez-Estévez M, Narváez-Zapata J. Haplotype analysis, regulatory elements and docking simulation of structural models of different AT3 copies in the genus Capsicum. J Biomol Struct Dyn 2024:1-14. [PMID: 38354741 DOI: 10.1080/07391102.2024.2317991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 02/07/2024] [Indexed: 02/16/2024]
Abstract
Capsaicinoids are responsible for the pungency in Capsicum species. These are synthesized by the Capsaicin synthase (CS) encoded by the AT3 gene, which catalyzes the transference of an acyl moiety from a branched-chain fatty acid-CoA ester to the vanillylamine to produce capsaicinoids. Some AT3 gene copies have been identified on the Capsicum genome. The absence of capsaicinoid in some nonpungent accessions is related to mutant AT3 alleles. The differences between CS protein copies can affect the tridimensional structure of the protein and the affinity for its substrates, and this could affect fruit pungency. This study characterized 32 AT3 sequences covering Capsicum pungent and non-pungent accessions. These were clustered in AT3-D1 and AT3-D2 groups and representative sequences were analyzed. Genomic upstream analysis shows different regulatory elements, mainly responsive to light and abiotic stress. AT3-D1 and AT3-D2 gene expression was confirmed in fruit tissues of C. annuum. Amino acid substitutions close to the predictable HXXXD and DFGWG motifs were also identified. AT3 sequences were modeled showing a BAHD acyltransferase structure with two connected domains. A pocket with different shape, size and composition between AT3 models was found inside the protein, with the conserved motif HXXXD exposed to it, and a channel for their accessibility. CS substrates exhibit high interaction energies with the His and Asp conserved residues. AT3 models have different interaction affinities with the (E)-8-methylnon-6-enoyl-CoA, 8-methylnonanoyl-CoA and vanillylamine substrates. These results suggested that AT3-D1 and AT3-D2 sequences encode CS enzymes with different regulatory factors and substratum affinities.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Eduardo Burgos-Valencia
- Unidad de Biología Integrativa. Centro de Investigación Científica de Yucatán, Calle 43 # 130, Chuburna de Hidalgo, Mérida, Yucatán, México
| | - Ileana Echevarría-Machado
- Unidad de Biología Integrativa. Centro de Investigación Científica de Yucatán, Calle 43 # 130, Chuburna de Hidalgo, Mérida, Yucatán, México
| | - Gustavo Ortega-Lule
- Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Fátima Medina-Lara
- Unidad de Biología Integrativa. Centro de Investigación Científica de Yucatán, Calle 43 # 130, Chuburna de Hidalgo, Mérida, Yucatán, México
| | - Federico García-Laynes
- Unidad de Biología Integrativa. Centro de Investigación Científica de Yucatán, Calle 43 # 130, Chuburna de Hidalgo, Mérida, Yucatán, México
| | - Manuel Martínez-Estévez
- Unidad de Biología Integrativa. Centro de Investigación Científica de Yucatán, Calle 43 # 130, Chuburna de Hidalgo, Mérida, Yucatán, México
| | - José Narváez-Zapata
- Instituto Politécnico Nacional - Centro de Biotecnología Genómica, Reynosa, Tamaulipas, México
| |
Collapse
|
2
|
Luján-Méndez F, Roldán-Padrón O, Castro-Ruíz JE, López-Martínez J, García-Gasca T. Capsaicinoids and Their Effects on Cancer: The "Double-Edged Sword" Postulate from the Molecular Scale. Cells 2023; 12:2573. [PMID: 37947651 PMCID: PMC10650825 DOI: 10.3390/cells12212573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/30/2023] [Accepted: 11/01/2023] [Indexed: 11/12/2023] Open
Abstract
Capsaicinoids are a unique chemical species resulting from a particular biosynthesis pathway of hot chilies (Capsicum spp.) that gives rise to 22 analogous compounds, all of which are TRPV1 agonists and, therefore, responsible for the pungency of Capsicum fruits. In addition to their human consumption, numerous ethnopharmacological uses of chili have emerged throughout history. Today, more than 25 years of basic research accredit a multifaceted bioactivity mainly to capsaicin, highlighting its antitumor properties mediated by cytotoxicity and immunological adjuvancy against at least 74 varieties of cancer, while non-cancer cells tend to have greater tolerance. However, despite the progress regarding the understanding of its mechanisms of action, the benefit and safety of capsaicinoids' pharmacological use remain subjects of discussion, since CAP also promotes epithelial-mesenchymal transition, in an ambivalence that has been referred to as "the double-edge sword". Here, we update the comparative discussion of relevant reports about capsaicinoids' bioactivity in a plethora of experimental models of cancer in terms of selectivity, efficacy, and safety. Through an integration of the underlying mechanisms, as well as inherent aspects of cancer biology, we propose mechanistic models regarding the dichotomy of their effects. Finally, we discuss a selection of in vivo evidence concerning capsaicinoids' immunomodulatory properties against cancer.
Collapse
Affiliation(s)
- Francisco Luján-Méndez
- Laboratorio de Biología Celular y Molecular, Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Av. De las Ciencias s/n, Juriquilla, Querétaro 76230, Querétaro, Mexico; (F.L.-M.); (O.R.-P.); (J.L.-M.)
| | - Octavio Roldán-Padrón
- Laboratorio de Biología Celular y Molecular, Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Av. De las Ciencias s/n, Juriquilla, Querétaro 76230, Querétaro, Mexico; (F.L.-M.); (O.R.-P.); (J.L.-M.)
| | - J. Eduardo Castro-Ruíz
- Escuela de Odontología, Facultad de Medicina, Universidad Autónoma de Querétaro, Querétaro 76176, Querétaro, Mexico;
| | - Josué López-Martínez
- Laboratorio de Biología Celular y Molecular, Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Av. De las Ciencias s/n, Juriquilla, Querétaro 76230, Querétaro, Mexico; (F.L.-M.); (O.R.-P.); (J.L.-M.)
| | - Teresa García-Gasca
- Laboratorio de Biología Celular y Molecular, Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Av. De las Ciencias s/n, Juriquilla, Querétaro 76230, Querétaro, Mexico; (F.L.-M.); (O.R.-P.); (J.L.-M.)
| |
Collapse
|
3
|
Gulzar A, Malik A, Malik G, Hussain K, Nazir N, Aabidi I, Gani U, Hami A, Mahajan R, Bangroo S, Zargar SM. Identification of novel SNPs in Pun1 locus for pungency in Capsicum species. Mol Biol Rep 2023; 50:7571-7579. [PMID: 37515708 DOI: 10.1007/s11033-023-08691-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 07/18/2023] [Indexed: 07/31/2023]
Abstract
BACKGROUND Capsaicin and its analogues known as capsaicinoids are the principal sources of pungency in Capsicum spp. In this study, characterization of North-West Himalayan chilli germplasm and commercial landraces of different Indian states known for different pungency-color combinations was done based on capsaicin concentration. Moreover, molecular variation in pungency among high, medium and mild/not pungent Capsicum spp., especially those adapted to North-West Himalayas were elucidated. METHODS AND RESULTS Forty-nine genotypes of chilli comprising breeding lines of Kashmiri origin, commercial landraces of Southern Indian origin and one of the world's hottest chilli Bhut Jolokia from Nagaland state of India were used as an experimental material. Wide variation in capsaicin content was observed among the genotypes, wherein, Bhut Jolokia (Capsicum chinense) expressed the highest capsaicin content (10,500.75 µg/g). Further, molecular analysis of PunI gene was done for discovering SNPs responsible for variations in pungency. In the non-pungent Nishat-1 (Capsicum annuum var. grossum), the 650 bp DNA fragment was not amplified due to 2.5 kb deletion spanning the putative promoter and first exon of AT3. The amplified DNA product for high and medium pungent was sequencing. Sequence alignment among revealed SNPs which were further observed responsible for variations in amino acid sequence and protein structure. CONCLUSION The observed variation in protein structure might be responsible for high capsaicin production in one genotype as compared to the other and hence the protein conformation determines its interaction with the substrate.
Collapse
Affiliation(s)
- Ariza Gulzar
- Division of Vegetable Science, Faculty of Horticulture, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, Jammu & Kashmir, India
| | - Ajaz Malik
- Division of Vegetable Science, Faculty of Horticulture, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, Jammu & Kashmir, India.
| | - Geetika Malik
- Division of Vegetable Science and Floriculture, ICAR-Central Institute of Temperate Horticulture, Srinagar, Jammu & Kashmir, India
| | - Khursheed Hussain
- Division of Vegetable Science, Faculty of Horticulture, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, Jammu & Kashmir, India
| | - Nageena Nazir
- Division of Agricultural Statistics, Sher-e-Kashmir University of Agricultural Sciences & Technology of Kashmir, Shalimar, Srinagar, Jammu & Kashmir, India
| | - Ishfaq Aabidi
- Division of Genetics and Plant Breeding, Sher-e-Kashmir University of Agricultural Sciences & Technology of Kashmir, Shalimar, Srinagar, Jammu & Kashmir, India
| | - Umar Gani
- CSIR, IIIM-Jammu, Jammu, Jammu & Kashmir, India
| | - Ammarah Hami
- Proteomics Laboratory, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences & Technology of Kashmir, Shalimar, Srinagar, Jammu & Kashmir, India
| | - Reetika Mahajan
- Proteomics Laboratory, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences & Technology of Kashmir, Shalimar, Srinagar, Jammu & Kashmir, India
| | - Shabir Bangroo
- Division of Soil Science, Sher-e-Kashmir University of Agricultural Sciences & Technology of Kashmir, Shalimar, Srinagar, Jammu & Kashmir, India
| | - Sajad Majeed Zargar
- Proteomics Laboratory, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences & Technology of Kashmir, Shalimar, Srinagar, Jammu & Kashmir, India.
| |
Collapse
|
4
|
Jimenez-García SN, Garcia-Mier L, Ramirez-Gomez XS, Guevara-Gonzalez RG, Aguirre-Becerra H, Escobar-Ortiz A, Contreras-Medina LM, Garcia-Trejo JF, Vazquez-Cruz MA, Feregrino-Perez AA. Characterization of the Key Compounds of Bell Pepper by Spectrophotometry and Gas Chromatography on the Effects of Induced Stress on the Concentration of Secondary Metabolite. Molecules 2023; 28:molecules28093830. [PMID: 37175241 PMCID: PMC10180469 DOI: 10.3390/molecules28093830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/13/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
Sweet peppers are consumed worldwide, and traditional uses have sparked interest in their applications as dietary antioxidants, which can be enhanced in plants using elicitors. These are endowed with phytochemicals with potential health benefits such as antioxidants, bioavailability, and bioaccessibility. The trend in metabolomics shows us chemical fingerprints linking metabolomics, innovative analytical form, and bioinformatics tools. The objective was to evaluate the impact of multiple stress interactions, elicitor concentrations, and electrical conductivity on the concentration of secondary metabolites to relate their response to metabolic pathways through the foliar application of a cocktail of said elicitors in pepper crops under greenhouse conditions. The extracts were analyzed by spectrophotometry and gas chromatography, and it was shown that the PCA analysis identified phenolic compounds and low molecular weight metabolites, confirming this as a metabolomic fingerprint in the hierarchical analysis. These compounds were also integrated by simultaneous gene and metabolite simulants to obtain effect information on different metabolic pathways. Showing changes in metabolite levels at T6 (36 mM H2O2 and 3.6 dS/m) and T7 (0.1 mM SA and 3.6 dS/m) but showing statistically significant changes at T5 (3.6 dS/m) and T8 (0.1 mM SA, 36 mM H2O2, and 3.6 dS/m) compared to T1 (32 dS/m) or control. Six pathways changed significantly (p < 0.05) in stress-induced treatments: aminoacyl t-RNA and valine-leucine-isoleucine biosynthesis, and alanine-aspartate-glutamate metabolism, glycoxylate-dicarboxylate cycle, arginine-proline, and citrate. This research provided a complete profile for the characterization of metabolomic fingerprint of bell pepper under multiple stress conditions.
Collapse
Affiliation(s)
- Sandra N Jimenez-García
- Division de Ciencias de la Salud e Ingeniería, Campus Celaya-Salvatierra, C.A. Enfermedades no Transmisibles, Universidad de Guanajuato, Av. Ing. Javier Barros Sierra No. 201 Esq. Baja California, Ejido de Santa Maria del Refugio Celaya, Guanajuato 8140, Mexico
| | - Lina Garcia-Mier
- Departamento de Ciencias de la Salud, Universidad del Valle de México, Campus Querétaro, Blvd, Juriquilla No. 1000 A, Delegación Santa Rosa Jáuregui, Santiago de Querétaro, Querétaro 76230, Mexico
| | - Xóchitl S Ramirez-Gomez
- Division de Ciencias de la Salud e Ingeniería, Campus Celaya-Salvatierra, C.A. Enfermedades no Transmisibles, Universidad de Guanajuato, Av. Ing. Javier Barros Sierra No. 201 Esq. Baja California, Ejido de Santa Maria del Refugio Celaya, Guanajuato 8140, Mexico
| | - Ramon G Guevara-Gonzalez
- Division de Estudios de Posgrado, C.A. Bioingeniería Básica y Aplicada, Facultad de Ingeniería, Universidad Autónoma de Querétaro, C.U. Cerro de las Campanas S/N, Colonia Las Campanas, Santiago de Querétaro, Querétaro 76010, Mexico
| | - Humberto Aguirre-Becerra
- Division de Estudios de Posgrado, C.A. Bioingeniería Básica y Aplicada, Facultad de Ingeniería, Universidad Autónoma de Querétaro, C.U. Cerro de las Campanas S/N, Colonia Las Campanas, Santiago de Querétaro, Querétaro 76010, Mexico
| | - Alexandro Escobar-Ortiz
- Facultad de Química, Universidad Autónoma de Querétaro, C.U. Cerro de las Campanas S/N, Colonia Las Campanas, Santiago de Querétaro, Querétaro 76010, Mexico
| | - Luis M Contreras-Medina
- Division de Estudios de Posgrado, C.A. Bioingeniería Básica y Aplicada, Facultad de Ingeniería, Universidad Autónoma de Querétaro, C.U. Cerro de las Campanas S/N, Colonia Las Campanas, Santiago de Querétaro, Querétaro 76010, Mexico
| | - Juan F Garcia-Trejo
- Division de Estudios de Posgrado, C.A. Bioingeniería Básica y Aplicada, Facultad de Ingeniería, Universidad Autónoma de Querétaro, C.U. Cerro de las Campanas S/N, Colonia Las Campanas, Santiago de Querétaro, Querétaro 76010, Mexico
| | - Moises A Vazquez-Cruz
- Departamento de Investigación y Desarrollo, Koppert Mexico, Circuito el Marques Nte. 82, Parque industrial El Marqués, Santiago de Querétaro, Querétaro 76246, Mexico
| | - Ana A Feregrino-Perez
- Division de Estudios de Posgrado, C.A. Bioingeniería Básica y Aplicada, Facultad de Ingeniería, Universidad Autónoma de Querétaro, C.U. Cerro de las Campanas S/N, Colonia Las Campanas, Santiago de Querétaro, Querétaro 76010, Mexico
| |
Collapse
|
5
|
Identification and Characterization of Two Defensins from Capsicum annuum Fruits that Exhibit Antimicrobial Activity. Probiotics Antimicrob Proteins 2021; 12:1253-1265. [PMID: 32221795 DOI: 10.1007/s12602-020-09647-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Scientific advances have not been enough to combat the growing resistance to antimicrobial medicines. Antimicrobial peptides (AMPs) are effector molecules of the innate immune defense system in plants and could provide an important source of new antimicrobial drugs. The aim of this work was to extract, purify, characterize, and evaluate the antifungal activities present in fractions obtained from Capsicum annum fruits through reversed-phase chromatography. The fractions named F2 and F3 presented the highest inhibitory activity against Candida and Mycobacterium tuberculosis species. In addition, we identified two sequences of AMPs in the F2 and F3 fractions through mass spectrometry that showed similarity to an already well-characterized family of plant defensins. A plasma membrane permeabilization assay demonstrated that the peptides present in F2, F3, and F4 fractions induced changes in the membrane of some yeast strains, culminating in permeabilization. The production of reactive oxygen species was induced by the fractions in some yeast strains. Fractions F2, F3, and F4 also did not show toxicity in macrophage or monocyte cultures. In conclusion, the obtained data demonstrate that the AMPs, especially those present in the fractions F2 and F3, are promising antimicrobial agents that may be useful to enhance the development of new therapeutic agents for the treatment of diseases.
Collapse
|
6
|
Natarajan P, Akinmoju TA, Nimmakayala P, Lopez-Ortiz C, Garcia-Lozano M, Thompson BJ, Stommel J, Reddy UK. Integrated Metabolomic and Transcriptomic Analysis to Characterize Cutin Biosynthesis between Low- and High-Cutin Genotypes of Capsicum chinense Jacq. Int J Mol Sci 2020; 21:ijms21041397. [PMID: 32092953 PMCID: PMC7073079 DOI: 10.3390/ijms21041397] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 02/15/2020] [Accepted: 02/17/2020] [Indexed: 11/16/2022] Open
Abstract
Habanero peppers constantly face biotic and abiotic stresses such as pathogen/pest infections, extreme temperature, drought and UV radiation. In addition, the fruit cutin lipid composition plays an important role in post-harvest water loss rates, which in turn causes shriveling and reduced fruit quality and storage. In this study, we integrated metabolome and transcriptome profiling pertaining to cutin in two habanero genotypes: PI 224448 and PI 257145. The fruits were selected by the waxy or glossy phenotype on their surfaces. Metabolomics analysis showed a significant variation in cutin composition, with about 6-fold higher cutin in PI 257145 than PI 224448. It also revealed that 10,16-dihydroxy hexadecanoic acid is the most abundant monomer in PI 257145. Transcriptomic analysis of high-cutin PI 257145 and low-cutin PI 224448 resulted in the identification of 2703 statistically significant differentially expressed genes, including 1693 genes upregulated and 1010 downregulated in high-cutin PI 257145. Genes and transcription factors such as GDSL lipase, glycerol-3 phosphate acyltransferase 6, long-chain acyltransferase 2, cytochrome P450 86A/77A, SHN1, ANL2 and HDG1 highly contributed to the high cutin content in PI 257145. We predicted a putative cutin biosynthetic pathway for habanero peppers based on deep transcriptome analysis. This is the first study of the transcriptome and metabolome pertaining to cutin in habanero peppers. These analyses improve our knowledge of the molecular mechanisms regulating the accumulation of cutin in habanero pepper fruits. These resources can be built on for developing cultivars with high cutin content that show resistance to biotic and abiotic stresses with superior postharvest appearance.
Collapse
Affiliation(s)
- Purushothaman Natarajan
- Department of Biology and Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112, USA; (P.N.); (T.A.A.); (C.L.-O.); (M.G.-L.); (B.J.T.)
- Department of Genetic Engineering, SRM Institute of Science and Technology, Chennai 603203, TN, India
| | - Tolulope Abodunrin Akinmoju
- Department of Biology and Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112, USA; (P.N.); (T.A.A.); (C.L.-O.); (M.G.-L.); (B.J.T.)
| | - Padma Nimmakayala
- Department of Biology and Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112, USA; (P.N.); (T.A.A.); (C.L.-O.); (M.G.-L.); (B.J.T.)
- Correspondence: (P.N.); (U.K.R.)
| | - Carlos Lopez-Ortiz
- Department of Biology and Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112, USA; (P.N.); (T.A.A.); (C.L.-O.); (M.G.-L.); (B.J.T.)
| | - Marleny Garcia-Lozano
- Department of Biology and Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112, USA; (P.N.); (T.A.A.); (C.L.-O.); (M.G.-L.); (B.J.T.)
| | - Benjamin J. Thompson
- Department of Biology and Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112, USA; (P.N.); (T.A.A.); (C.L.-O.); (M.G.-L.); (B.J.T.)
| | - John Stommel
- Genetic Improvement of Fruits and Vegetables Laboratory, U.S. Department of Agriculture, Agricultural Research Service, Beltsville Agricultural Research Center, Beltsville, MD 20705-2325, USA;
| | - Umesh K. Reddy
- Department of Biology and Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112, USA; (P.N.); (T.A.A.); (C.L.-O.); (M.G.-L.); (B.J.T.)
- Correspondence: (P.N.); (U.K.R.)
| |
Collapse
|
7
|
Zhang J, Lv J, Xie J, Gan Y, Coulter JA, Yu J, Li J, Wang J, Zhang X. Nitrogen Source Affects the Composition of Metabolites in Pepper ( Capsicum annuum L.) and Regulates the Synthesis of Capsaicinoids through the GOGAT-GS Pathway. Foods 2020; 9:E150. [PMID: 32033346 PMCID: PMC7073546 DOI: 10.3390/foods9020150] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 01/24/2020] [Accepted: 02/04/2020] [Indexed: 12/28/2022] Open
Abstract
Phytochemical analyses of pepper fruit metabolites have been reported; however, much less is known about the influence of different forms of nitrogen (N), which is critical for plant growth and fruit quality formation. The "Longjiao No. 5" variety (Capsicum annuum L.) grown in Northwestern China was profiled using liquid chromatography-mass spectrometry (LC-MS) coupled with multivariate data analysis to explore the composition of different metabolites in pericarp and placenta, and to investigate the effect of three ammonium (NH4+)-to-nitrate (NO3-) ratios (0:100, 25:75, and 50:50). A total of 215 metabolites were obtained by qualitative analysis, where 31 metabolites were the major differential metabolite components of pepper fruits between placenta and pericarp, and 25 among N treatments. The addition of ammonium up-regulated carbohydrates, such as α-lactose and sucrose, as well as phenylalanine lyase (PAL) of placenta tissue. The supply of 25% NH4+-N and 75% NO3--N exhibited a relatively higher levels of ascorbic acid in pericarp and amino acids, capsaicin, and dihydrocapsaicin in placenta, and led to higher fruit weight among the ammonium-to-nitrate ratios. The expression and activities of glutamic acid synthetase (GOGAT) and glutamine synthetase (GS) that are involved in ammonium assimilation were affected by adjusting the ammonium-N proportion, and they were significantly positively correlated with capsaicin, dihydrocapsaicin contents, capsaicinoid synthetase (CS), as well as the relative expression levels of genes related to capsaicinoid biosynthesis, such as acyltransferase 3 (AT3) and acyl-ACP thioesterase (FatA).
Collapse
Affiliation(s)
- Jing Zhang
- College of Horticulture, Gansu Agricultural University, Yingmeng Village, Anning District, Lanzhou 730070, China; (J.Z.); (J.L.); (J.Y.); (J.L.); (J.W.); (X.Z.)
| | - Jian Lv
- College of Horticulture, Gansu Agricultural University, Yingmeng Village, Anning District, Lanzhou 730070, China; (J.Z.); (J.L.); (J.Y.); (J.L.); (J.W.); (X.Z.)
| | - Jianming Xie
- College of Horticulture, Gansu Agricultural University, Yingmeng Village, Anning District, Lanzhou 730070, China; (J.Z.); (J.L.); (J.Y.); (J.L.); (J.W.); (X.Z.)
| | - Yantai Gan
- Agriculture and Agri-Food Canada, Swift Current Research and Development Centre, Swift Current, SK S9H 3X2, Canada;
| | - Jeffrey A. Coulter
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN 55108, USA;
| | - Jihua Yu
- College of Horticulture, Gansu Agricultural University, Yingmeng Village, Anning District, Lanzhou 730070, China; (J.Z.); (J.L.); (J.Y.); (J.L.); (J.W.); (X.Z.)
| | - Jing Li
- College of Horticulture, Gansu Agricultural University, Yingmeng Village, Anning District, Lanzhou 730070, China; (J.Z.); (J.L.); (J.Y.); (J.L.); (J.W.); (X.Z.)
| | - Junwen Wang
- College of Horticulture, Gansu Agricultural University, Yingmeng Village, Anning District, Lanzhou 730070, China; (J.Z.); (J.L.); (J.Y.); (J.L.); (J.W.); (X.Z.)
| | - Xiaodan Zhang
- College of Horticulture, Gansu Agricultural University, Yingmeng Village, Anning District, Lanzhou 730070, China; (J.Z.); (J.L.); (J.Y.); (J.L.); (J.W.); (X.Z.)
| |
Collapse
|
8
|
Capsaicinoids, Polyphenols and Antioxidant Activities of Capsicum annuum: Comparative Study of the Effect of Ripening Stage and Cooking Methods. Antioxidants (Basel) 2019; 8:antiox8090364. [PMID: 31480665 PMCID: PMC6770197 DOI: 10.3390/antiox8090364] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/08/2019] [Accepted: 08/21/2019] [Indexed: 12/14/2022] Open
Abstract
Peppers (Capsicum annuum L.) are an important crop usually consumed as food or spices. Peppers contain a wide range of phytochemicals, such as capsaicinoids, phenolics, ascorbic acid, and carotenoids. Capsaicinoids impart the characteristic pungent taste. The study analyzed capsaicinoids and other bioactive compounds in different pepper cultivars at both the mature green and red stages. The effect of roasting on their nutritional content was also investigated. In the cultivars tested, the levels of capsaicin ranged from 0 to 3636 µg/g in the mature green stage and from 0 to 4820 µg/g in the red/yellow stage. The concentration of dihydrocapsaicin ranged from 0 to 2148 µg/g in the mature green stage and from 0 to 2162 µg/g in the red/yellow stage. The levels of capsaicinoid compounds in mature green and red /yellow stages were either reduced or increased after roasting depending on the cultivar. The ranges of total phenolic and total flavonoids compounds were 2096 to 7689, and 204 to 962 µg/g, respectively, in the green and red/yellow mature stage pods. Ascorbic acid levels in the peppers ranged from 223 to 1025 mg/ 100 g Dry Weight (DW). Both raw and roasted peppers possessed strong antioxidant activity as determined by 2,2-diphenyl-1-picrylhydrazyl) reagent (DPPH, 61–87%) and 2,2′-azino-bis (3-ethylbenzthiazoline-6-sulphonic acid) (ABTS, 73–159 µg/g) assays. Ascorbic acid and antioxidant activity decreased after roasting in the mature green and red stages, whereas total phenolics and flavonoids increased except in the mature green stage of Sweet Delilah and yellow stage of Canrio.
Collapse
|
9
|
Arce-Rodríguez ML, Ochoa-Alejo N. Biochemistry and molecular biology of capsaicinoid biosynthesis: recent advances and perspectives. PLANT CELL REPORTS 2019; 38:1017-1030. [PMID: 30941502 DOI: 10.1007/s00299-019-02406-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 03/19/2019] [Indexed: 06/09/2023]
Abstract
The most widely known characteristic of chili pepper fruits is their capacity to produce capsaicinoids, which are responsible for the pungent sensation. The capsaicinoids have several uses in different areas, such as the pharmaceutical, cosmetic and agronomic industries, among others. They are synthesized by the condensation of vanillylamine (derived from phenylalanine) with a branched-chain fatty acid (from valine or leucine precursors), and they generally accumulate in the placental tissue of the chili pepper fruits. The pungency grade depends on the genotype of the plant but is also affected by external stimuli. In recent years, new structural and regulatory genes have been hypothesized to participate in the capsaicinoid biosynthetic pathway. Moreover, the role of some of these genes has been investigated. Substantial progress has been made in discerning the molecular biology of this pathway; however, many questions remain unsolved. We previously reviewed some aspects of the biochemistry and molecular biology of capsaicinoid biosynthesis (Aza-González et al. Plant Cell Rep 30:695-706. Aza-González et al., Plant Cell Rep 30:695-706, 2011), and in this review, we describe advances made by different researchers since our previous review, including the contribution of omics to the knowledge of this pathway.
Collapse
Affiliation(s)
- Magda Lisette Arce-Rodríguez
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Irapuato, Km 9.6 libramiento norte carretera Irapuato-León, 36824, Irapuato, Gto, Mexico
| | - Neftalí Ochoa-Alejo
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Irapuato, Km 9.6 libramiento norte carretera Irapuato-León, 36824, Irapuato, Gto, Mexico.
| |
Collapse
|
10
|
Perla V, Nadimi M, Reddy R, Hankins GR, Nimmakayala P, Harris RT, Valluri J, Sirbu C, Reddy UK. Effect of ghost pepper on cell proliferation, apoptosis, senescence and global proteomic profile in human renal adenocarcinoma cells. PLoS One 2018; 13:e0206183. [PMID: 30379886 PMCID: PMC6209291 DOI: 10.1371/journal.pone.0206183] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 10/07/2018] [Indexed: 12/19/2022] Open
Abstract
Chili peppers are an important constituent of many foods and contain medicinally valuable compounds, such as capsaicin and dihydrocapsaicin. As various dietary botanicals have anticancer properties, this study was aimed to examine the effect of Ghost pepper (Bhut Jolokia), one of the hottest chili peppers in the world, on cell proliferation, apoptosis, senescence and the global proteomic profile in human renal cell adenocarcinoma in vitro. 769-P human renal adenocarcinoma cells were cultured on RPMI-1640 media supplemented with fetal bovine serum (10%) and antibiotic-antimycotic solution (1%). Treatment stock solutions were prepared in ethanol. Cell proliferation was tested with phenol red-free media with capsaicin (0-400 μM), dihydrocapsaicin (0-400 μM), capsaicin + dihydrocapsaicin (5:1), and dry Ghost peppers (0-3 g L-1) for 24, 48 and 72 h. Polycaspase and senescence associated-beta-galactosidase (SA-beta-gal) activities were tested with capsaicin (400 μM), dihydrocapsaicin (400 μM), capsaicin (400 μM) + dihydrocapsaicin (80 μM), and ghost pepper (3 g L-1) treatments. Global proteomic profile of cells in control and ghost pepper treatment (3 g L-1) was analyzed after 6 h by a shotgun proteomic approach using tandem mass spectrometry. At 24 h after treatment (24 HAT), relative to control, cell proportion with capsaicin (400 μM), dihydrocapsaicin (400 μM), capsaicin (400 μM) + dihydrocapsaicin (80 μM), and ghost pepper (3 g L-1) treatments was reduced to 36%, 18%, 33% and 20%, respectively, and further reduced at 48 and 72 HAT. All treatments triggered an early polycaspase response. SA-beta-gal activity was normal or suppressed with all treatments. About 68,220 protein isoforms were identified by shotgun proteomic approach. Among these, about 8.2% were significantly affected by ghost pepper. Ghost pepper regulated various proteins involved in intrinsic and extrinsic apoptotic pathways, Ras, Rb/E2F, p53, TGF-beta, WNT-beta catenin, and calcium induced cell death pathways. Ghost pepper also induced changes in proteins related to methylation, acetylation, genome stability, cell cycle check points, carbohydrate, protein and other metabolism and cellular mechanisms. Ghost pepper exhibited antiproliferation activity by inducing apoptosis through a complex network of proteins in human renal cell adenocarcinoma in vitro.
Collapse
Affiliation(s)
- Venu Perla
- Gus R. Douglass Land-Grant Institute and Department of Biology, West Virginia State University, Institute, West Virginia, United States of America
| | - Marjan Nadimi
- Gus R. Douglass Land-Grant Institute and Department of Biology, West Virginia State University, Institute, West Virginia, United States of America
| | - Rishi Reddy
- Gus R. Douglass Land-Grant Institute and Department of Biology, West Virginia State University, Institute, West Virginia, United States of America
| | - Gerald R. Hankins
- Gus R. Douglass Land-Grant Institute and Department of Biology, West Virginia State University, Institute, West Virginia, United States of America
| | - Padma Nimmakayala
- Gus R. Douglass Land-Grant Institute and Department of Biology, West Virginia State University, Institute, West Virginia, United States of America
| | - Robert T. Harris
- Gus R. Douglass Land-Grant Institute and Department of Biology, West Virginia State University, Institute, West Virginia, United States of America
| | - Jagan Valluri
- Department of Biological Sciences, One John Marshall Drive, Marshall University, Huntington, West Virginia, United States of America
| | - Cristian Sirbu
- Center for Cancer Research, Charleston Area Medical Center, SE, Charleston, West Virginia, United States of America
| | - Umesh K. Reddy
- Gus R. Douglass Land-Grant Institute and Department of Biology, West Virginia State University, Institute, West Virginia, United States of America
| |
Collapse
|
11
|
Manivannan A, Kim JH, Yang EY, Ahn YK, Lee ES, Choi S, Kim DS. Next-Generation Sequencing Approaches in Genome-Wide Discovery of Single Nucleotide Polymorphism Markers Associated with Pungency and Disease Resistance in Pepper. BIOMED RESEARCH INTERNATIONAL 2018; 2018:5646213. [PMID: 29546063 PMCID: PMC5818978 DOI: 10.1155/2018/5646213] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 10/23/2017] [Accepted: 10/26/2017] [Indexed: 12/04/2022]
Abstract
Pepper is an economically important horticultural plant that has been widely used for its pungency and spicy taste in worldwide cuisines. Therefore, the domestication of pepper has been carried out since antiquity. Owing to meet the growing demand for pepper with high quality, organoleptic property, nutraceutical contents, and disease tolerance, genomics assisted breeding techniques can be incorporated to develop novel pepper varieties with desired traits. The application of next-generation sequencing (NGS) approaches has reformed the plant breeding technology especially in the area of molecular marker assisted breeding. The availability of genomic information aids in the deeper understanding of several molecular mechanisms behind the vital physiological processes. In addition, the NGS methods facilitate the genome-wide discovery of DNA based markers linked to key genes involved in important biological phenomenon. Among the molecular markers, single nucleotide polymorphism (SNP) indulges various benefits in comparison with other existing DNA based markers. The present review concentrates on the impact of NGS approaches in the discovery of useful SNP markers associated with pungency and disease resistance in pepper. The information provided in the current endeavor can be utilized for the betterment of pepper breeding in future.
Collapse
Affiliation(s)
- Abinaya Manivannan
- Vegetable Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Jeonju 55365, Republic of Korea
| | - Jin-Hee Kim
- Vegetable Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Jeonju 55365, Republic of Korea
| | - Eun-Young Yang
- Vegetable Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Jeonju 55365, Republic of Korea
| | - Yul-Kyun Ahn
- Department of Vegetable Crops, Korea National College of Agriculture and Fisheries, Jeonju 54874, Republic of Korea
| | - Eun-Su Lee
- Vegetable Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Jeonju 55365, Republic of Korea
| | - Sena Choi
- Vegetable Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Jeonju 55365, Republic of Korea
| | - Do-Sun Kim
- Vegetable Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Jeonju 55365, Republic of Korea
| |
Collapse
|
12
|
M S, Gaur R, Sharma V, Chhapekar SS, Das J, Kumar A, Yadava SK, Nitin M, Brahma V, Abraham SK, Ramchiary N. Comparative Analysis of Fruit Metabolites and Pungency Candidate Genes Expression between Bhut Jolokia and Other Capsicum Species. PLoS One 2016; 11:e0167791. [PMID: 27936081 PMCID: PMC5147997 DOI: 10.1371/journal.pone.0167791] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Accepted: 11/20/2016] [Indexed: 11/19/2022] Open
Abstract
Bhut jolokia, commonly known as Ghost chili, a native Capsicum species found in North East India was recorded as the naturally occurring hottest chili in the world by the Guinness Book of World Records in 2006. Although few studies have reported variation in pungency content of this particular species, no study till date has reported detailed expression analysis of candidate genes involved in capsaicinoids (pungency) biosynthesis pathway and other fruit metabolites. Therefore, the present study was designed to evaluate the diversity of fruit morphology, fruiting habit, capsaicinoids and other metabolite contents in 136 different genotypes mainly collected from North East India. Significant intra and inter-specific variations for fruit morphological traits, fruiting habits and 65 fruit metabolites were observed in the collected Capsicum germplasm belonging to three Capsicum species i.e., Capsicum chinense (Bhut jolokia, 63 accessions), C. frutescens (17 accessions) and C. annuum (56 accessions). The pungency level, measured in Scoville Heat Unit (SHU) and antioxidant activity measured by 2, 2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging assay showed maximum levels in C. chinense accessions followed by C. frutescens accessions, while C. annuum accessions showed the lowest value for both the traits. The number of different fruit metabolites detected did not vary significantly among the different species but the metabolite such as benzoic acid hydroxyl esters identified in large percentage in majority of C. annuum genotypes was totally absent in the C. chinense genotypes and sparingly present in few genotypes of C. frutescens. Significant correlations were observed between fruit metabolites capsaicin, dihydrocapsaicin, hexadecanoic acid, cyclopentane, α-tocopherol and antioxidant activity. Furthermore, comparative expression analysis (through qRT-PCR) of candidate genes involved in capsaicinoid biosynthesis pathway revealed many fold higher expression of majority of the genes in C. chinense compared to C. frutescens and C. annuum suggesting that the possible reason for extremely high pungency might be due to the higher level of candidate gene(s) expression although nucleotide variation in pungency related genes may also be involved in imparting variations in level of pungency.
Collapse
Affiliation(s)
- Sarpras M
- Translational and Evolutionary Genomics Lab, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Rashmi Gaur
- Translational and Evolutionary Genomics Lab, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Vineet Sharma
- Translational and Evolutionary Genomics Lab, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Sushil Satish Chhapekar
- Translational and Evolutionary Genomics Lab, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Jharna Das
- Department of Biological Science, Gauhati University, Guwahati, Assam, India
| | - Ajay Kumar
- Translational and Evolutionary Genomics Lab, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
- Department of Plant Science, School of Biological Sciences, Central University of Kerala, Periya, Kasaragod, Kerala, India
| | - Satish Kumar Yadava
- Centre for Genetic Manipulation of Crop Plants, University of Delhi South Campus, Benito Juarez Road, New Delhi, India
| | - Mukesh Nitin
- Translational and Evolutionary Genomics Lab, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Vijaya Brahma
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Suresh K. Abraham
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Nirala Ramchiary
- Translational and Evolutionary Genomics Lab, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
13
|
Nimmakayala P, Abburi VL, Saminathan T, Alaparthi SB, Almeida A, Davenport B, Nadimi M, Davidson J, Tonapi K, Yadav L, Malkaram S, Vajja G, Hankins G, Harris R, Park M, Choi D, Stommel J, Reddy UK. Genome-wide Diversity and Association Mapping for Capsaicinoids and Fruit Weight in Capsicum annuum L. Sci Rep 2016; 6:38081. [PMID: 27901114 PMCID: PMC5128918 DOI: 10.1038/srep38081] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 11/03/2016] [Indexed: 12/24/2022] Open
Abstract
Accumulated capsaicinoid content and increased fruit size are traits resulting from Capsicum annuum domestication. In this study, we used a diverse collection of C. annuum to generate 66,960 SNPs using genotyping by sequencing. The study identified 1189 haplotypes containing 3413 SNPs. Length of individual linkage disequilibrium (LD) blocks varied along chromosomes, with regions of high and low LD interspersed with an average LD of 139 kb. Principal component analysis (PCA), Bayesian model based population structure analysis and an Euclidean tree built based on identity by state (IBS) indices revealed that the clustering pattern of diverse accessions are in agreement with capsaicin content (CA) and fruit weight (FW) classifications indicating the importance of these traits in shaping modern pepper genome. PCA and IBS were used in a mixed linear model of capsaicin and dihydrocapsaicin content and fruit weight to reduce spurious associations because of confounding effects of subpopulations in genome-wide association study (GWAS). Our GWAS results showed SNPs in Ankyrin-like protein, IKI3 family protein, ABC transporter G family and pentatricopeptide repeat protein are the major markers for capsaicinoids and of 16 SNPs strongly associated with FW in both years of the study, 7 are located in known fruit weight controlling genes.
Collapse
Affiliation(s)
- Padma Nimmakayala
- Gus R. Douglass Institute and Department of Biology, West Virginia State University, Institute, WV-25112, USA
| | - Venkata L Abburi
- Gus R. Douglass Institute and Department of Biology, West Virginia State University, Institute, WV-25112, USA
| | - Thangasamy Saminathan
- Gus R. Douglass Institute and Department of Biology, West Virginia State University, Institute, WV-25112, USA
| | - Suresh B Alaparthi
- Gus R. Douglass Institute and Department of Biology, West Virginia State University, Institute, WV-25112, USA
| | - Aldo Almeida
- Gus R. Douglass Institute and Department of Biology, West Virginia State University, Institute, WV-25112, USA
| | - Brittany Davenport
- Gus R. Douglass Institute and Department of Biology, West Virginia State University, Institute, WV-25112, USA
| | - Marjan Nadimi
- Gus R. Douglass Institute and Department of Biology, West Virginia State University, Institute, WV-25112, USA
| | - Joshua Davidson
- Gus R. Douglass Institute and Department of Biology, West Virginia State University, Institute, WV-25112, USA
| | - Krittika Tonapi
- Gus R. Douglass Institute and Department of Biology, West Virginia State University, Institute, WV-25112, USA
| | - Lav Yadav
- Gus R. Douglass Institute and Department of Biology, West Virginia State University, Institute, WV-25112, USA
| | - Sridhar Malkaram
- Gus R. Douglass Institute and Department of Biology, West Virginia State University, Institute, WV-25112, USA
| | - Gopinath Vajja
- Gus R. Douglass Institute and Department of Biology, West Virginia State University, Institute, WV-25112, USA
| | - Gerald Hankins
- Gus R. Douglass Institute and Department of Biology, West Virginia State University, Institute, WV-25112, USA
| | - Robert Harris
- Gus R. Douglass Institute and Department of Biology, West Virginia State University, Institute, WV-25112, USA
| | - Minkyu Park
- Department of Plant Science, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul 151-321, Republic of Korea
| | - Doil Choi
- Department of Plant Science, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul 151-321, Republic of Korea
| | - John Stommel
- Genetic Improvement of Fruits and Vegetables Laboratory (USDA, ARS), Beltsville, MD-20705, USA
| | - Umesh K Reddy
- Gus R. Douglass Institute and Department of Biology, West Virginia State University, Institute, WV-25112, USA
| |
Collapse
|
14
|
Ogawa K, Murota K, Shimura H, Furuya M, Togawa Y, Matsumura T, Masuta C. Evidence of capsaicin synthase activity of the Pun1-encoded protein and its role as a determinant of capsaicinoid accumulation in pepper. BMC PLANT BIOLOGY 2015; 15:93. [PMID: 25884984 PMCID: PMC4386094 DOI: 10.1186/s12870-015-0476-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 03/17/2015] [Indexed: 05/24/2023]
Abstract
BACKGROUND Capsaicinoids, including capsaicin and its analogs, are responsible for the pungency of pepper (Capsicum species) fruits. Even though capsaicin is familiar and used daily by humans, the genes involved in the capsaicin biosynthesis pathway have not been well characterized. The putative aminotransferase (pAMT) and Pungent gene 1 (Pun1) proteins are believed to catalyze the second to last and the last steps in the pathway, respectively, making the Pun1 protein the putative capsaicin synthase. However, there is no direct evidence that Pun1 has capsaicin synthase activity. RESULTS To verify that the Pun1 protein actually plays a role in capsaicin production, we generated anti-Pun1 antibodies against an Escherichia coli-synthesized Pun1 protein and used them to antagonize endogenous Pun1 activity. To confirm the anti-Pun1 antibodies' specificity, we targeted Pun1 mRNA using virus-induced gene silencing. In the Pun1-down-regulated placental tissues, the accumulated levels of the Pun1 protein, which was identified on a western blot using the anti-Pun1 antibodies, were reduced, and simultaneously, capsaicin accumulations were reduced in the same tissues. In the de novo capsaicin synthesis in vitro cell-free assay, which uses protoplasts isolated from placental tissues, capsaicin synthesis was inhibited by the addition of anti-Pun1 antibodies. We next analyzed the expression profiles of pAMT and Pun1 in various pepper cultivars and found that high levels of capsaicin accumulation always accompanied high expression levels of both pAMT and Pun1, indicating that both genes are important for capsaicin synthesis. However, comparisons of the accumulated levels of vanillylamine (a precursor of capsaicin) and capsaicin between pungent and nonpungent cultivars revealed that vanillylamine levels in the pungent cultivars were very low, probably owing to its rapid conversion to capsaicin by Pun1 soon after synthesis, and that in nonpungent cultivars, vanillylamine accumulated to quite high levels owing to the lack of Pun1. CONCLUSIONS Using a newly developed protoplast-based assay for de novo capsaicin synthesis and the anti-Pun1 antibodies, we successfully demonstrated that the Pun1 gene and its gene product are involved in capsaicin synthesis. The analysis of the vanillylamine accumulation relative to that of capsaicin indicated that Pun1 was the primary determinant of their accumulation levels.
Collapse
Affiliation(s)
- Kana Ogawa
- Graduate School of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan.
| | - Katsunori Murota
- Graduate School of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan.
| | - Hanako Shimura
- Graduate School of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan.
| | - Misaki Furuya
- Graduate School of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan.
| | - Yasuko Togawa
- Graduate School of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan.
| | - Takeshi Matsumura
- Plant Molecular Technology Research Group, Research Institute of Bioproduction, National Institute of Advanced Industrial Science and Technology, Sapporo, 062-8517, Japan.
| | - Chikara Masuta
- Graduate School of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan.
| |
Collapse
|
15
|
Hyun TK, Eom SH, Han X, Kim JS. Evolution and expression analysis of the soybean glutamate decarboxylase gene family. J Biosci 2014; 39:899-907. [PMID: 25431418 DOI: 10.1007/s12038-014-9484-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Glutamate decarboxylase (GAD) is an enzyme that catalyses the conversion of L-glutamate into gamma-aminobutyric acid (GABA), which is a four-carbon non-protein amino acid present in all organisms. Although plant GAD plays important roles in GABA biosynthesis, our knowledge concerning GAD gene family members and their evolutionary relationship remains limited. Therefore, in this study, we have analysed the evolutionary mechanisms of soybean GAD genes and suggested that these genes expanded in the soybean genome partly due to segmental duplication events. The approximate dates of duplication events were calculated using the synonymous substitution rate, and we suggested that the segmental duplication of GAD genes in soybean originated 9.47 to 11.84 million years ago (Mya). In addition, all segmental duplication pairs (GmGAD1/3 and GmGAD2/4) are subject to purifying selection. Furthermore, GmGAD genes displayed differential expression either in their transcript abundance or in their expression patterns under abiotic stress conditions like salt, drought, and cold. The expression pattern of paralogous pairs suggested that they might have undergone neofunctionalization during the subsequent evolution process. Taken together, our results provide valuable information for the evolution of the GAD gene family and represent the basis for future research on the functional characterization of GAD genes in higher plants.
Collapse
Affiliation(s)
- Tae Kyung Hyun
- Division of Applied Life Science, Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 660-701, Republic of Korea
| | | | | | | |
Collapse
|
16
|
Abstract
Glutamate decarboxylase (GAD) is an enzyme that catalyses the conversion of L-glutamate into gamma-aminobutyric acid (GABA), which is a four-carbon non-protein amino acid present in all organisms. Although plant GAD plays important roles in GABA biosynthesis, our knowledge concerning GAD gene family members and their evolutionary relationship remains limited. Therefore, in this study, we have analysed the evolutionary mechanisms of soybean GAD genes and suggested that these genes expanded in the soybean genome partly due to segmental duplication events. The approximate dates of duplication events were calculated using the synonymous substitution rate, and we suggested that the segmental duplication of GAD genes in soybean originated 9.47 to 11.84 million years ago (Mya). In addition, all segmental duplication pairs (GmGAD1/3 and GmGAD2/4) are subject to purifying selection. Furthermore, GmGAD genes displayed differential expression either in their transcript abundance or in their expression patterns under abiotic stress conditions like salt, drought, and cold. The expression pattern of paralogous pairs suggested that they might have undergone neofunctionalization during the subsequent evolution process. Taken together, our results provide valuable information for the evolution of the GAD gene family and represent the basis for future research on the functional characterization of GAD genes in higher plants.
Collapse
|
17
|
Linkage disequilibrium and population-structure analysis among Capsicum annuum L. cultivars for use in association mapping. Mol Genet Genomics 2014; 289:513-21. [PMID: 24585251 DOI: 10.1007/s00438-014-0827-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 02/11/2014] [Indexed: 12/11/2022]
Abstract
Knowledge of population structure and linkage disequilibrium among the worldwide collections of peppers currently classified as hot, mild, sweet and ornamental types is indispensable for applying association mapping and genomic selection to improve pepper. The current study aimed to resolve the genetic diversity and relatedness of Capsicum annuum germplasm by use of simple sequence repeat (SSR) loci across all chromosomes in samples collected in 2011 and 2012. The physical distance covered by the entire set of SSRs used was 2,265.9 Mb from the 3.48-Gb hot-pepper genome size. The model-based program STRUCTURE was used to infer five clusters, which was further confirmed by classical molecular-genetic diversity analysis. Mean heterozygosity of various loci was estimated to be 0.15. Linkage disequilibrium (LD) was used to identify 17 LD blocks across various chromosomes with sizes from 0.154 Kb to 126.28 Mb. CAMS-142 of chromosome 1 was significantly associated with both capsaicin (CA) and dihydrocapsaicin (DCA) levels. Further, CAMS-142 was located in an LD block of 98.18 Mb. CAMS-142 amplified bands of 244, 268, 283 and 326 bp. Alleles 268 and 283 bp had positive effects on both CA and DCA levels, with an average R(2) of 12.15 % (CA) and 12.3 % (DCA). Eight markers from seven different chromosomes were significantly associated with fruit weight, contributing an average effect of 15 %. CAMS-199, HpmsE082 and CAMS-190 are the three major quantitative trait loci located on chromosomes 8, 9, and 10, respectively, and were associated with fruit weight in samples from both years of the study. This research demonstrates the effectiveness of using genome-wide SSR-based markers to assess features of LD and genetic diversity within C. annuum.
Collapse
|