1
|
Rajawat J, Banerjee M. Poly(ADP-ribose) polymerase1 (PARP1) and PARP inhibitors: New frontiers in cervical cancer. Biochem Biophys Res Commun 2024; 738:150943. [PMID: 39504715 DOI: 10.1016/j.bbrc.2024.150943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/28/2024] [Accepted: 11/01/2024] [Indexed: 11/08/2024]
Abstract
Cervical cancer affects more than half a million women and treatment options for advanced disease and recurrence is limited. Poly (ADP-ribose) polymerase1 (PARP1) is a critical nuclear protein regulating several components and functions of cellular machinery, including cancer. PARP1 expression and activity plays a crucial dynamics in the tumor microenvironment. PARP inhibitors are being considered as a viable option for treating BRCA deficient ovarian and breast cancer patients. However, the role of PARP1 in cervical cancer tumorigenesis is less known. The aim of the present review is to provide a comprehensive insight about the role of PARP1 in cervical cancer pathogenesis in context to PARP1 expression as a molecular marker for identifying cancer and in predicting treatment response and prognosis. PARP1 expression is found to be elevated in cervical cancer tissues in comparison to that in the normal surrounding tissues. The cellular proteins linked with PARP1 have been described along with the association of SNPs in PARP1 gene with cervical cancer. Promising results of PARP inhibitors with immunotherapy and clinical trials with cisplatin have also been discussed. This review provides an up-to-date description of PARP1 expression, its role in cervical cancer pathogenesis and reported clinical trials of PARP inhibitors in adjuvant therapy.
Collapse
Affiliation(s)
- Jyotika Rajawat
- Institute of Advanced Molecular Genetics & Infectious Diseases, ONGC-CAS, University of Lucknow, Lucknow, 226007, U.P, India; Molecular & Human Genetics Lab, Department of Zoology, University of Lucknow, Lucknow, 226007, U.P, India.
| | - Monisha Banerjee
- Molecular & Human Genetics Lab, Department of Zoology, University of Lucknow, Lucknow, 226007, U.P, India; A Laboratory of Advanced Molecular Genetics & Infectious Diseases, ONGC-CAS, University of Lucknow, Lucknow, 226007, U.P, India.
| |
Collapse
|
2
|
PARP1 rs1136410 (A/G) polymorphism is associated with early age of onset of gallbladder cancer. Eur J Cancer Prev 2021; 31:311-317. [PMID: 34406176 DOI: 10.1097/cej.0000000000000708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Evaluation of the association of PARP1 rs1136410 (A/G) polymorphism with gallbladder cancer susceptibility and its prognosis in the Indian population of eastern Uttar Pradesh and western Bihar. METHODS PARP1 rs1136410 was genotyped by PCR-RFLP and its association with the prognosis of gallbladder cancer patients were analyzed using Kaplan-Meier plot and log-rank tests. RESULTS Our results demonstrate that minor allele G is more frequent in gallbladder cancer patients than controls. The frequencies of minor allele G and GG genotype are significantly associated with increased risk of gallbladder cancer. Our data suggest that the minor allele G and homozygous genotype GG are significant predisposing factors for the early age of onset of gallbladder cancer. Similarly, women patients having AG and GG genotypes demonstrate an increased risk of gallbladder cancer. The risk group genotypes (AG + GG) are significantly more frequent in patients with thick gallbladder wall, with jaundice and with the presence of lymph node than in patients with normal gallbladder wall thickness, without jaundice and absence of lymph node involvement. Survival analysis data suggest that patients with risk group genotype (AG + GG) presenting jaundice have shorter overall survival. CONCLUSION Our study suggests that the minor allele G of PARP1 rs1136410 (A/G) is a predisposing factor for gallbladder carcinogenesis and is significantly associated with early onset of the disease. Interestingly, the minor allele G is significantly more frequent in the patients with jaundice, lymph node metastasis and gallbladder wall thickness.
Collapse
|
3
|
Wang Y, Xia XB, Tang HZ, Cai JR, Shi XK, Ji HX, Yan XN, Xu T. Association of T2285C polymorphism in PARP1 gene coding region with its expression, activity and NSCLC risk along with prognosis. Mutagenesis 2021; 36:281-293. [PMID: 34132814 DOI: 10.1093/mutage/geab022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 06/15/2021] [Indexed: 11/12/2022] Open
Abstract
Poly (ADP-ribose) polymerase-1(PARP1), a DNA repair gene, is the crucial player in the maintenance of genome integrity. T2285C polymorphism in coding region of PARP1 has been reported to be associated with susceptibility to tumors. We explored the relation and mechanism of T2285C polymorphism of PARP1 to its expression and activity along with risk and prognosis in NSCLC. mRNA expression was measured using qRT-PCR assay or collected from TCGA dataset. Protein expression was examined with immunoblotting assay. Genotypes were determined by PCR-RFLP and sequencing approaches. PARP1 activity was determined with enzyme activity assay. Regulation of SIRT7 to PARP1 were determined by over-expression and small interference experiment. Association of PARP1 T2285C polymorphism with NSCLC risk was evaluated via multiple logistic regression analysis. Comparison of treatment response and PFS of NSCLC patients among different genotypes or regimens was made by Chi-square test. Results indicated that mRNA and protein expression of PARP1 dramatically increased in NSCLC tissues in comparison to paired para-carcinoma tissues (P<0.05). TC/CC mutant genotypes were associated with markedly enhanced PARP1 mRNA level compared with TT genotype (P=0.011). No significant difference was discovered in PARP1 protein expression among TT, TC or CC genotypes (P>0.05). Subjects with variant allele C had higher risk of NSCLC in comparison to allele T carriers [odds ratio (OR) =1.560; P=0.000]. NSCLC patients carrying mutational TC or CC genotypes were correlated with unfavorable response to platinum-based chemotherapy (TT vs.TC vs.CC, P=0.010), and shorter PFS compared to TT genotype (TT vs.TC vs.CC, P=0.009). T2285C mutation of PARP1 resulted in the enhancement of its mRNA, but the decrease of enzyme activity in tumor cell. Overexpression of SIRT7 attenuated PARP1 expression and activity. These findings suggest the variant allele C of T2285C polymorphism of PARP1 linked to an increase of NSCLC risk, and unfavorable efficacy and prognosis of NSCLC patients with platinum-based chemotherapy, which might be associated with enhancement of its mRNA expression and the diminishment of activity. Identification of PARP1 T2285C polymorphism and mRNA expression may be the promising way for the individualized treatment of NSCLC.
Collapse
Affiliation(s)
- Yan Wang
- Department of Pharmacy, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Xiao Bing Xia
- Department of Pharmacy, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Hui Zhuo Tang
- Department of Pharmacy, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Jing Ran Cai
- Department of Pharmacy, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Xiang Kui Shi
- Department of Pharmacy, the Affiliated Xuzhou Maternity and Child Health Care Hospital of Xuzhou Medical University, Xuzhou, China
| | - Huai Xue Ji
- Department of Pharmacy, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Xiao Nan Yan
- Clinical Center of Reproductive Medicine, Xuzhou Central Hospital, Xuzhou, China
| | - Tie Xu
- Emergency Center, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
4
|
Xin Y, Yang L, Su M, Cheng X, Zhu L, Liu J. PARP1 rs1136410 Val762Ala contributes to an increased risk of overall cancer in the East Asian population: a meta-analysis. J Int Med Res 2021; 49:300060521992956. [PMID: 33706586 PMCID: PMC8168028 DOI: 10.1177/0300060521992956] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Objectives To investigate the association between poly(ADP-ribose) polymerase 1 (PARP1) rs1136410 Val762Ala and cancer risk in Asian populations, as published findings remain controversial. Methods The PubMed and EMBASE databases were searched, and references of identified studies and reviews were screened, to find relevant studies. Meta-analyses were performed to evaluate the association between PARP1 rs1136410 Val762Ala and cancer risk, reported as odds ratio (OR) and 95% confidence interval (CI). Results A total of 24 studies with 8 926 cases and 15 295 controls were included. Overall, a significant association was found between PARP1 rs1136410 Val762Ala and cancer risk in East Asians (homozygous: OR 1.19, 95% CI 1.06, 1.35; heterozygous: OR 1.10, 95% CI 1.04, 1.17; recessive: OR 1.13, 95% CI 1.02, 1.25; dominant: OR 1.13, 95% CI 1.06, 1.19; and allele comparison: OR 1.09, 95% CI 1.03, 1.15). Stratification analyses by race and cancer type revealed similar results for gastric cancer among the Chinese population. Conclusion The findings suggest that PARP1 rs1136410 Val762Ala may be significantly associated with an increased cancer risk in Asians, particularly the Chinese population.
Collapse
Affiliation(s)
- Yijuan Xin
- Department of Clinical Laboratory, 66352Xijing Hospital, Fourth Military Medical University, Xian, Shaanxi, China
| | - Liu Yang
- Department of Clinical Laboratory, 66352Xijing Hospital, Fourth Military Medical University, Xian, Shaanxi, China
| | - Mingquan Su
- Department of Clinical Laboratory, 66352Xijing Hospital, Fourth Military Medical University, Xian, Shaanxi, China
| | - Xiaoli Cheng
- Department of Clinical Laboratory, 66352Xijing Hospital, Fourth Military Medical University, Xian, Shaanxi, China
| | - Lin Zhu
- Department of Clinical Laboratory, 66352Xijing Hospital, Fourth Military Medical University, Xian, Shaanxi, China
| | - Jiayun Liu
- Department of Clinical Laboratory, 66352Xijing Hospital, Fourth Military Medical University, Xian, Shaanxi, China
| |
Collapse
|
5
|
Li H, Zha Y, Du F, Liu J, Li X, Zhao X. Contributions of PARP-1 rs1136410 C>T polymorphism to the development of cancer. J Cell Mol Med 2020; 24:14639-14644. [PMID: 33108038 PMCID: PMC7753995 DOI: 10.1111/jcmm.16027] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 09/24/2020] [Accepted: 10/07/2020] [Indexed: 12/13/2022] Open
Abstract
Poly(ADP‐ribose) polymerase‐1 (PARP‐1) is a nuclear chromatin‐associated enzyme involved in the DNA damage response. SNP rs1136410 C>T, the most studied polymorphism in PARP‐1 gene, is highly implicated in the susceptibility of cancer. However, the roles of PARP‐1 rs1136410 C>T on cancer risk vary from different studies. We comprehensively screened all qualified publications from several databases, including PubMed, EMBASE, MEDLINE, CNKI and Wanfang. The searching was updated to April 2020. Our meta‐analysis included 60 articles with 65 studies, comprised of a total of 23 996 cases with cancer and 33 015 controls. Overall, pooled data showed that the PARP‐1 rs1136410 C>T polymorphism was significantly but a border‐line associated with an increased risk of overall cancer (CC vs. TT/TC: OR = 1.11, 95% CI = 1.00‐1.24; C vs T: OR = 1.07, 95% CI = 1.01‐1.14). Subgroup analysis indicated that rs1136410 C allele contributed to high risk among gastric, thyroid, and cervical cancer, but lower risk among brain cancer. Furthermore, increased cancer risk was detected in the subgroups of Asian, controls from population‐based design studies, and HWE ≤ 0.05 studies. Sensitivity analysis and Egger's test showed that results of the meta‐analysis were fairly stable. The current study indicated that PARP1 rs1136410 C>T polymorphism may have an impact on certain types of cancer susceptibility.
Collapse
Affiliation(s)
- Hunian Li
- Emergency and Critical Care Center, Renmin Hospital, Hubei University of Medicine, Shiyan, China
| | - Yongjiu Zha
- Emergency and Critical Care Center, Renmin Hospital, Hubei University of Medicine, Shiyan, China
| | - Fang Du
- Emergency and Critical Care Center, Renmin Hospital, Hubei University of Medicine, Shiyan, China
| | - Jie Liu
- Emergency and Critical Care Center, Renmin Hospital, Hubei University of Medicine, Shiyan, China
| | - Xiaoquan Li
- Emergency and Critical Care Center, Renmin Hospital, Hubei University of Medicine, Shiyan, China
| | - Xu Zhao
- Emergency and Critical Care Center, Renmin Hospital, Hubei University of Medicine, Shiyan, China
| |
Collapse
|
6
|
Gotoh N, Minato Y, Saitoh T, Takahashi N, Kasamatsu T, Souma K, Oda T, Hoshino T, Sakura T, Ishizaki T, Shimizu H, Takizawa M, Yokohama A, Tsukamoto N, Handa H, Murakami H. PARP1 V762A polymorphism affects the prognosis of myelodysplastic syndromes. Eur J Haematol 2020; 104:526-537. [PMID: 32003046 DOI: 10.1111/ejh.13393] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 01/26/2020] [Accepted: 01/28/2020] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Myelodysplastic syndromes (MDS), caused by various genetic mutations in hematopoietic stem cells, are associated with highly variable outcomes. Poly (ADP-ribose) polymerase-1 (PARP1) plays an important role in DNA damage repair and contributes to the progression of several types of cancer. Here, we investigated the impact of PARP1 V762A polymorphism on the susceptibility to and prognosis of MDS. METHODS Samples collected from 105 MDS patients and 202 race-matched healthy controls were subjected to polymerase chain reaction-restriction fragment length polymorphism for genotyping. RESULTS The allele and genotype frequencies of PARP1 V762A did not differ between MDS patients and the control group. However, MDS patients with the PARP1 V762A non-AA genotype, which is associated with high gene activity, had shorter overall survival rates (P = .01) than those with the AA genotype. Multivariate analysis of overall survival also revealed PARP1 V762A non-AA genotype as a poor prognostic factor (P = .02). When patients were analyzed according to treatment history, the PARP1 V762A non-AA genotype was only associated with poor survival in patients who had received treatment (P = .02). CONCLUSION PARP1 V762A polymorphism may be an independent prognostic factor for MDS, and a predictive biomarker for MDS treatment.
Collapse
Affiliation(s)
- Nanami Gotoh
- Graduate School of Health Sciences, Gunma University, Gunma, Japan
| | - Yusuke Minato
- Department of Virology and Preventive Medicine, Gunma University Graduate School of Medicine, Gunma, Japan.,Department of Anatomy and Cell Biology, Hyogo College of Medicine, Hyogo, Japan
| | - Takayuki Saitoh
- Graduate School of Health Sciences, Gunma University, Gunma, Japan
| | | | | | - Kana Souma
- Graduate School of Health Sciences, Gunma University, Gunma, Japan
| | - Tsukasa Oda
- Laboratory of Molecular Genetics, Institute for Molecular and Cellular Regulation, Gunma University, Gunma, Japan
| | - Takumi Hoshino
- Leukemia Research Center, Saiseikai Maebashi Hospital, Gunma, Japan
| | - Toru Sakura
- Leukemia Research Center, Saiseikai Maebashi Hospital, Gunma, Japan
| | - Takuma Ishizaki
- Department of Hematology, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Hiroaki Shimizu
- Department of Hematology, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Makiko Takizawa
- Department of Hematology, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Akihiko Yokohama
- Division of Blood Transfusion Service, Gunma University Hospital, Gunma, Japan
| | | | - Hiroshi Handa
- Department of Hematology, Gunma University Graduate School of Medicine, Gunma, Japan
| | | |
Collapse
|
7
|
Dantas RN, de Souza AM, Takeno SS, Kassab P, Malheiros CA, Lima EM. Association between PSCA, TNF-α, PARP1 and TP53 Gene Polymorphisms and Gastric Cancer Susceptibility in the Brazilian Population. Asian Pac J Cancer Prev 2020; 21:43-48. [PMID: 31983162 PMCID: PMC7294041 DOI: 10.31557/apjcp.2020.21.1.43] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 12/19/2019] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVES To evaluate the association of allelic and genotypic frequencies of PSCA (rs2976392), TNF-α (rs1800629), PARP1 (rs1136410) and TP53 (rs368771578) SNPs with GC susceptibility in a Brazilian population. MATERIALS AND METHODS This is a retrospective study, which included 102 paraffin-embedded adenocarcinoma tissue samples > 5 years of obtention, with 204 alleles for each studied SNP. Other 102 healthy tissue samples were included as controls. For analysis, the genotyping method Dideoxy Single Allele-Specific - PCR was used. Statistical analysis was performed with the Bioestat software 5.3, determining Hardy-Weinberg's equilibrium for the genotypic frequencies p-values < 0.05 were considered significant. RESULTS PSCA (rs2976392) and TNF-α (rs1800629) SNPs were associated with GC in the analyzed samples (X2=10.3/102 and p<0.001/0.00001, respectively). TNF-α (rs1800629) SNP presented also a statistically significant relationship between its genotypes and the morphological pattern (intestinal/diffuse) (p<0.032). However, PARP1 (rs1136410) and TP53 (rs368771578) SNPs were in Hardy-Weinberg's equilibrium and, therefore, were not significantly associated with GC in these samples (X2=0.73/2.89 and p<0.39/0.08). CONCLUSIONS PSCA (rs2976392) and TNF-α (rs1800629) SNPs are potential molecular markers of susceptibility to GC development. PARP1 (rs1136410) and TP53 (rs368771578) SNPs were not associated with the risk of GC development.
Collapse
Affiliation(s)
- Roberto Nery Dantas
- Laboratory of Molecular and Structural Biology Oncogenetics, LBMEO,
- Postgraduation Program in Cellular and Molecular Biology,
| | - Augusto Monteiro de Souza
- Laboratory of Molecular and Structural Biology Oncogenetics, LBMEO,
- Department of Molecular Biology, Federal University of Paraiba, João Pessoa - PB,
| | | | - Paulo Kassab
- Postgraduation Program in Cellular and Molecular Biology,
| | | | - Eleonidas Moura Lima
- Laboratory of Molecular and Structural Biology Oncogenetics, LBMEO,
- Department of Molecular Biology, Federal University of Paraiba, João Pessoa - PB,
- Postgraduation Program in Health Sciences, Santa Casa de São Paulo Medical Sciences Faculty, Sao Paulo - SP, Brazil.
| |
Collapse
|
8
|
Deng Y, Zhou L, Li N, Wang M, Yao L, Dong S, Zhang M, Yang P, Hao Q, Wu Y, Lyu L, Jin T, Dai Z, Kang H. Impact of four lncRNA polymorphisms (rs2151280, rs7763881, rs1136410, and rs3787016) on glioma risk and prognosis: A case-control study. Mol Carcinog 2019; 58:2218-2229. [PMID: 31489712 DOI: 10.1002/mc.23110] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 08/06/2019] [Accepted: 08/22/2019] [Indexed: 12/18/2022]
Abstract
Long noncoding RNA (lncRNA) polymorphisms are reportedly in connection with tumor susceptibility and prognosis. Glioma is one of the most aggressive and common cancers of the central nervous system. This study aimed to investigate the relationship between four lncRNA variants and glioma susceptibility and prognosis in a Chinese Han population. Sequenom Mass-ARRAY was used to genotype 605 patients with glioma and 1300 cancer-free individuals. Odds ratios or hazard ratios and related 95% confidence intervals were calculated to estimate the correlations. Logistic and Cox regression models, log-rank tests, and Kaplan-Meier curves were used for the statistical analysis. Six inheritance models showed that ANRIL rs2151280 variant genotype (A>G) was related to the susceptibility of glioma, while the other three lncRNAs showed no association. Patients treated with temozolomide or nimustine had better progression-free survival (PFS) and overall survival (OS) than those treated with platinum. Besides, patients aged older than 40 years showed a poorer OS. The Cox multivariate analysis revealed that the rs1136410 GG genotype (A>G) was beneficial for OS and PFS. The Kaplan-Meier analyses indicated that rs1136410 A>G and the rs7763881 A>C were associated with longer OS. ANRIL rs2151280 variant genotype might increase susceptibility of glioma. In addition, PARP1 rs1136410 variant genotype could be beneficial for the overall survival of patients with glioma. More research data are needed to further validate our results.
Collapse
Affiliation(s)
- Yujiao Deng
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Department of Breast Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Linghui Zhou
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Department of Breast Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Na Li
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Department of Breast Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Meng Wang
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Li Yao
- Department of Neurology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Shanshan Dong
- School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Ming Zhang
- Department of Neurosurgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Pengtao Yang
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Qian Hao
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ying Wu
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Lijuan Lyu
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Tianbo Jin
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an, China
| | - Zhijun Dai
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Department of Breast Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Huafeng Kang
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
9
|
Cheng J, Zhuo Z, Zhao P, Zhu J, Xin Y, Zhang J, Li P, Gao Y, He J, Zheng B. PARP1 gene polymorphisms and neuroblastoma susceptibility in Chinese children. J Cancer 2019; 10:4159-4164. [PMID: 31413734 PMCID: PMC6691706 DOI: 10.7150/jca.34222] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 06/02/2019] [Indexed: 02/07/2023] Open
Abstract
Neuroblastoma is a heterogeneous cancer frequently occurring in childhood. Germline mutations of PARP1 oncogene are implicated in several types of cancer. However, whether common single nucleotide polymorphisms (SNPs) in PARP1 gene are associated with neuroblastoma risk has received relatively few attentions. In this multi-center study, we aimed to elucidate the contributing role of PARP1 SNPs in neuroblastoma risk. We successfully genotyped three potentially functional PARP1 SNPs (rs1136410 A>G, rs2666428 T>C, rs8679 A>G) in 469 neuroblastoma cases and 998 controls. We did not detect any significant association between the analyzed SNPs and neuroblastoma risk in single SNP analysis. However, stratified analysis revealed that rs1136410 AG/GG carriers were more likely to develop tumors arising from mediastinum (AG/GG vs. AA: adjusted OR=1.65, 95% CI=1.06-2.56, P=0.028). Moreover, rs2666428 TC/CC carriers were at significantly lower risk to develop tumors from "other sites" (TC/CC vs. TT: adjusted OR=0.44, 95% CI=0.20-0.96, P=0.040). Our findings failed to provide evidence of the conferring role of the PARP1 gene polymorphisms in the risk of neuroblastoma. Further investigations of the association between PARP1 gene SNPs and neuroblastoma risk are warranted.
Collapse
Affiliation(s)
- Jiwen Cheng
- Department of Pediatric Surgery, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi, China
| | - Zhenjian Zhuo
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Pu Zhao
- Department of Neonatology, Shaanxi Provincial People's Hospital, Xi'an 710068, Shaanxi, China
| | - Jinhong Zhu
- Department of Clinical Laboratory, Molecular Epidemiology Laboratory, Harbin Medical University Cancer Hospital, Harbin 150040, Heilongjiang, China
| | - Yijuan Xin
- Clinical Laboratory Medicine Center of PLA, Xijing Hospital, Air Force Medical University, Xi'an 710032, Shaanxi, China
| | - Jiao Zhang
- Department of Pediatric Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Peng Li
- Department of Pediatric Surgery, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi, China
| | - Ya Gao
- Department of Pediatric Surgery, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi, China
| | - Jing He
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
- ✉ Corresponding authors: Baijun Zheng, Department of Pediatric Surgery, the Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 West 5 Road, Xi'an 710004, Shaanxi, China, E-mail: ; or Jing He, Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou 510623, Guangdong, China,
| | - Baijun Zheng
- Department of Pediatric Surgery, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi, China
- ✉ Corresponding authors: Baijun Zheng, Department of Pediatric Surgery, the Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 West 5 Road, Xi'an 710004, Shaanxi, China, E-mail: ; or Jing He, Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou 510623, Guangdong, China,
| |
Collapse
|
10
|
Mahjoub G, Saadat M. Non-random distribution of gastric cancer susceptible loci on human chromosomes. EXCLI JOURNAL 2018; 17:802-807. [PMID: 30233279 PMCID: PMC6141820 DOI: 10.17179/excli2018-1425] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 08/06/2018] [Indexed: 11/14/2022]
Affiliation(s)
- Ghazale Mahjoub
- Department of Biology, College of Sciences, Shiraz University, Shiraz, Iran
| | - Mostafa Saadat
- Department of Biology, College of Sciences, Shiraz University, Shiraz, Iran,*To whom correspondence should be addressed: Mostafa Saadat, Department of Biology, College of Sciences, Shiraz University, Shiraz 71467-13565, Iran; Tel: +98-71-36137432, Fax: +98-71-32280926, E-mail:
| |
Collapse
|
11
|
Zhu J, Jia W, Wu C, Fu W, Xia H, Liu G, He J. Base Excision Repair Gene Polymorphisms and Wilms Tumor Susceptibility. EBioMedicine 2018; 33:88-93. [PMID: 29937070 PMCID: PMC6085508 DOI: 10.1016/j.ebiom.2018.06.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 06/04/2018] [Accepted: 06/15/2018] [Indexed: 02/07/2023] Open
Abstract
Base excision repair (BER) is the main mechanism to repair endogenous DNA lesions caused by reactive oxygen species. BER deficiency is linked with cancer susceptibility and premature aging. Single nucleotide polymorphisms (SNPs) within BER genes have been implicated in various human malignancies. Nevertheless, a comprehensive investigation of their association with Wilms tumor susceptibility is lacking. In this study, 145 cases and 531 sex and age-matched healthy controls were recruited. We systematically genotyped 18 potentially functional SNPs in six core BER pathway genes, using a candidate SNP approach. Logistic regression was employed to evaluate odds ratio (OR) and 95% confidence interval (CI) adjusted for age and gender. Several SNPs showed protective effects against Wilms tumor. Significant associations with Wilms tumor susceptibility were shown for hOGG1 rs1052133 (dominant: adjusted OR = 0.66, 95% CI = 0.45-0.96, P = .030), FEN1 rs174538 (dominant: adjusted OR = 0.66, 95% CI = 0.45-0.95, P = .027; recessive: adjusted OR = 0.54, 95% CI = 0.32-0.93 P = .027), and FEN1 rs4246215 (dominant: adjusted OR = 0.55, 95% CI = 0.38-0.80, P = .002) polymorphisms. Stratified analysis was performed by age, gender, and clinical stage. Moreover, there was evidence of functional implication of these significant SNPs suggested by online expression quantitative trait locus (eQTL) analysis. Our findings indicate that common SNPs in BER genes modify susceptibility to Wilms tumor.
Collapse
Affiliation(s)
- Jinhong Zhu
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China; Department of Clinical Laboratory, Molecular Epidemiology Laboratory, Harbin Medical University Cancer Hospital, Harbin 150040, Heilongjiang, China
| | - Wei Jia
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Caixia Wu
- Department of Oncology, Harbin Medical University Cancer Hospital, Harbin 150040, Heilongjiang, China
| | - Wen Fu
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Huimin Xia
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Guochang Liu
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China.
| | - Jing He
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China.
| |
Collapse
|
12
|
Suresh Kumar MA, Laiakis EC, Ghandhi SA, Morton SR, Fornace AJ, Amundson SA. Gene Expression in Parp1 Deficient Mice Exposed to a Median Lethal Dose of Gamma Rays. Radiat Res 2018; 190:53-62. [PMID: 29746213 DOI: 10.1667/rr14990.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
There is a current interest in the development of biodosimetric methods for rapidly assessing radiation exposure in the wake of a large-scale radiological event. This work was initially focused on determining the exposure dose to an individual using biological indicators. Gene expression signatures show promise for biodosimetric application, but little is known about how these signatures might translate for the assessment of radiological injury in radiosensitive individuals, who comprise a significant proportion of the general population, and who would likely require treatment after exposure to lower doses. Using Parp1-/- mice as a model radiation-sensitive genotype, we have investigated the effect of this DNA repair deficiency on the gene expression response to radiation. Although Parp1 is known to play general roles in regulating transcription, the pattern of gene expression changes observed in Parp1-/- mice 24 h postirradiation to a LD50/30 was remarkably similar to that in wild-type mice after exposure to LD50/30. Similar levels of activation of both the p53 and NFκB radiation response pathways were indicated in both strains. In contrast, exposure of wild-type mice to a sublethal dose that was equal to the Parp1-/- LD50/30 resulted in a lower magnitude gene expression response. Thus, Parp1-/- mice displayed a heightened gene expression response to radiation, which was more similar to the wild-type response to an equitoxic dose than to an equal absorbed dose. Gene expression classifiers trained on the wild-type data correctly identified all wild-type samples as unexposed, exposed to a sublethal dose or exposed to an LD50/30. All unexposed samples from Parp1-/- mice were also correctly classified with the same gene set, and 80% of irradiated Parp1-/- samples were identified as exposed to an LD50/30. The results of this study suggest that, at least for some pathways that may influence radiosensitivity in humans, specific gene expression signatures have the potential to accurately detect the extent of radiological injury, rather than serving only as a surrogate of physical radiation dose.
Collapse
Affiliation(s)
- M A Suresh Kumar
- a Center for Radiological Research, Columbia University Medical Center, Columbia University, New York, New York
| | - Evagelia C Laiakis
- b Department of Biochemistry and Molecular and Cellular Biology, Georgetown University, Washington, DC
| | - Shanaz A Ghandhi
- a Center for Radiological Research, Columbia University Medical Center, Columbia University, New York, New York
| | - Shad R Morton
- a Center for Radiological Research, Columbia University Medical Center, Columbia University, New York, New York
| | - Albert J Fornace
- b Department of Biochemistry and Molecular and Cellular Biology, Georgetown University, Washington, DC
| | - Sally A Amundson
- a Center for Radiological Research, Columbia University Medical Center, Columbia University, New York, New York
| |
Collapse
|
13
|
Aggarwal N, Donald ND, Malik S, Selvendran SS, McPhail MJ, Monahan KJ. The Association of Low-Penetrance Variants in DNA Repair Genes with Colorectal Cancer: A Systematic Review and Meta-Analysis. Clin Transl Gastroenterol 2017; 8:e109. [PMID: 28749454 PMCID: PMC5539343 DOI: 10.1038/ctg.2017.35] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 06/12/2017] [Indexed: 01/07/2023] Open
Abstract
Objectives: Approximately 35% of colorectal cancer (CRC) risk is attributable to heritable factors known hereditary syndromes, accounting for 6%. The remainder may be due to lower penetrance polymorphisms particularly of DNA repair genes. DNA repair pathways, including base excision repair (BER), nucleotide excision repair (NER), mismatch repair (MMR), direct reversal repair (DRR), and double-strand break repair are complex, evolutionarily conserved, and critical in carcinogenesis. Germline mutations in these genes are associated with high-penetrance CRC syndromes such as Lynch syndrome. However, the association of low-penetrance polymorphisms of DNA repair genes with CRC risk remains unclear. Methods: A systematic literature review of PubMed, Embase, and HuGENet databases was conducted. Pre-specified criteria determined study inclusion/exclusion. Per-allele, pooled odds ratios disclosed the risk attributed to each variant. Heterogeneity was investigated by subgroup analyses for ethnicity and tumor location; funnel plots and Egger’s test assessed publication bias. Results: Sixty-one polymorphisms in 26 different DNA repair genes were identified. Meta-analyses for 22 polymorphisms in 17 genes revealed that six polymorphisms were significantly associated with CRC risk within BER (APE1, PARP1), NER (ERCC5, XPC), double-strand break (RAD18), and DRR (MGMT), but none within MMR. Subgroup analyses revealed significant association of OGG1 rs1052133 with rectal cancer risk. Egger’s test revealed no publication bias. Conclusions: Low-penetrance polymorphisms in DNA repair genes alter susceptibility to CRC. Future studies should therefore analyze whole-genome polymorphisms and any synergistic effects on CRC risk. Translational impact: This knowledge may enhance CRC risk assessment and facilitate a more personalized approach to cancer prevention.
Collapse
Affiliation(s)
| | | | | | | | | | - Kevin J Monahan
- Imperial College London, London, UK.,Family History of Bowel Cancer Clinic, West Middlesex University Hospital, Chelsea and Westminster Hospitals NHS Trust, London, UK
| |
Collapse
|
14
|
Azevedo AP, Silva SN, De Lima JP, Reichert A, Lima F, Júnior E, Rueff J. DNA repair genes polymorphisms and genetic susceptibility to Philadelphia-negative myeloproliferative neoplasms in a Portuguese population: The role of base excision repair genes polymorphisms. Oncol Lett 2017; 13:4641-4650. [PMID: 28599464 PMCID: PMC5452988 DOI: 10.3892/ol.2017.6065] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 01/26/2017] [Indexed: 02/06/2023] Open
Abstract
The role of base excision repair (BER) genes in Philadelphia-negative (PN)-myeloproliferative neoplasms (MPNs) susceptibility was evaluated by genotyping eight polymorphisms [apurinic/apyrimidinic endodeoxyribonuclease 1, mutY DNA glycosylase, earlier mutY homolog (E. coli) (MUTYH), 8-oxoguanine DNA glycosylase 1, poly (ADP-ribose) polymerase (PARP) 1, PARP4 and X-ray repair cross-complementing 1 (XRCC1)] in a case-control study involving 133 Caucasian Portuguese patients. The results did not reveal a correlation between individual BER polymorphisms and PN-MPNs when considered as a whole. However, stratification for essential thrombocythaemia revealed i) borderline effect/tendency to increased risk when carrying at least one variant allele for XRCC1_399 single-nucleotide polymorphism (SNP); ii) decreased risk for Janus kinase 2-positive patients carrying at least one variant allele for XRCC1_399 SNP; and iii) decreased risk in females carrying at least one variant allele for MUTYH SNP. Combination of alleles demonstrated an increased risk to PN-MPNs for one specific haplogroup. These findings may provide evidence for gene variants in susceptibility to MPNs. Indeed, common variants in DNA repair genes may hamper the capacity to repair DNA, thus increasing cancer susceptibility.
Collapse
Affiliation(s)
- Ana P Azevedo
- Centre for Toxicogenomics and Human Health (ToxOmics), Genetics, Oncology and Human Toxicology, NOVA Medical School, Faculty of Medical Sciences, NOVA University of Lisbon, 1169-056 Lisbon, Portugal.,Department of Clinical Pathology, Hospital of São Francisco Xavier, West Lisbon Hospital Centre, 1449-005 Lisbon, Portugal
| | - Susana N Silva
- Centre for Toxicogenomics and Human Health (ToxOmics), Genetics, Oncology and Human Toxicology, NOVA Medical School, Faculty of Medical Sciences, NOVA University of Lisbon, 1169-056 Lisbon, Portugal
| | - João P De Lima
- Centre for Toxicogenomics and Human Health (ToxOmics), Genetics, Oncology and Human Toxicology, NOVA Medical School, Faculty of Medical Sciences, NOVA University of Lisbon, 1169-056 Lisbon, Portugal
| | - Alice Reichert
- Department of Clinical Haematology, Hospital of São Francisco Xavier, West Lisbon Hospital Centre, 1449-005 Lisbon, Portugal
| | - Fernando Lima
- Department of Clinical Haematology, Hospital of São Francisco Xavier, West Lisbon Hospital Centre, 1449-005 Lisbon, Portugal
| | - Esmeraldina Júnior
- Department of Clinical Pathology, Hospital of São Francisco Xavier, West Lisbon Hospital Centre, 1449-005 Lisbon, Portugal
| | - José Rueff
- Centre for Toxicogenomics and Human Health (ToxOmics), Genetics, Oncology and Human Toxicology, NOVA Medical School, Faculty of Medical Sciences, NOVA University of Lisbon, 1169-056 Lisbon, Portugal
| |
Collapse
|
15
|
Wang X, Fu Z, Chen Y, Liu L. Fas expression is downregulated in gastric cancer. Mol Med Rep 2016; 15:627-634. [PMID: 28000850 PMCID: PMC5364875 DOI: 10.3892/mmr.2016.6037] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 11/10/2016] [Indexed: 01/09/2023] Open
Abstract
The aim of the present study was to investigate Fas expression in tumor samples from patients with gastric cancer, in order to determine the involvement of the Fas signaling pathway. The protein expression levels of Fas, caspase-8, caspase-3 and poly (adenosine diphosphate-ribose) polymerase 1 (PARP1) were examined in gastric cancer specimens and their associations with clinical pathological parameters were analyzed with immunohistochemical staining and western blot analysis. The mRNA expression was quantified with quantitative PCR and apoptosis was examined with a FACScan flow cytometer. The results demonstrated that the downregulation of Fas expression was correlated with less histological differentiation, gender (male), and increased lymph node and distant metastases (P<0.05). In the AGS established gastric cancer cell line, upregulation of the Fas signaling pathway promoted the apoptosis of gastric cancer cells by upregulating the expression of caspase-8 and caspase-3, and downregulating the expression of PARP1. The present study demonstrated that Fas was associated with gastric cancer and promoted the apoptosis of gastric cancer cells via caspase-8, caspase-3 and PARP1. These results suggested that caspase-8, caspase-3 and PARP1 may be triggers of gastric cancer, and upregulation of caspase-8 and caspase-3 expression, or inhibition of PARP1 expression may improve the therapeutic outcome in patients with gastric cancer.
Collapse
Affiliation(s)
- Xuming Wang
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, Hubei 430056, P.R. China
| | - Zhengqi Fu
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, Hubei 430056, P.R. China
| | - Ying Chen
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, Hubei 430056, P.R. China
| | - Lijiang Liu
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, Hubei 430056, P.R. China
| |
Collapse
|
16
|
Xu C, Zhu J, Fu W, Liang Z, Song S, Zhao Y, Lyu L, Zhang A, He J, Duan P. MDM4 rs4245739 A > C polymorphism correlates with reduced overall cancer risk in a meta-analysis of 69477 subjects. Oncotarget 2016; 7:71718-71726. [PMID: 27687591 PMCID: PMC5342115 DOI: 10.18632/oncotarget.12326] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 09/21/2016] [Indexed: 02/07/2023] Open
Abstract
Mouse double minute 4 (MDM4) is a p53-interacting oncoprotein that plays an important role in the p53 tumor suppressor pathway. The common rs4245739 A > C polymorphism creates a miR-191 binding site in the MDM4 gene transcript. Numerous studies have investigated the association between this MDM4 polymorphism and cancer risk, but have failed to reach a definitive conclusion. To address this issue, we conducted a meta-analysis by selecting eligible studies from MEDLINE, EMBASE, and Chinese Biomedical databases. Odds ratios (ORs) and 95% confidence intervals (CIs) were used to assess the strength of the associations. We also performed genotype-based mRNA expression analysis using data from 270 individuals retrieved from public datasets. A total of 15 studies with 19796 cases and 49681 controls were included in the final meta-analysis. The pooled results revealed that the MDM4 rs4245739C allele is associated with a decreased cancer risk in the heterozygous (AC vs. AA: OR = 0.82, 95% CI = 0.73-0.93), dominant (AC/CC vs. AA: OR = 0.82, 95% CI = 0.72-0.93), and allele contrast models (C vs. A: OR = 0.84, 95% CI = 0.76-0.94). The association was more prominent in Asians and population-based studies. We also found that the rs4245739C allele was associated with decreased MDM4 mRNA expression, especially for Caucasians. Thus the MDM4 rs4245739 A > C polymorphism appears to be associated with decreased cancer risk. These findings would be strengthened by new studies with larger sample sizes and encompassing additional ethnicities.
Collapse
Affiliation(s)
- Chaoyi Xu
- 1 Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Jinhong Zhu
- 3 Molecular Epidemiology Laboratory and Department of Laboratory Medicine, Harbin Medical University Cancer Hospital, Harbin 150040, Heilongjiang, China
| | - Wen Fu
- 2 Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Zongwen Liang
- 1 Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Shujie Song
- 4 Zhejiang Provincial Key Laboratory of Medical Genetics, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Yuan Zhao
- 1 Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Lihua Lyu
- 4 Zhejiang Provincial Key Laboratory of Medical Genetics, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Anqi Zhang
- 1 Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Jing He
- 1 Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
- 2 Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Ping Duan
- 1 Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| |
Collapse
|
17
|
Rank L, Veith S, Gwosch EC, Demgenski J, Ganz M, Jongmans MC, Vogel C, Fischbach A, Buerger S, Fischer JMF, Zubel T, Stier A, Renner C, Schmalz M, Beneke S, Groettrup M, Kuiper RP, Bürkle A, Ferrando-May E, Mangerich A. Analyzing structure-function relationships of artificial and cancer-associated PARP1 variants by reconstituting TALEN-generated HeLa PARP1 knock-out cells. Nucleic Acids Res 2016; 44:10386-10405. [PMID: 27694308 PMCID: PMC5137445 DOI: 10.1093/nar/gkw859] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 09/05/2016] [Accepted: 09/16/2016] [Indexed: 12/17/2022] Open
Abstract
Genotoxic stress activates PARP1, resulting in the post-translational modification of proteins with poly(ADP-ribose) (PAR). We genetically deleted PARP1 in one of the most widely used human cell systems, i.e. HeLa cells, via TALEN-mediated gene targeting. After comprehensive characterization of these cells during genotoxic stress, we analyzed structure–function relationships of PARP1 by reconstituting PARP1 KO cells with a series of PARP1 variants. Firstly, we verified that the PARP1\E988K mutant exhibits mono-ADP-ribosylation activity and we demonstrate that the PARP1\L713F mutant is constitutively active in cells. Secondly, both mutants exhibit distinct recruitment kinetics to sites of laser-induced DNA damage, which can potentially be attributed to non-covalent PARP1–PAR interaction via several PAR binding motifs. Thirdly, both mutants had distinct functional consequences in cellular patho-physiology, i.e. PARP1\L713F expression triggered apoptosis, whereas PARP1\E988K reconstitution caused a DNA-damage-induced G2 arrest. Importantly, both effects could be rescued by PARP inhibitor treatment, indicating distinct cellular consequences of constitutive PARylation and mono(ADP-ribosyl)ation. Finally, we demonstrate that the cancer-associated PARP1 SNP variant (V762A) as well as a newly identified inherited PARP1 mutation (F304L\V762A) present in a patient with pediatric colorectal carcinoma exhibit altered biochemical and cellular properties, thereby potentially supporting human carcinogenesis. Together, we establish a novel cellular model for PARylation research, by revealing strong structure–function relationships of natural and artificial PARP1 variants.
Collapse
Affiliation(s)
- Lisa Rank
- Molecular Toxicology Group, Department of Biology, University of Konstanz, D-78457 Konstanz, Germany
| | - Sebastian Veith
- Molecular Toxicology Group, Department of Biology, University of Konstanz, D-78457 Konstanz, Germany.,Research Training Group 1331, Department of Biology, University of Konstanz, D-78457 Konstanz, Germany
| | - Eva C Gwosch
- Bioimaging Center, Department of Biology, University of Konstanz, D-78457 Konstanz, Germany.,Konstanz Research School Chemical Biology, Department of Biology, University of Konstanz, D-78457 Konstanz, Germany
| | - Janine Demgenski
- Molecular Toxicology Group, Department of Biology, University of Konstanz, D-78457 Konstanz, Germany
| | - Magdalena Ganz
- Bioimaging Center, Department of Biology, University of Konstanz, D-78457 Konstanz, Germany.,Konstanz Research School Chemical Biology, Department of Biology, University of Konstanz, D-78457 Konstanz, Germany
| | - Marjolijn C Jongmans
- Department of Human Genetics, Radboud University Medical Center Nijmegen, Nijmegen Centre for Molecular Life Sciences, Nijmegen, The Netherlands.,Department of Medical Genetics, University Medical Center Utrecht, Utrecht, The Netherland
| | - Christopher Vogel
- Molecular Toxicology Group, Department of Biology, University of Konstanz, D-78457 Konstanz, Germany
| | - Arthur Fischbach
- Molecular Toxicology Group, Department of Biology, University of Konstanz, D-78457 Konstanz, Germany.,Konstanz Research School Chemical Biology, Department of Biology, University of Konstanz, D-78457 Konstanz, Germany
| | - Stefanie Buerger
- FlowKon FACS Facility, Department of Biology, University of Konstanz, D-78457 Konstanz, Germany
| | - Jan M F Fischer
- Molecular Toxicology Group, Department of Biology, University of Konstanz, D-78457 Konstanz, Germany.,Konstanz Research School Chemical Biology, Department of Biology, University of Konstanz, D-78457 Konstanz, Germany
| | - Tabea Zubel
- Molecular Toxicology Group, Department of Biology, University of Konstanz, D-78457 Konstanz, Germany.,Konstanz Research School Chemical Biology, Department of Biology, University of Konstanz, D-78457 Konstanz, Germany
| | - Anna Stier
- Molecular Toxicology Group, Department of Biology, University of Konstanz, D-78457 Konstanz, Germany
| | - Christina Renner
- Molecular Toxicology Group, Department of Biology, University of Konstanz, D-78457 Konstanz, Germany
| | - Michael Schmalz
- Center of Applied Photonics, Department of Physics, Department of Biology, University of Konstanz, D-78457 Konstanz, Germany
| | - Sascha Beneke
- Molecular Toxicology Group, Department of Biology, University of Konstanz, D-78457 Konstanz, Germany.,Ecotoxicology Group, Department of Biology, University of Konstanz, D-78457 Konstanz, Germany
| | - Marcus Groettrup
- FlowKon FACS Facility, Department of Biology, University of Konstanz, D-78457 Konstanz, Germany.,Immunology Group, Department of Biology, University of Konstanz, D-78457 Konstanz, Germany
| | - Roland P Kuiper
- Department of Human Genetics, Radboud University Medical Center Nijmegen, Nijmegen Centre for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Alexander Bürkle
- Molecular Toxicology Group, Department of Biology, University of Konstanz, D-78457 Konstanz, Germany
| | - Elisa Ferrando-May
- Bioimaging Center, Department of Biology, University of Konstanz, D-78457 Konstanz, Germany
| | - Aswin Mangerich
- Molecular Toxicology Group, Department of Biology, University of Konstanz, D-78457 Konstanz, Germany
| |
Collapse
|
18
|
Hua RX, Zhu J, Jiang DH, Zhang SD, Zhang JB, Xue WQ, Li XZ, Zhang PF, He J, Jia WH. Association of XPC Gene Polymorphisms with Colorectal Cancer Risk in a Southern Chinese Population: A Case-Control Study and Meta-Analysis. Genes (Basel) 2016; 7:E73. [PMID: 27669310 PMCID: PMC5083912 DOI: 10.3390/genes7100073] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 08/26/2016] [Accepted: 09/16/2016] [Indexed: 02/07/2023] Open
Abstract
Xeroderma pigmentosum group C (XPC) is a key component of the nucleotide excision repair (NER) pathway. Dysfunctional XPC protein may impair NER-mediated DNA repair capacity and further lead to genomic instability and carcinogenesis. Two common nonsynonymous polymorphisms in the XPC gene, Lys939Gln (rs2228001 A > C) and Ala499Val (rs2228000 C > T), have been investigated in various types of cancer. We genotyped these two polymorphisms in 1141 cases with histologically confirmed colorectal cancer (CRC) and 1173 healthy controls to explore their causative association with CRC susceptibility. Overall, no association was observed between these two variants and the risk of CRC. Our meta-analysis also confirmed a lack of overall association. Stratified analyses were performed by age, gender, smoking status, pack-year, drinking status, tumor sites, and Duke's stages. We found that XPC Lys939Gln polymorphism was significantly associated with an increased CRC risk in subjects at 57 years of age or younger (adjusted odds ratio (OR) = 1.37, 95% confidence interval (CI) = 1.004-1.86, p = 0.047) and non-drinkers (adjusted OR = 1.53, 95% CI = 1.10-2.12, p = 0.011). Our results indicated that XPC Lys939Gln may be a low-penetrance CRC susceptibility polymorphism. Our findings warrant further validation.
Collapse
Affiliation(s)
- Rui-Xi Hua
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Department of Experimental Research, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, Guangdong, China.
- Department of Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, Guangdong, China.
| | - Jinhong Zhu
- Molecular Epidemiology Laboratory and Department of Laboratory Medicine, Harbin Medical University Cancer Hospital, Harbin 150040, Heilongjiang, China.
| | - Dan-Hua Jiang
- Department of Medical Genetics, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, Guangdong, China.
| | - Shao-Dan Zhang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Department of Experimental Research, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, Guangdong, China.
| | - Jiang-Bo Zhang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Department of Experimental Research, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, Guangdong, China.
| | - Wen-Qiong Xue
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Department of Experimental Research, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, Guangdong, China.
| | - Xi-Zhao Li
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Department of Experimental Research, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, Guangdong, China.
| | - Pei-Fen Zhang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Department of Experimental Research, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, Guangdong, China.
| | - Jing He
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Department of Experimental Research, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, Guangdong, China.
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China.
| | - Wei-Hua Jia
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Department of Experimental Research, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, Guangdong, China.
| |
Collapse
|
19
|
Gao C, Wang J, Li C, Zhang W, Liu G. A Functional Polymorphism (rs10817938) in the XPA Promoter Region Is Associated with Poor Prognosis of Oral Squamous Cell Carcinoma in a Chinese Han Population. PLoS One 2016; 11:e0160801. [PMID: 27622501 PMCID: PMC5021261 DOI: 10.1371/journal.pone.0160801] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 07/25/2016] [Indexed: 01/23/2023] Open
Abstract
Single nucleotide polymorphisms of XPA gene have been studied in several cancers such as rs10817938, rs2808668. However, the role of XPA polymorphisms in patients with oral squamous cell carcinoma (OSCC) remains unclear. Thus, we analyzed the association of XPA polymorphisms with OSCC risk, clinicopathological characteristics and prognosis in the present study. TaqMan genotyping was used to evaluate the frequency of rs10817938, rs2808668 polymorphisms in OSCC patients. The prognostic significance of these polymorphisms was evaluated using Kaplan-Meier curves, Log-Rank analyses, and the Cox proportional hazard model. Luciferase reporter assay, RT-PCR and western blot were used to determine whether rs10817938 could influence transcription activity and XPA expression. The results showed that individuals carrying TC and CC genotypes had significantly greater risk of developing OSCC (OR = 1.42, 95% CI 1.04-1.93; OR = 2.75, 95% CI 1.32-5.71, respectively) when compared with wild-type TT genotype at rs10817938. OSCC patients with C allele at rs10817938 were more susceptible to lymph metastases, poor pathological differentiation and late TNM stage (OR = 1.67, 95% CI 1.17-2.37; OR = 1.64, 95% CI 1.18-2.28; OR = 1.54, 95% CI 1.11-2.14; respectively). A significant gene-environment interaction between smoking and CC genotype at rs10817938 was observed (COR = 3.60, 95% CI 1.20-10.9) and data also showed that OSCC patients with CC genotype and C allele had worse survival (p<0.001 for both). The T to C substitution at rs10817938 significantly decreased transcription activity of XPA gene, XPA mRNA and protein were also decreased in individuals with C allele at rs10817938. In addition, no significant association of rs2808668 polymorphism with OSCC risk, prognosis could be observed. In conclusion, the present study showed that XPA rs10817938 polymorphism is a functional SNP in vitro and in vivo and a biomarker for poor prognosis in OSCC patients.
Collapse
Affiliation(s)
- Chunhai Gao
- Department of Clinical Laboratory, Linyi People’s Hospital, Linyi, Shandong, P.R.China
| | - Jinzhu Wang
- Department of Clinical Laboratory, Linyi People’s Hospital, Linyi, Shandong, P.R.China
| | - Chong Li
- Jinan Stomatological Hospital, Jinan, Shandong, P.R.China
| | - Wei Zhang
- Department of Rehabilitation, Linyi People’s Hospital, Linyi, Shandong, P.R.China
| | - Guoxia Liu
- Jinan Stomatological Hospital, Jinan, Shandong, P.R.China
- * E-mail:
| |
Collapse
|
20
|
Rowe CJ, Khosrotehrani K. Clinical and biological determinants of melanoma progression: Should all be considered for clinical management? Australas J Dermatol 2016; 57:175-81. [PMID: 26010424 DOI: 10.1111/ajd.12348] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 04/05/2015] [Indexed: 01/30/2023]
Abstract
Cutaneous melanoma is a heterogeneous disease affecting the regulation of multiple genes and proteins that contribute to melanoma progression. Survival for patients with locally invasive disease varies greatly, even within tumour stages based on current prognostic criteria. This has prompted investigations into the value of additional clinical or biological parameters predicting survival. In particular, the improved knowledge of tumour biology has fed the hope that the outcome may be predicted at the molecular level. The prognostic value of numerous potential biomarkers has therefore been evaluated in protein and gene expression studies, and genomic associations with melanoma prognosis are beginning to emerge. These potential biomarkers interrogate key tumour and host processes important for tumour development and progression, such as proliferation, invasion and migration through epithelial mesenchymal transition or the host immune or vascular responses. This research may allow more individualised information on prognosis if the challenges regarding the quality and validation of studies are overcome.
Collapse
Affiliation(s)
- Casey J Rowe
- Translational Research Institute, UQ Diamantina Institute, University of Queensland, Woolloongabba, Queensland, Australia
- University of Queensland Centre for Clinical Research, University of Queensland, Herston, Queensland, Australia
| | - Kiarash Khosrotehrani
- Translational Research Institute, UQ Diamantina Institute, University of Queensland, Woolloongabba, Queensland, Australia
- University of Queensland Centre for Clinical Research, University of Queensland, Herston, Queensland, Australia
| |
Collapse
|
21
|
Poly(ADP-Ribose) Polymerase in Cervical Cancer Pathogenesis: Mechanism and Potential Role for PARP Inhibitors. Int J Gynecol Cancer 2016; 26:763-9. [DOI: 10.1097/igc.0000000000000654] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
AbstractTreatment options for disease recurrence of women treated for locally advanced and advanced cervical cancer are very limited—largely palliative chemotherapy. The low efficacy of the currently available drugs raises the need for new targeted agents. Poly(adenosine diphosphate [ADP]-ribose) polymerase (PARP) inhibitors (PARPi) have emerged as a promising class of chemotherapeutic agents in cancers associated with defects in DNA repair. Their therapeutic potential in cervical cancer is currently being evaluated in 3 ongoing clinical trials. Here we review the available information regarding all the aspects of PARP in cervical intraepithelial neoplasia and invasive cervical cancer, from expression and the mechanism of action to the role of the polymorphisms in the pathogenesis of the disease, as well as the potential of the inhibitors. We finally propose a new unifying theory regarding the role of PARPs in the development of cervical carcinomas.
Collapse
|
22
|
Polymorphism of HSD17B1 Ser312Gly with Cancer Risk: Evidence from 66,147 Subjects. Twin Res Hum Genet 2016; 19:136-45. [DOI: 10.1017/thg.2016.6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hydroxysteroid (17-beta)dehydrogenase 1(HSD17B1) plays a central role in sex steroid hormone metabolism. HSD17B1 polymorphic variants may contribute to cancer susceptibility. Numerous investigations have been conducted to assess the association between HSD17B1 Ser312Gly polymorphism and cancer risk in multiple ethnicities, yet these have produced inconsistent results. We therefore performed this comprehensive meta-analysis to attempt to provide a quality assessment of the association of interest. Odds ratios (ORs) with 95% confidence intervals (CIs) were used to evaluate the strength of associations. After a systematic literature search of several major public databases, 20 studies involving 29,460 cases and 36,687 controls were included in this meta-analysis. No significant association was found between HSD17B1 Ser312Gly polymorphism and cancer risk. However, Ser312Gly polymorphism showed a significantly decreased risk for Caucasians (there were 44,284 Caucasians for analysis, comprising 19,889 cases and 24,395 controls) in the subgroup analysis by ethnicity (dominant: OR = 0.958, 95% CI = 0.919–0.998; and allele comparing: OR = 0.973, 95% CI = 0.947–0.999). And there was the same trend towards risk in the population-based (PB) controls (homozygous: OR = 0.951, 95% CI = 0.908–0.997 and allele comparing: OR = 0.976, 95% CI = 0.954–0.999), but not among Asians or hospital-based (HB) controls. In addition, no association was observed in the stratified analysis for breast cancer studies by source of control, ethnicity and quality score. These findings suggested that the HSD17B1 Ser312Gly polymorphism might confer genetic cancer susceptibility in an ethnic-dependent manner, especially among Caucasians. Well-designed, large-scale studies are warranted to validate these findings.
Collapse
|
23
|
RecQ helicases and PARP1 team up in maintaining genome integrity. Ageing Res Rev 2015; 23:12-28. [PMID: 25555679 DOI: 10.1016/j.arr.2014.12.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Revised: 12/18/2014] [Accepted: 12/22/2014] [Indexed: 01/04/2023]
Abstract
Genome instability represents a primary hallmark of aging and cancer. RecQL helicases (i.e., RECQL1, WRN, BLM, RECQL4, RECQL5) as well as poly(ADP-ribose) polymerases (PARPs, in particular PARP1) represent two central quality control systems to preserve genome integrity in mammalian cells. Consistently, both enzymatic families have been linked to mechanisms of aging and carcinogenesis in mice and humans. This is in accordance with clinical and epidemiological findings demonstrating that defects in three RecQL helicases, i.e., WRN, BLM, RECQL4, are related to human progeroid and cancer predisposition syndromes, i.e., Werner, Bloom, and Rothmund Thomson syndrome, respectively. Moreover, PARP1 hypomorphy is associated with a higher risk for certain types of cancer. On a molecular level, RecQL helicases and PARP1 are involved in the control of DNA repair, telomere maintenance, and replicative stress. Notably, over the last decade, it became apparent that all five RecQL helicases physically or functionally interact with PARP1 and/or its enzymatic product poly(ADP-ribose) (PAR). Furthermore, a profound body of evidence revealed that the cooperative function of RECQLs and PARP1 represents an important factor for maintaining genome integrity. In this review, we summarize the status quo of this molecular cooperation and discuss open questions that provide a basis for future studies to dissect the cooperative functions of RecQL helicases and PARP1 in aging and carcinogenesis.
Collapse
|
24
|
Gu Y, Dai QS, Hua RX, Zhang B, Zhu JH, Huang JW, Xie BH, Xiong SQ, Tan GS, Li HP. PSCA s2294008 C>T and rs2976392 G>A polymorphisms contribute to cancer susceptibility: evidence from published studies. Genes Cancer 2015; 6:254-264. [PMID: 26124924 PMCID: PMC4482246 DOI: 10.18632/genesandcancer.63] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Accepted: 04/27/2015] [Indexed: 12/17/2022] Open
Abstract
PSCA gene plays an important role in cell adhesion, proliferation and survival. Increasing studies have focused on the association of PSCA gene rs2294008 C>T and rs2976392 G>A with cancer risk. However, the conclusions were inconsistent. Therefore, we performed a meta-analysis to elucidate whether there is a true association, or artifact. We systematically searched eligible studies from MEDLINE, EMBASE and CBM database. Odds ratios and 95% confidence intervals were used to evaluate the strength of the association. The final analysis included 32 studies consisting of 30028 cases and 38765 controls for the rs2294008 C>T polymorphism, and 14 studies with 8190 cases and 7176 controls for the rs2976392 G>A polymorphism. Consequently, the PSCA rs2294008 C>T polymorphism was significantly associated with increased overall cancer risk. Further stratifications indicated the increased risk was more pronounced for gastric (diffused type and non-gastric cardia adenocarcinoma) and bladder cancer. A similar association was observed for the rs2976392 G>A polymorphism. This meta-analysis demonstrated that both of the PSCA rs2294008 C>T and rs2976392 G>A polymorphisms are associated with increased cancer risk, especially for gastric cancer and bladder cancer. Further large-scale studies with different ethnicities and subtypes of gastric cancer are required to confirm the results from this meta-analysis.
Collapse
Affiliation(s)
- Yong Gu
- Department of Thoracic Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Qiang-Sheng Dai
- Department of Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Rui-Xi Hua
- Department of Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Bing Zhang
- Department of Medical Imaging, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jin-Hong Zhu
- Molecular Epidemiology Laboratory and Laboratory Medicine, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Jian-Wen Huang
- Department of Radiotherapy, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Bin-Hui Xie
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Shi-Qiu Xiong
- Department of Biochemistry, University of Leicester, Leicester, UK
| | - Guo-Sheng Tan
- Department of Medical Imaging, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - He-Ping Li
- Department of Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China.,Department of Medical Imaging, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
25
|
Tan X, Chen M. Association between Catechol-O-methyltransferase rs4680 (G>A) polymorphism and lung cancer risk. Diagn Pathol 2014; 9:192. [PMID: 25280560 PMCID: PMC4196007 DOI: 10.1186/s13000-014-0192-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 09/23/2014] [Indexed: 02/07/2023] Open
Abstract
Background The association between the Val158Met polymorphism in the catechol-O-methyltransferase (COMT) gene and lung cancer risk remains controversial and inconclusive. Therefore, the meta-analysis was performed to provide a quality reevaluation of the association between the COMT Val158Met polymorphism and the risk of lung cancer. Methods Two major public databases (Pubmed and Embase) and several Chinese databases were searched for eligible studies. Pooled odds ratios (OR) and 95% confidence intervals (CI) were calculated to estimate the strength of the association. Results Five publications, including six individual studies with a total of 4,043 subjects (1,796 cases and 2,247 controls) regarding the association of COMT Val158Met polymorphism with lung cancer susceptibility were included in this meta-analysis. Overall, pooled analysis indicated that there was no significant association between COMT Val158Met polymorphism and lung cancer susceptibility under all genetic models. Likewise, no association was observed in the stratified analysis by ethnicity and control source, either. However, Val158Met polymorphism was shown to increase lung cancer risk among women (AG vs. GG, OR = 1.190, 95% CI = 1.001–1.422, p = 0.049). Conclusion These findings suggested that the COMT l58Val/Met polymorphism confer genetic susceptibility to lung cancer among women. However, no evidence was found for the association with lung cancer risk in ethnicity and smoking status. Virtual slides The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/13000_2014_192
Collapse
Affiliation(s)
| | - Mingwu Chen
- Department of Cardiothoracic Surgery, First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi, China.
| |
Collapse
|
26
|
Yu P, Liu YP, Zhang JD, Qu XJ, Jin B, Zhang Y. Correlation between PARP-1 Val762Ala polymorphism and the risk of lung cancer in a Chinese population. Tumour Biol 2014; 36:177-81. [PMID: 25179837 DOI: 10.1007/s13277-014-2373-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 07/17/2014] [Indexed: 11/24/2022] Open
Abstract
The aim of this study was to investigate the relationship of the PARP-1 Val762Ala (rs1136410 T>C) polymorphism and the risk of lung cancer. A population-based case-control study of 373 lung cancer patients and 360 healthy control subjects (individually matched on age and gender) in a Chinese population was conducted. Genomic DNA was extracted by the phenol-chloroform method from the peripheral blood. PARP-1 Val762Ala polymorphism was identified using polymerase chain reaction-restriction fragments length polymorphism technique. After adjusting for age, tobacco smoking, gender, smoking index, and drinking status, logistic regression analysis demonstrated that CC genotype in PARP-1 Val762Ala polymorphism had an increased risk of lung cancer compared with TT genotype (OR = 1.59, 95 % CI = 1.03 ~ 2.50, P = 0.048), a statistically difference that still existed when merging CC and TC genotypes (OR = 1.56, 95 % CI = 1.03 ~ 2.44, P = 0.042). However, no obvious difference was found between TT and TC (OR = 1.54, 95 % CI = 0.96 ~ 2.44, P = 0.073). Subgroup analysis by histological type indicated that adenocarcinoma patients had higher frequencies of CC or TC+CC genotypes than healthy controls (CC: OR = 1.85, 95 % CI = 1.12 ~ 3.03, P = 0.015; TC+CC: OR = 1.67, 95 % CI = 1.06 ~ 2.63, P = 0.027, respectively), but no statistically significant difference within each genotype in squamous cell carcinoma or small cell lung cancer (all P > 0.05). Our findings support the view that PARP-1 Val762Ala polymorphism may contribute to an increased risk of lung cancer in the Chinese population, especially for adenocarcinoma.
Collapse
Affiliation(s)
- Ping Yu
- Department of Medical Oncology, The First Hospital of China Medical University, Nanjing South Street No. 155, Heping District, Shenyang, 110001, People's Republic of China
| | | | | | | | | | | |
Collapse
|
27
|
Affiliation(s)
- Ata Mahmoodpoor
- Cardiovascular Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Samad E J Golzari
- Medical Philosophy and History Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
28
|
Wang Q, Lu K, Du H, Zhang Q, Chen T, Shu Y, Hua Y, Zhu L. Association between cytosolic serine hydroxymethyltransferase (SHMT1) gene polymorphism and cancer risk: A meta-analysis. Biomed Pharmacother 2014; 68:757-62. [DOI: 10.1016/j.biopha.2014.08.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 08/04/2014] [Indexed: 01/19/2023] Open
|