1
|
Singh V, Choudhary S, Bhutkar M, Nehul S, Ali S, Singla J, Kumar P, Tomar S. Designing and bioengineering of CDRs with higher affinity against receptor-binding domain (RBD) of SARS-CoV-2 Omicron variant. Int J Biol Macromol 2024; 290:138751. [PMID: 39675603 DOI: 10.1016/j.ijbiomac.2024.138751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/01/2024] [Accepted: 12/11/2024] [Indexed: 12/17/2024]
Abstract
The emergence of the SARS-CoV-2 Omicron variant highlights the need for innovative strategies to address evolving viral threats. This study bioengineered three nanobodies H11-H4, C5, and H3 originally targeting the Wuhan RBD, to bind more effectively to the Omicron RBD. A structure-based in silico affinity maturation pipeline was developed to enhance their binding affinities. The pipeline consists of three key steps: high-throughput in silico mutagenesis of complementarity-determining regions (CDRs), protein-protein docking for screening, and molecular dynamics (MD) simulations for assessment of the complex stability. A total of 741, 551, and 684 mutations were introduced in H11-H4, C5, and H3 nanobodies, respectively. Protein-protein docking and MD simulations shortlisted high-affinity mutants for H11-H4(6), C5(5), and H3(6). Further, recombinant production of H11-H4 mutants and Omicron RBD enabled experimental validation through Isothermal Titration Calorimetry (ITC). The H11-H4 mutants R27E, S57D, S107K, D108W, and A110I exhibited improved binding affinities with dissociation constant (KD) values ranging from ~8.8 to ~27 μM, compared to the H11-H4 nanobody KD of ~32 μM, representing a three-fold enhancement. This study demonstrates the potential of the developed in silico affinity maturation pipeline as a rapid, cost-effective method for repurposing nanobodies, aiding the development of robust prophylactic strategies against evolving SARS-CoV-2 variants and other pathogens.
Collapse
Affiliation(s)
- Vishakha Singh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand, India
| | - Shweta Choudhary
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand, India
| | - Mandar Bhutkar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand, India
| | - Sanketkumar Nehul
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand, India
| | - Sabika Ali
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand, India
| | - Jitin Singla
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand, India; Department of Computer Science and Engineering, Indian Institute of Technology Roorkee, Uttarakhand, India
| | - Pravindra Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand, India
| | - Shailly Tomar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand, India.
| |
Collapse
|
2
|
Singh V, Bhutkar M, Choudhary S, Nehul S, Kumar R, Singla J, Kumar P, Tomar S. Structure-guided mutations in CDRs for enhancing the affinity of neutralizing SARS-CoV-2 nanobody. Biochem Biophys Res Commun 2024; 734:150746. [PMID: 39366179 DOI: 10.1016/j.bbrc.2024.150746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 09/05/2024] [Accepted: 09/24/2024] [Indexed: 10/06/2024]
Abstract
The optimization of antibodies to attain the desired levels of affinity and specificity holds great promise for the development of next generation therapeutics. This study delves into the refinement and engineering of complementarity-determining regions (CDRs) through in silico affinity maturation followed by binding validation using isothermal titration calorimetry (ITC) and pseudovirus-based neutralization assays. Specifically, it focuses on engineering CDRs targeting the epitopes of receptor-binding domain (RBD) of the spike protein of SARS-CoV-2. A structure-guided virtual library of 112 single mutations in CDRs was generated and screened against RBD to select the potential affinity-enhancing mutations. Protein-protein docking analysis identified 32 single mutants of which nine mutants were selected for molecular dynamics (MD) simulations. Subsequently, biophysical ITC studies provided insights into binding affinity, and consistent with in silico findings, six mutations that demonstrated better binding affinity than native nanobody were further tested in vitro for neutralization activity against SARS-CoV-2 pseudovirus. Leu106Thr mutant was found to be most effective in virus-neutralization with IC50 values of ∼0.03 μM, as compared to the native nanobody (IC50 ∼0.77 μM). Thus, in this study, the developed computational pipeline guided by structure-aided interface profiles and thermodynamic analysis holds promise for the streamlined development of antibody-based therapeutic interventions against emerging variants of SARS-CoV-2 and other infectious pathogens.
Collapse
Affiliation(s)
- Vishakha Singh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand, India
| | - Mandar Bhutkar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand, India
| | - Shweta Choudhary
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand, India
| | - Sanketkumar Nehul
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand, India
| | - Rajesh Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand, India
| | - Jitin Singla
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand, India; Department of Computer Science and Engineering, Indian Institute of Technology Roorkee, Uttarakhand, India
| | - Pravindra Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand, India
| | - Shailly Tomar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand, India.
| |
Collapse
|
3
|
Nasaev SS, Mukanov AR, Mishkorez IV, Kuznetsov II, Leibin IV, Dolgusheva VA, Pavlyuk GA, Manasyan AL, Veselovsky AV. Molecular Modeling Methods in the Development of Affine and Specific Protein-Binding Agents. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:1451-1473. [PMID: 39245455 DOI: 10.1134/s0006297924080066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/12/2024] [Accepted: 07/11/2024] [Indexed: 09/10/2024]
Abstract
High-affinity and specific agents are widely applied in various areas, including diagnostics, scientific research, and disease therapy (as drugs and drug delivery systems). It takes significant time to develop them. For this reason, development of high-affinity agents extensively utilizes computer methods at various stages for the analysis and modeling of these molecules. The review describes the main affinity and specific agents, such as monoclonal antibodies and their fragments, antibody mimetics, aptamers, and molecularly imprinted polymers. The methods of their obtaining as well as their main advantages and disadvantages are briefly described, with special attention focused on the molecular modeling methods used for their analysis and development.
Collapse
Affiliation(s)
| | - Artem R Mukanov
- Research & Development Department, Xelari Ltd., Moscow, 121601, Russia
| | - Ivan V Mishkorez
- Research & Development Department, Xelari Ltd., Moscow, 121601, Russia
- Institute of Biomedical Chemistry, Moscow, 119121, Russia
| | - Ivan I Kuznetsov
- Research & Development Department, Xelari Ltd., Moscow, 121601, Russia
| | - Iosif V Leibin
- Skolkovo Institute of Science and Technology, Skolkovo Innovation Center, Moscow, 121205, Russia
| | | | - Gleb A Pavlyuk
- Research & Development Department, Xelari Ltd., Moscow, 121601, Russia
| | - Artem L Manasyan
- Research & Development Department, Xelari Ltd., Moscow, 121601, Russia
| | | |
Collapse
|
4
|
Matsunaga R, Ujiie K, Inagaki M, Fernández Pérez J, Yasuda Y, Mimasu S, Soga S, Tsumoto K. High-throughput analysis system of interaction kinetics for data-driven antibody design. Sci Rep 2023; 13:19417. [PMID: 37990030 PMCID: PMC10663500 DOI: 10.1038/s41598-023-46756-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/04/2023] [Indexed: 11/23/2023] Open
Abstract
Surface plasmon resonance (SPR) is widely used for antigen-antibody interaction kinetics analysis. However, it has not been used in the screening phase because of the low throughput of measurement and analysis. Herein, we proposed a high-throughput SPR analysis system named "BreviA" using the Brevibacillus expression system. Brevibacillus was transformed using a plasmid library containing various antibody sequences, and single colonies were cultured in 96-well plates. Sequence analysis was performed using bacterial cells, and recombinant antibodies secreted in the supernatant were immobilized on a sensor chip to analyze their interactions with antigens using high-throughput SPR. Using this system, the process from the transformation to 384 interaction analyses can be performed within a week. This system utility was tested using an interspecies specificity design of an anti-human programmed cell death protein 1 (PD-1) antibody. A plasmid library containing alanine and tyrosine mutants of all complementarity-determining region residues was generated. A high-throughput SPR analysis was performed against human and mouse PD-1, showing that the mutation in the specific region enhanced the affinity for mouse PD-1. Furthermore, deep mutational scanning of the region revealed two mutants with > 100-fold increased affinity for mouse PD-1, demonstrating the potential efficacy of antibody design using data-driven approach.
Collapse
Affiliation(s)
- Ryo Matsunaga
- Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, 113-8656, Japan
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Tokyo, 113-8656, Japan
| | - Kan Ujiie
- Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, 113-8656, Japan
| | - Mayuko Inagaki
- Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, 113-8656, Japan
| | - Jorge Fernández Pérez
- Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, 113-8656, Japan
| | - Yoshiki Yasuda
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Tokyo, 113-8656, Japan
| | - Shinya Mimasu
- Biologics Engineering, Discovery Intelligence, Astellas Pharma Inc., 21, Miyukigaoka, Tsukuba-shi, Ibaraki, 305-8585, Japan
| | - Shinji Soga
- Biologics Engineering, Discovery Intelligence, Astellas Pharma Inc., 21, Miyukigaoka, Tsukuba-shi, Ibaraki, 305-8585, Japan
| | - Kouhei Tsumoto
- Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, 113-8656, Japan.
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Tokyo, 113-8656, Japan.
- The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan.
| |
Collapse
|
5
|
Yu H, Mao G, Pei Z, Cen J, Meng W, Wang Y, Zhang S, Li S, Xu Q, Sun M, Xiao K. In Vitro Affinity Maturation of Nanobodies against Mpox Virus A29 Protein Based on Computer-Aided Design. Molecules 2023; 28:6838. [PMID: 37836685 PMCID: PMC10574621 DOI: 10.3390/molecules28196838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/20/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
Mpox virus (MPXV), the most pathogenic zoonotic orthopoxvirus, caused worldwide concern during the SARS-CoV-2 epidemic. Growing evidence suggests that the MPXV surface protein A29 could be a specific diagnostic marker for immunological detection. In this study, a fully synthetic phage display library was screened, revealing two nanobodies (A1 and H8) that specifically recognize A29. Subsequently, an in vitro affinity maturation strategy based on computer-aided design was proposed by building and docking the A29 and A1 three-dimensional structures. Ligand-receptor binding and molecular dynamics simulations were performed to predict binding modes and key residues. Three mutant antibodies were predicted using the platform, increasing the affinity by approximately 10-fold compared with the parental form. These results will facilitate the application of computers in antibody optimization and reduce the cost of antibody development; moreover, the predicted antibodies provide a reference for establishing an immunological response against MPXV.
Collapse
Affiliation(s)
- Haiyang Yu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China;
- Lab of Toxicology and Pharmacology, Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, China; (G.M.); (Z.P.); (J.C.); (W.M.); (Y.W.); (S.Z.); (S.L.)
| | - Guanchao Mao
- Lab of Toxicology and Pharmacology, Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, China; (G.M.); (Z.P.); (J.C.); (W.M.); (Y.W.); (S.Z.); (S.L.)
| | - Zhipeng Pei
- Lab of Toxicology and Pharmacology, Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, China; (G.M.); (Z.P.); (J.C.); (W.M.); (Y.W.); (S.Z.); (S.L.)
| | - Jinfeng Cen
- Lab of Toxicology and Pharmacology, Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, China; (G.M.); (Z.P.); (J.C.); (W.M.); (Y.W.); (S.Z.); (S.L.)
| | - Wenqi Meng
- Lab of Toxicology and Pharmacology, Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, China; (G.M.); (Z.P.); (J.C.); (W.M.); (Y.W.); (S.Z.); (S.L.)
| | - Yunqin Wang
- Lab of Toxicology and Pharmacology, Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, China; (G.M.); (Z.P.); (J.C.); (W.M.); (Y.W.); (S.Z.); (S.L.)
| | - Shanshan Zhang
- Lab of Toxicology and Pharmacology, Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, China; (G.M.); (Z.P.); (J.C.); (W.M.); (Y.W.); (S.Z.); (S.L.)
| | - Songling Li
- Lab of Toxicology and Pharmacology, Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, China; (G.M.); (Z.P.); (J.C.); (W.M.); (Y.W.); (S.Z.); (S.L.)
| | - Qingqiang Xu
- Lab of Toxicology and Pharmacology, Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, China; (G.M.); (Z.P.); (J.C.); (W.M.); (Y.W.); (S.Z.); (S.L.)
| | - Mingxue Sun
- Lab of Toxicology and Pharmacology, Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, China; (G.M.); (Z.P.); (J.C.); (W.M.); (Y.W.); (S.Z.); (S.L.)
| | - Kai Xiao
- Lab of Toxicology and Pharmacology, Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, China; (G.M.); (Z.P.); (J.C.); (W.M.); (Y.W.); (S.Z.); (S.L.)
- Marine Biomedical Science and Technology Innovation Platform of Lingang Special Area, Shanghai 201306, China
| |
Collapse
|
6
|
Maeta S, Nakakido M, Matsuura H, Sakai N, Hirata K, Kuroda D, Fukunaga A, Tsumoto K. Arginine cluster introduction on framework region in anti-lysozyme antibody improved association rate constant by changing conformational diversity of CDR loops. Protein Sci 2023; 32:e4745. [PMID: 37550885 PMCID: PMC10461459 DOI: 10.1002/pro.4745] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 05/30/2023] [Accepted: 08/01/2023] [Indexed: 08/09/2023]
Abstract
Antibodies are used for many therapeutic and biotechnological purposes. Because the affinity of an antibody to the antigen is critical for clinical efficacy of pharmaceuticals, many affinity maturation strategies have been developed. Although we previously reported an affinity maturation strategy in which the association rate of the antibody toward its antigen is improved by introducing a cluster of arginine residues into the framework region of the antibody, the detailed molecular mechanism responsible for this improvement has been unknown. In this study, we introduced five arginine residues into an anti-hen egg white lysozyme antibody (HyHEL10) Fab fragment to create the R5-mutant and comprehensively characterized the interaction between antibody and antigen using thermodynamic analysis, X-ray crystallography, and molecular dynamics (MD) simulations. Our results indicate that introduction of charged residues strongly enhanced the association rate, as previously reported, and the antibody-antigen complex structure was almost the same for the R5-mutant and wild-type Fabs. The MD simulations indicate that the mutation increased conformational diversity in complementarity-determining region loops and thereby enhanced the association rate. These observations provide the molecular basis of affinity maturation by R5 mutation.
Collapse
Affiliation(s)
- Shingo Maeta
- Bio‐Diagnostic Reagent Technology CenterSysmex CorporationKobeJapan
- Department of Bioengineering, School of EngineeringThe University of TokyoTokyoJapan
| | - Makoto Nakakido
- Department of Bioengineering, School of EngineeringThe University of TokyoTokyoJapan
- Department of Chemistry and Biotechnology, Graduate School of EngineeringThe University of TokyoTokyoJapan
| | - Hiroaki Matsuura
- Life Science Research Infrastructure Group, RIKEN SPring‐8 CenterSaitamaJapan
| | - Naoki Sakai
- Life Science Research Infrastructure Group, RIKEN SPring‐8 CenterSaitamaJapan
| | - Kunio Hirata
- Life Science Research Infrastructure Group, RIKEN SPring‐8 CenterSaitamaJapan
| | - Daisuke Kuroda
- Department of Bioengineering, School of EngineeringThe University of TokyoTokyoJapan
- Department of Chemistry and Biotechnology, Graduate School of EngineeringThe University of TokyoTokyoJapan
- Research Center for Drug and Vaccine DevelopmentNational Institute of Infectious DiseasesTokyoJapan
| | - Atsushi Fukunaga
- Bio‐Diagnostic Reagent Technology CenterSysmex CorporationKobeJapan
| | - Kouhei Tsumoto
- Department of Bioengineering, School of EngineeringThe University of TokyoTokyoJapan
- Department of Chemistry and Biotechnology, Graduate School of EngineeringThe University of TokyoTokyoJapan
- Institute of Medical ScienceThe University of TokyoTokyoJapan
| |
Collapse
|
7
|
Li J, Kang G, Wang J, Yuan H, Wu Y, Meng S, Wang P, Zhang M, Wang Y, Feng Y, Huang H, de Marco A. Affinity maturation of antibody fragments: A review encompassing the development from random approaches to computational rational optimization. Int J Biol Macromol 2023; 247:125733. [PMID: 37423452 DOI: 10.1016/j.ijbiomac.2023.125733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/04/2023] [Accepted: 07/06/2023] [Indexed: 07/11/2023]
Abstract
Routinely screened antibody fragments usually require further in vitro maturation to achieve the desired biophysical properties. Blind in vitro strategies can produce improved ligands by introducing random mutations into the original sequences and selecting the resulting clones under more and more stringent conditions. Rational approaches exploit an alternative perspective that aims first at identifying the specific residues potentially involved in the control of biophysical mechanisms, such as affinity or stability, and then to evaluate what mutations could improve those characteristics. The understanding of the antigen-antibody interactions is instrumental to develop this process the reliability of which, consequently, strongly depends on the quality and completeness of the structural information. Recently, methods based on deep learning approaches critically improved the speed and accuracy of model building and are promising tools for accelerating the docking step. Here, we review the features of the available bioinformatic instruments and analyze the reports illustrating the result obtained with their application to optimize antibody fragments, and nanobodies in particular. Finally, the emerging trends and open questions are summarized.
Collapse
Affiliation(s)
- Jiaqi Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Guangbo Kang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Jiewen Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Haibin Yuan
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Yili Wu
- Zhejiang Provincial Clinical Research Center for Mental Disorders, School of Mental Health and the Affiliated Kangning Hospital, Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Wenzhou Medical University, Oujiang Laboratory, Wenzhou, Zhejiang 325035, China
| | - Shuxian Meng
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Ping Wang
- New Technology R&D Department, Tianjin Modern Innovative TCM Technology Company Limited, Tianjin 300392, China
| | - Miao Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; China Resources Biopharmaceutical Company Limited, Beijing 100029, China
| | - Yuli Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; Tianjin Pharmaceutical Da Ren Tang Group Corporation Limited, Traditional Chinese Pharmacy Research Institute, Tianjin Key Laboratory of Quality Control in Chinese Medicine, Tianjin 300457, China; State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin 300193, China
| | - Yuanhang Feng
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - He Huang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China.
| | - Ario de Marco
- Laboratory for Environmental and Life Sciences, University of Nova Gorica, Nova Gorica, Slovenia.
| |
Collapse
|
8
|
Bauer J, Rajagopal N, Gupta P, Gupta P, Nixon AE, Kumar S. How can we discover developable antibody-based biotherapeutics? Front Mol Biosci 2023; 10:1221626. [PMID: 37609373 PMCID: PMC10441133 DOI: 10.3389/fmolb.2023.1221626] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/10/2023] [Indexed: 08/24/2023] Open
Abstract
Antibody-based biotherapeutics have emerged as a successful class of pharmaceuticals despite significant challenges and risks to their discovery and development. This review discusses the most frequently encountered hurdles in the research and development (R&D) of antibody-based biotherapeutics and proposes a conceptual framework called biopharmaceutical informatics. Our vision advocates for the syncretic use of computation and experimentation at every stage of biologic drug discovery, considering developability (manufacturability, safety, efficacy, and pharmacology) of potential drug candidates from the earliest stages of the drug discovery phase. The computational advances in recent years allow for more precise formulation of disease concepts, rapid identification, and validation of targets suitable for therapeutic intervention and discovery of potential biotherapeutics that can agonize or antagonize them. Furthermore, computational methods for de novo and epitope-specific antibody design are increasingly being developed, opening novel computationally driven opportunities for biologic drug discovery. Here, we review the opportunities and limitations of emerging computational approaches for optimizing antigens to generate robust immune responses, in silico generation of antibody sequences, discovery of potential antibody binders through virtual screening, assessment of hits, identification of lead drug candidates and their affinity maturation, and optimization for developability. The adoption of biopharmaceutical informatics across all aspects of drug discovery and development cycles should help bring affordable and effective biotherapeutics to patients more quickly.
Collapse
Affiliation(s)
- Joschka Bauer
- Early Stage Pharmaceutical Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach/Riss, Germany
- In Silico Team, Boehringer Ingelheim, Hannover, Germany
| | - Nandhini Rajagopal
- In Silico Team, Boehringer Ingelheim, Hannover, Germany
- Biotherapeutics Discovery, Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, CT, United States
| | - Priyanka Gupta
- In Silico Team, Boehringer Ingelheim, Hannover, Germany
- Biotherapeutics Discovery, Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, CT, United States
| | - Pankaj Gupta
- In Silico Team, Boehringer Ingelheim, Hannover, Germany
- Biotherapeutics Discovery, Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, CT, United States
| | - Andrew E. Nixon
- Biotherapeutics Discovery, Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, CT, United States
| | - Sandeep Kumar
- In Silico Team, Boehringer Ingelheim, Hannover, Germany
- Biotherapeutics Discovery, Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, CT, United States
| |
Collapse
|
9
|
Shabani S, Rashidi M, Radgoudarzi S, Jebali A. The validation of artificial anti-monkeypox antibodies by in silico and experimental approaches. Immun Inflamm Dis 2023; 11:e834. [PMID: 37102640 PMCID: PMC10091375 DOI: 10.1002/iid3.834] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/06/2023] [Accepted: 03/25/2023] [Indexed: 04/28/2023] Open
Abstract
As a result of smallpox immunization programs that ended more than 40 years ago, a significant portion of the world's population is not immune. Moreover, due to the lack of anti-monkeypox drugs and vaccines against monkeypox, the spread of this virus may be the beginning of another challenge. In this study, novel antibodies against monkeypox virus were modeled based on a heavy chain of human antibody and a small peptide fragment. Docking of modeled antibodies with C19L protein showed the range of docking energy, and root-mean-square deviation (RMSD) was from -124 to -154 kcal/mL and 4-6 angstrom, respectively. Also, docking of modeled antibodies-C19L complex with gamma Fc receptor type I illustrated the range of docking energy, and RMSD was from -132 to -155 kcal/ml and 5-7 angstrom, respectively. Moreover, molecular dynamics simulation showed that antibody 62 had the highest stability with the lowest energy level and RMSD. Interestingly, no modeled antibodies had immunogenicity, allergenicity, and toxicity. Although all of them had good stability, only antibodies 25, 28, 54, and 62 had a half-life of >10 h. Moreover, the interaction between C19L protein and anti-C19L antibodies (wild-type and synthetic) was evaluated by the SPR method. We found that KD in synthetic antibodies was lower than wild antibody. In terms of δH°, TδS°, and δG°, the results were consistent with binding parameters. Here, the lowest value of thermodynamic parameters was obtained for antibody 62. These data show that the synthetic antibodies, especially antibody 62, had a higher affinity than the wild-type antibody.
Collapse
Affiliation(s)
- Sadeq Shabani
- Department of Biological SciencesFlorida International UniversityMiamiFloridaUSA
- Biomolecular Science InstituteFlorida International UniversityMiamiFloridaUSA
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of MedicineMazandaran University of Medical SciencesSariIran
- The Health of Plant and Livestock Products Research CenterMazandaran University of Medical SciencesSariIran
| | - Shakila Radgoudarzi
- I.M. Sechenov First Moscow State Medical University (Первый МГМУ им)MoscowRussia
| | - Ali Jebali
- Department of Medical Nanotechnology, Faculty of Advanced Sciences and Technology, Tehran Medical ScienceIslamic Azad UniversityTehranIran
| |
Collapse
|
10
|
Yang YX, Wang P, Zhu BT. Binding affinity prediction for antibody-protein antigen complexes: A machine learning analysis based on interface and surface areas. J Mol Graph Model 2023; 118:108364. [PMID: 36356467 DOI: 10.1016/j.jmgm.2022.108364] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 10/08/2022] [Accepted: 10/11/2022] [Indexed: 11/09/2022]
Abstract
Specific antibodies can bind to protein antigens with high affinity and specificity, and this property makes them one of the best protein-based therapeutics. Accurate prediction of antibody‒protein antigen binding affinity is crucial for designing effective antibodies. The current predictive methods for protein‒protein binding affinity usually fail to predict the binding affinity of an antibody‒protein antigen complex with a comparable level of accuracy. Here, new models specific for antibody‒antigen binding affinity prediction are developed according to the different types of interface and surface areas present in antibody‒antigen complex. The contacts-based descriptors are also employed to construct or train different models specific for antibody‒protein antigen binding affinity prediction. The results of this study show that (i) the area-based descriptors are slightly better than the contacts-based descriptors in terms of the predictive power; (ii) the new models specific for antibody‒protein antigen binding affinity prediction are superior to the previously-used general models for predicting the protein‒protein binding affinities; (iii) the performances of the best area-based and contacts-based models developed in this work are better than the performances of a recently-developed graph-based model (i.e., CSM-AB) specific for antibody‒protein antigen binding affinity prediction. The new models developed in this work would not only help understand the mechanisms underlying antibody‒protein antigen interactions, but would also be of some applicable utility in the design and virtual screening of antibody-based therapeutics.
Collapse
Affiliation(s)
- Yong Xiao Yang
- Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
| | - Pan Wang
- Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China; Shenzhen Bay Laboratory, Shenzhen, 518055, China
| | - Bao Ting Zhu
- Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China; Shenzhen Bay Laboratory, Shenzhen, 518055, China.
| |
Collapse
|
11
|
Chiba S, Okuno Y, Ohta M. Structure-Based Affinity Maturation of Antibody Based on Double-Point Mutations. Methods Mol Biol 2023; 2552:323-331. [PMID: 36346601 DOI: 10.1007/978-1-0716-2609-2_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Structure-based site-directed affinity maturation of antibodies can be expanded by multiple-point mutations to obtain various mutants. However, selecting the appropriate number of promising mutants for experimental evaluation from the vast number of combinations of multiple-point mutations is challenging. In this report, we describe how to narrow candidate mutants using the so-called weak interaction analysis such as CH-π and CH-O in addition to widely recognized interactions such as hydrogen bonds.
Collapse
Affiliation(s)
- Shuntaro Chiba
- RIKEN Center for Computational Science, RIKEN, Yokohama, Japan
| | - Yasushi Okuno
- RIKEN Center for Computational Science, RIKEN, Yokohama, Japan
- Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masateru Ohta
- RIKEN Center for Computational Science, RIKEN, Yokohama, Japan.
| |
Collapse
|
12
|
Abstract
In the computational design of antibodies, the interaction analysis between target antigen and antibody is an essential process to obtain feedback for validation and optimization of the design. Kinetic and thermodynamic parameters as well as binding affinity (KD) allow for a more detailed evaluation and understanding of the molecular recognition. In this chapter, we summarize the conventional experimental methods which can calculate KD value (ELISA, FP), analyze a binding activity to actual cells (FCM), and evaluate the kinetic and thermodynamic parameters (ITC, SPR, BLI), including high-throughput analysis and a recently developed experimental technique.
Collapse
Affiliation(s)
- Aki Tanabe
- Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, Japan
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kouhei Tsumoto
- Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, Japan.
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Tokyo, Japan.
- The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
13
|
In Silico Maturation of a Nanomolar Antibody against the Human CXCR2. Biomolecules 2022; 12:biom12091285. [PMID: 36139124 PMCID: PMC9496334 DOI: 10.3390/biom12091285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/31/2022] [Accepted: 08/31/2022] [Indexed: 11/17/2022] Open
Abstract
The steady increase in computational power in the last 50 years is opening unprecedented opportunities in biology, as computer simulations of biological systems have become more accessible and can reproduce experimental results more accurately. Here, we wanted to test the ability of computer simulations to replace experiments in the limited but practically useful scope of improving the biochemical characteristics of the abN48 antibody, a nanomolar antagonist of the CXC chemokine receptor 2 (CXCR2) that was initially selected from a combinatorial antibody library. Our results showed a good correlation between the computed binding energies of the antibody to the peptide target and the experimental binding affinities. Moreover, we showed that it is possible to design new antibody sequences in silico with a higher affinity to the desired target using a Monte Carlo Metropolis algorithm. The newly designed sequences had an affinity comparable to the best ones obtained using in vitro affinity maturation and could be obtained within a similar timeframe. The methodology proposed here could represent a valid alternative for improving antibodies in cases in which experiments are too expensive or technically tricky and could open an opportunity for designing antibodies for targets that have been elusive so far.
Collapse
|
14
|
Barroso da Silva FL, Giron CC, Laaksonen A. Electrostatic Features for the Receptor Binding Domain of SARS-COV-2 Wildtype and Its Variants. Compass to the Severity of the Future Variants with the Charge-Rule. J Phys Chem B 2022; 126:6835-6852. [PMID: 36066414 DOI: 10.1021/acs.jpcb.2c04225] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Electrostatic intermolecular interactions are important in many aspects of biology. We have studied the main electrostatic features involved in the interaction of the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein with the human receptor Angiotensin-converting enzyme 2 (ACE2). As the principal computational tool, we have used the FORTE approach, capable to model proton fluctuations and computing free energies for a very large number of protein-protein systems under different physical-chemical conditions, here focusing on the RBD-ACE2 interactions. Both the wild-type and all critical variants are included in this study. From our large ensemble of extensive simulations, we obtain, as a function of pH, the binding affinities, charges of the proteins, their charge regulation capacities, and their dipole moments. In addition, we have calculated the pKas for all ionizable residues and mapped the electrostatic coupling between them. We are able to present a simple predictor for the RBD-ACE2 binding based on the data obtained for Alpha, Beta, Gamma, Delta, and Omicron variants, as a linear correlation between the total charge of the RBD and the corresponding binding affinity. This "RBD charge rule" should work as a quick test of the degree of severity of the coming SARS-CoV-2 variants in the future.
Collapse
Affiliation(s)
- Fernando L Barroso da Silva
- Departamento de Ciências Biomoleculares, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. café, s/no-campus da USP, BR-14040-903 Ribeirão Preto, SP, Brazil.,Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Carolina Corrêa Giron
- Departamento de Ciências Biomoleculares, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. café, s/no-campus da USP, BR-14040-903 Ribeirão Preto, SP, Brazil.,Hospital de Clínicas, Universidade Federal do Triângulo Mineiro, Av. Getúlio Guaritá, 38025-440 Uberaba, MG, Brazil
| | - Aatto Laaksonen
- Department of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden.,State Key Laboratory of Materials-Oriented and Chemical Engineering, Nanjing Tech University, Nanjing, 210009, P. R. China.,Centre of Advanced Research in Bionanoconjugates and Biopolymers, Petru Poni Institute of Macromolecular Chemistry, Aleea Grigore Ghica-Voda, 41A, 700487 Iasi, Romania.,Department of Engineering Sciences and Mathematics, Division of Energy Science, Luleå University of Technology, SE-97187 Luleå, Sweden.,Department of Chemical and Geological Sciences, Campus Monserrato, University of Cagliari, SS 554 bivio per Sestu, 09042 Monserrato, Italy
| |
Collapse
|
15
|
Scheck A, Rosset S, Defferrard M, Loukas A, Bonet J, Vandergheynst P, Correia BE. RosettaSurf-A surface-centric computational design approach. PLoS Comput Biol 2022; 18:e1009178. [PMID: 35294435 PMCID: PMC9015148 DOI: 10.1371/journal.pcbi.1009178] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 04/18/2022] [Accepted: 02/21/2022] [Indexed: 11/19/2022] Open
Abstract
Proteins are typically represented by discrete atomic coordinates providing an accessible framework to describe different conformations. However, in some fields proteins are more accurately represented as near-continuous surfaces, as these are imprinted with geometric (shape) and chemical (electrostatics) features of the underlying protein structure. Protein surfaces are dependent on their chemical composition and, ultimately determine protein function, acting as the interface that engages in interactions with other molecules. In the past, such representations were utilized to compare protein structures on global and local scales and have shed light on functional properties of proteins. Here we describe RosettaSurf, a surface-centric computational design protocol, that focuses on the molecular surface shape and electrostatic properties as means for protein engineering, offering a unique approach for the design of proteins and their functions. The RosettaSurf protocol combines the explicit optimization of molecular surface features with a global scoring function during the sequence design process, diverging from the typical design approaches that rely solely on an energy scoring function. With this computational approach, we attempt to address a fundamental problem in protein design related to the design of functional sites in proteins, even when structurally similar templates are absent in the characterized structural repertoire. Surface-centric design exploits the premise that molecular surfaces are, to a certain extent, independent of the underlying sequence and backbone configuration, meaning that different sequences in different proteins may present similar surfaces. We benchmarked RosettaSurf on various sequence recovery datasets and showcased its design capabilities by generating epitope mimics that were biochemically validated. Overall, our results indicate that the explicit optimization of surface features may lead to new routes for the design of functional proteins.
Collapse
Affiliation(s)
- Andreas Scheck
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Stéphane Rosset
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Michaël Defferrard
- Signal Processing Laboratory (LTS2), École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Andreas Loukas
- Signal Processing Laboratory (LTS2), École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Jaume Bonet
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Pierre Vandergheynst
- Signal Processing Laboratory (LTS2), École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Bruno E. Correia
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| |
Collapse
|
16
|
Blasi G, Bortoletto E, Gasparotto M, Filippini F, Bai CM, Rosani U, Venier P. A glimpse on metazoan ZNFX1 helicases, ancient players of antiviral innate immunity. FISH & SHELLFISH IMMUNOLOGY 2022; 121:456-466. [PMID: 35063603 DOI: 10.1016/j.fsi.2022.01.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 12/03/2021] [Accepted: 01/13/2022] [Indexed: 06/14/2023]
Abstract
The human zinc finger NFX1-type containing 1 (ZNFX1) is an interferon-stimulated protein associated to the outer mitochondrial membrane, able to bind dsRNAs and interact with MAVS proteins, promoting type I IFN response in the early stage of viral infection. An N-terminal Armadillo (ARM)-type fold and a large helicase core (P-loop) and zinc fingers confer RNA-binding and ATPase activities to ZNFX1. We studied the phylogenetic distribution of metazoan ZNFX1s, ZNFX1 gene expression trends and genomic and protein signatures during viral infection of invertebrates. Based on 221 ZNFX1 sequences, we obtained a polyphyletic tree with a taxonomy-consistent branching at the phylum-level only. In metazoan genomes, ZNFX1 genes were found either in single copy, with up to some tens of exons in vertebrates, or in multiple copies, with one or a few exons and one of them sometimes encompassing most of the coding sequence, in invertebrates like sponges, sea urchins and mollusks. Structural analyses of selected ZNFX1 proteins showed high conservation of the helicase region (P-loop), an overall conserved region and domain architecture, an ARM-fold mostly traceable, and the presence of intrinsically disordered regions of varying length and position. The remarkable over-expression of ZNFX1 in bivalve and gastropod mollusks infected with dsDNA viruses underscores the antiviral role of ZNFX1, whereas nothing similar was found in virus-infected nematodes and corals. Whether the functional diversification reported in the C. elegans ZNFX1 occurs in other metazoan proteins remains to be established.
Collapse
Affiliation(s)
- Giulia Blasi
- Department of Biology, University of Padova, 35121, Padova, Italy
| | | | | | | | - Chang-Ming Bai
- Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Yellow Sea Fisheries Research Institute, CAFS, Qingdao, 266237, China
| | - Umberto Rosani
- Department of Biology, University of Padova, 35121, Padova, Italy.
| | - Paola Venier
- Department of Biology, University of Padova, 35121, Padova, Italy.
| |
Collapse
|
17
|
Kielczewska A, D'Angelo I, Amador MS, Wang T, Sudom A, Min X, Rathanaswami P, Pigott C, Foltz IN. Development of a potent high-affinity human therapeutic antibody via novel application of recombination signal sequence-based affinity maturation. J Biol Chem 2021; 298:101533. [PMID: 34973336 PMCID: PMC8808179 DOI: 10.1016/j.jbc.2021.101533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 12/20/2021] [Indexed: 12/01/2022] Open
Abstract
Therapeutic antibody development requires discovery of an antibody molecule with desired specificities and drug-like properties. For toxicological studies, a therapeutic antibody must bind the ortholog antigen with a similar affinity to the human target to enable relevant dosing regimens, and antibodies falling short of this affinity design goal may not progress as therapeutic leads. Herein, we report the novel use of mammalian recombination signal sequence (RSS)–directed recombination for complementarity-determining region–targeted protein engineering combined with mammalian display to close the species affinity gap of human interleukin (IL)-13 antibody 731. This fully human antibody has not progressed as a therapeutic in part because of a 400-fold species affinity gap. Using this nonhypothesis-driven affinity maturation method, we generated multiple antibody variants with improved IL-13 affinity, including the highest affinity antibody reported to date (34 fM). Resolution of a cocrystal structure of the optimized antibody with the cynomolgus monkey (or nonhuman primate) IL-13 protein revealed that the RSS-derived mutations introduced multiple successive amino-acid substitutions resulting in a de novo formation of a π–π stacking–based protein–protein interaction between the affinity-matured antibody heavy chain and helix C on IL-13, as well as an introduction of an interface-distant residue, which enhanced the light chain–binding affinity to target. These mutations synergized binding of heavy and light chains to the target protein, resulting in a remarkably tight interaction, and providing a proof of concept for a new method of protein engineering, based on synergizing a mammalian display platform with novel RSS-mediated library generation.
Collapse
Affiliation(s)
| | - Igor D'Angelo
- Amgen Inc, Therapeutic Discovery, Thousand Oaks, California, USA
| | - Maria Sheena Amador
- Amgen British Columbia, Therapeutic Discovery, Burnaby, British Columbia, Canada
| | - Tina Wang
- Amgen British Columbia, Therapeutic Discovery, Burnaby, British Columbia, Canada
| | - Athena Sudom
- Amgen San Francisco, Therapeutic Discovery, San Francisco, California, USA
| | - Xiaoshan Min
- Amgen San Francisco, Therapeutic Discovery, San Francisco, California, USA
| | | | - Craig Pigott
- Innovative Targeting Solutions, Burnaby, British Columbia, Canada
| | - Ian N Foltz
- Amgen British Columbia, Therapeutic Discovery, Burnaby, British Columbia, Canada
| |
Collapse
|
18
|
Padhi AK, Kumar A, Haruna KI, Sato H, Tamura H, Nagatoishi S, Tsumoto K, Yamaguchi A, Iraha F, Takahashi M, Sakamoto K, Zhang KYJ. An integrated computational pipeline for designing high-affinity nanobodies with expanded genetic codes. Brief Bioinform 2021; 22:6355418. [PMID: 34415295 DOI: 10.1093/bib/bbab338] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 01/09/2023] Open
Abstract
Protein engineering and design principles employing the 20 standard amino acids have been extensively used to achieve stable protein scaffolds and deliver their specific activities. Although this confers some advantages, it often restricts the sequence, chemical space, and ultimately the functional diversity of proteins. Moreover, although site-specific incorporation of non-natural amino acids (nnAAs) has been proven to be a valuable strategy in protein engineering and therapeutics development, its utility in the affinity-maturation of nanobodies is not fully explored. Besides, current experimental methods do not routinely employ nnAAs due to their enormous library size and infinite combinations. To address this, we have developed an integrated computational pipeline employing structure-based protein design methodologies, molecular dynamics simulations and free energy calculations, for the binding affinity prediction of an nnAA-incorporated nanobody toward its target and selection of potent binders. We show that by incorporating halogenated tyrosines, the affinity of 9G8 nanobody can be improved toward epidermal growth factor receptor (EGFR), a crucial cancer target. Surface plasmon resonance (SPR) assays showed that the binding of several 3-chloro-l-tyrosine (3MY)-incorporated nanobodies were improved up to 6-fold into a picomolar range, and the computationally estimated binding affinities shared a Pearson's r of 0.87 with SPR results. The improved affinity was found to be due to enhanced van der Waals interactions of key 3MY-proximate nanobody residues with EGFR, and an overall increase in the nanobody's structural stability. In conclusion, we show that our method can facilitate screening large libraries and predict potent site-specific nnAA-incorporated nanobody binders against crucial disease-targets.
Collapse
Affiliation(s)
- Aditya K Padhi
- Laboratory for Structural Bioinformatics, Center for Biosystems Dynamics Research, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Ashutosh Kumar
- Laboratory for Structural Bioinformatics, Center for Biosystems Dynamics Research, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Ken-Ichi Haruna
- Research Institute for Bioscience Products and Fine Chemicals, Ajinomoto Co., Inc., 1-1 Suzuki-cho, Kawasaki-ku, Kawasaki, Kanagawa 210-8681, Japan
| | - Haruna Sato
- Research Institute for Bioscience Products and Fine Chemicals, Ajinomoto Co., Inc., 1-1 Suzuki-cho, Kawasaki-ku, Kawasaki, Kanagawa 210-8681, Japan
| | - Hiroko Tamura
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Satoru Nagatoishi
- Institute of Medical Sciences, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Kouhei Tsumoto
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.,Institute of Medical Sciences, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan.,Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Atushi Yamaguchi
- Division of Structural and Synthetic Biology, Center for Life Science Technologies, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Fumie Iraha
- Division of Structural and Synthetic Biology, Center for Life Science Technologies, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Mihoko Takahashi
- Division of Structural and Synthetic Biology, Center for Life Science Technologies, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan.,Laboratory for Nonnatural Amino Acid Technology, Center for Biosystems Dynamics Research, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Kensaku Sakamoto
- Division of Structural and Synthetic Biology, Center for Life Science Technologies, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan.,Laboratory for Nonnatural Amino Acid Technology, Center for Biosystems Dynamics Research, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Kam Y J Zhang
- Laboratory for Structural Bioinformatics, Center for Biosystems Dynamics Research, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| |
Collapse
|
19
|
Ikeuchi E, Kuroda D, Nakakido M, Murakami A, Tsumoto K. Delicate balance among thermal stability, binding affinity, and conformational space explored by single-domain V HH antibodies. Sci Rep 2021; 11:20624. [PMID: 34663870 PMCID: PMC8523659 DOI: 10.1038/s41598-021-98977-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 09/08/2021] [Indexed: 11/29/2022] Open
Abstract
The high binding affinities and specificities of antibodies have led to their use as drugs and biosensors. Single-domain VHH antibodies exhibit high specificity and affinity but have higher stability and solubility than conventional antibodies as they are single-domain proteins. In this work, based on physicochemical measurements and molecular dynamics (MD) simulations, we have gained insight that will facilitate rational design of single-chain VHH antibodies. We first assessed two homologous VHH antibodies by differential scanning calorimetry (DSC); one had a high (64.8 °C) and the other a low (58.6 °C) melting temperature. We then generated a series of the variants of the low stability antibody and analyzed their thermal stabilities by DSC and characterized their structures through MD simulations. We found that a single mutation that resulted in 8.2 °C improvement in melting temperature resulted in binding affinity an order of magnitude lower than the parent antibody, likely due to a shift of conformational space explored by the single-chain VHH antibody. These results suggest that the delicate balance among conformational stability, binding capability, and conformational space explored by antibodies must be considered in design of fully functional single-chain VHH antibodies.
Collapse
Affiliation(s)
- Emina Ikeuchi
- Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, 108-8639, Japan.,Panasonic Corporation Technology Division, Kyoto, 619-0237, Japan
| | - Daisuke Kuroda
- Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, 108-8639, Japan.,Medical Device Development and Regulation Research Center, School of Engineering, The University of Tokyo, Tokyo, 108-8639, Japan.,Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Makoto Nakakido
- Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, 108-8639, Japan.,Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Akikazu Murakami
- Department of Parasitology and Immunopathoetiology, Graduate School of Medicine, University of the Ryukyus, Okinawa, 903-0215, Japan
| | - Kouhei Tsumoto
- Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, 108-8639, Japan. .,Medical Device Development and Regulation Research Center, School of Engineering, The University of Tokyo, Tokyo, 108-8639, Japan. .,Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Tokyo, Japan. .,Laboratory of Medical Proteomics, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan.
| |
Collapse
|
20
|
Computational and Rational Design of Single-Chain Antibody against Tick-Borne Encephalitis Virus for Modifying Its Specificity. Viruses 2021; 13:v13081494. [PMID: 34452359 PMCID: PMC8402911 DOI: 10.3390/v13081494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/09/2021] [Accepted: 06/23/2021] [Indexed: 12/27/2022] Open
Abstract
Tick-borne encephalitis virus (TBEV) causes 5−7 thousand cases of human meningitis and encephalitis annually. The neutralizing and protective antibody ch14D5 is a potential therapeutic agent. This antibody exhibits a high affinity for binding with the D3 domain of the glycoprotein E of the Far Eastern subtype of the virus, but a lower affinity for the D3 domains of the Siberian and European subtypes. In this study, a 2.2-fold increase in the affinity of single-chain antibody sc14D5 to D3 proteins of the Siberian and European subtypes of the virus was achieved using rational design and computational modeling. This improvement can be further enhanced in the case of the bivalent binding of the full-length chimeric antibody containing the identified mutation.
Collapse
|
21
|
Qu L, Qiao X, Qi F, Nishida N, Hoshino T. Analysis of Binding Modes of Antigen-Antibody Complexes by Molecular Mechanics Calculation. J Chem Inf Model 2021; 61:2396-2406. [PMID: 33934602 DOI: 10.1021/acs.jcim.1c00167] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Antibodies are one of the most important protein molecules in biopharmaceutics. Due to the recent advance in technology for producing monoclonal antibodies, many structural data are available on the antigen-antibody complexes. To characterize the molecular interaction in antigen-antibody recognition, we computationally analyzed 500 complex structures by molecular mechanics calculations. The presence of Ser and Tyr is markedly large in the complementarity-determining regions (CDRs). Although Ser is abundant in CDRs, its contribution to the binding score is not large. Instead, Tyr, Asp, Glu, and Arg significantly contribute to the molecular interaction from the viewpoint of the binding score. The decomposition of the binding score suggests that the hydrophilic interaction is predominant in all CDRs compared with the hydrophobic one. The contribution of the heavy chain is larger than that of the light chain. In particular, H2 and H3 largely contribute to the binding interaction. Tyr is a main contributing residue both in H2 and H3. The positively charged residue Arg also significantly contributes to the binding score in H3, while the contribution of Lys is small. The appearance of Ser is remarkable in H2, and Asp is abundant in H3. The non-charged polar residues, Thr, Asn, and Gln, appear much in H2, compared to appearing in H3. The negatively charged residues Asp and Glu significantly contribute to the binding score in H3. The contributions of Phe and Trp are not large in spite that the aromatic residues are capable of making the π-π or CH-π interaction. Gly is commonly abundant both in H2 and H3. The average distance of the shortest direct hydrogen bond between the antigen and antibody is longer than that of the hydrogen bonds observed in the complexes between compounds and their target proteins. Therefore, the antigen-antibody interface is not so tight as the compound-target protein interface. The calculation of shape complementarity is consistent with the result of the hydrogen bonds in that the fitness of the antigen-antibody contact is not so high as that of the compound-target protein contact. There exist many water molecules at the antigen-antibody interface. These findings suggest that Tyr, Asp, Glu, and Arg are rich in H3 and work as major contributors for the interaction with the antigen. Ser, Thr, Asn, and Gln are rich in H2 and support the interaction with enhancing molecular fitness. Gly is helpful in increasing flexibility and geometrical diversity. Because the antigen-antibody binding is fundamentally hydrophilic-driven, the non-polar residues are unfavorable for mediating the contact even for the aromatic residues such as Phe and Trp.
Collapse
Affiliation(s)
- Liang Qu
- Graduate School of Pharmaceutical Sciences, Chiba UniversityRINGGOLD, Inohana 1-8-1, Chuo-ku, Chiba 260-8675, Japan
| | - Xinyue Qiao
- Graduate School of Pharmaceutical Sciences, Chiba UniversityRINGGOLD, Inohana 1-8-1, Chuo-ku, Chiba 260-8675, Japan
| | - Fei Qi
- Graduate School of Pharmaceutical Sciences, Chiba UniversityRINGGOLD, Inohana 1-8-1, Chuo-ku, Chiba 260-8675, Japan
| | - Noritaka Nishida
- Graduate School of Pharmaceutical Sciences, Chiba UniversityRINGGOLD, Inohana 1-8-1, Chuo-ku, Chiba 260-8675, Japan
| | - Tyuji Hoshino
- Graduate School of Pharmaceutical Sciences, Chiba UniversityRINGGOLD, Inohana 1-8-1, Chuo-ku, Chiba 260-8675, Japan
| |
Collapse
|
22
|
Wang B, Gallolu Kankanamalage S, Dong J, Liu Y. Optimization of therapeutic antibodies. Antib Ther 2021; 4:45-54. [PMID: 33928235 PMCID: PMC7944496 DOI: 10.1093/abt/tbab003] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/15/2021] [Accepted: 02/02/2021] [Indexed: 12/20/2022] Open
Abstract
In this review, we have summarized the current landscape of therapeutic antibody optimization for successful development. By engineering antibodies with display technology, computer-aided design and site mutagenesis, various properties of the therapeutic antibody candidates can be improved with the purpose of enhancing their safety, efficacy and developability. These properties include antigen binding affinity and specificity, biological efficacy, pharmacokinetics and pharmacodynamics, immunogenicity and physicochemical developability features. A best-in-class strategy may require the optimization of all these properties to generate a good therapeutic antibody.
Collapse
Affiliation(s)
- Bo Wang
- Ab Studio, Inc. Hayward, CA 94545, USA
| | | | | | - Yue Liu
- Ab Studio, Inc. Hayward, CA 94545, USA
| |
Collapse
|
23
|
Liang T, Chen H, Yuan J, Jiang C, Hao Y, Wang Y, Feng Z, Xie XQ. IsAb: a computational protocol for antibody design. Brief Bioinform 2021; 22:6238584. [PMID: 33876197 DOI: 10.1093/bib/bbab143] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/24/2021] [Accepted: 03/23/2021] [Indexed: 12/15/2022] Open
Abstract
The design of therapeutic antibodies has attracted a large amount of attention over the years. Antibodies are widely used to treat many diseases due to their high efficiency and low risk of adverse events. However, the experimental methods of antibody design are time-consuming and expensive. Although computational antibody design techniques have had significant advances in the past years, there are still some challenges that need to be solved, such as the flexibility of antigen structure, the lack of antibody structural data and the absence of standard antibody design protocol. In the present work, we elaborated on an in silico antibody design protocol for users to easily perform computer-aided antibody design. First, the Rosetta web server will be applied to generate the 3D structure of query antibodies if there is no structural information available. Then, two-step docking will be used to identify the binding pose of an antibody-antigen complex when the binding information is unknown. ClusPro is the first method to be used to conduct the global docking, and SnugDock is applied for the local docking. Sequentially, based on the predicted binding poses, in silico alanine scanning will be used to predict the potential hotspots (or key residues). Finally, computational affinity maturation protocol will be used to modify the structure of antibodies to theoretically increase their affinity and stability, which will be further validated by the bioassays in the future. As a proof of concept, we redesigned antibody D44.1 and compared it with previously reported data in order to validate IsAb protocol. To further illustrate our proposed protocol, we used cemiplimab antibody, a PD-1 checkpoint inhibitor, as an example to showcase a step-by-step tutorial.
Collapse
Affiliation(s)
- Tianjian Liang
- School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Hui Chen
- School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Jiayi Yuan
- School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Chen Jiang
- School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Yixuan Hao
- School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Yuanqiang Wang
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Pittsburgh, PA 15261, USA
| | - Zhiwei Feng
- School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Xiang-Qun Xie
- Computational Drug Abuse Research and Computational Chemogenomics Screening Center at the University of Pittsburgh, Pittsburgh, PA 15261, USA
| |
Collapse
|
24
|
64Cu-labeled minibody D2101 visualizes CDH17-positive gastric cancer xenografts with short waiting time. Nucl Med Commun 2021; 41:688-695. [PMID: 32371673 DOI: 10.1097/mnm.0000000000001203] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE We previously reported In-labeled anti-cadherin17 (CDH17) IgG visualized CDH17-positive gastric cancer xenografts. Unfortunately, a long waiting time was required to obtain high-contrast images due to long blood retention (blood half-life: 26 h). To accelerate blood clearance, we have developed anti-CDH17 minibody (D2101 minibody) and evaluated the pharmacokinetics in gastric cancer mouse models. METHODS Two different single chain Fvs (scFvs), D2101 mutant and D2111, were developed from each parental IgG. The binding ability to CDH17 and stability in plasma were evaluated. D2101 minibody, constructed based on D2101 mutant scFv, was labeled with Cu (Cu-D2101 minibody), and the in-vitro and in-vivo properties were evaluated by cell ELISA, biodistribution experiments, and PET imaging in mice bearing CDH17-positive AGS and CDH17-negative MKN74 tumors. RESULTS D2101 mutant and D2111 scFvs showed similar affinities to CDH17. D2101 mutant scFv was more stable than D2111 scFv in plasma. No loss of binding affinity of the D2101 minibody by chelate conjugation and radiolabeling procedures was observed. The biodistribution of Cu-D2101 minibody showed high uptake in AGS tumors and low uptake in MKN74. The blood half-life of Cu-D2101 minibody was 6.5 h. Improved blood clearance of Cu-D2101 minibody provided high tumor-to-blood ratios compared with the previous results of parental IgG in AGS xenograft mice. PET studies showed consistent results with biodistribution studies. CONCLUSIONS Cu-D2101 minibody exhibited higher tumor-to-blood ratios at earlier time points than those of the radiolabeled parental IgG. Cu-D2101 minibody has potential as an immunoimaging agent for CDH17-positive tumors.
Collapse
|
25
|
Hosseini SA, Mansouri K, Ahmadpour S, Evazalipour M, Sharifian E, Arezumand R. Generating the Engineered Form of a Nanobody Against Placenta Growth Factor with High Antiangiogenesis Potential. Monoclon Antib Immunodiagn Immunother 2021; 40:11-16. [PMID: 33625286 DOI: 10.1089/mab.2020.0023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Antibody engineering is a dynamic field in antibody industry. Over 30% of novel monoclonal antibodies (mAbs) in R&D and clinical trials are engineered forms. Affinity enhancement contributes to the development of new binders that are not only effective in low dose and cost but also improve some drawbacks of antibody production. After previous successful work on in silico affinity maturation of nanobody against placenta growth factor and finding the best engineered nanobodies (Mut2:S31D and Mut4:R45E), according to bioinformatic parameters and molecular dynamics (MD) simulation results, in this study we focused on experimental confirmation of affinity enhancement of a mutant form of nanobody. So, we cloned and expressed two of four mutant forms in pHEN6c vector. Affinity binding was assayed by enzyme-linked immunosorbent assay on purified mutants, with results showing that 10-time enhancement in affinity compared with the native form associated with MD simulation results. We checked the effectiveness of these mutant nanobodies in angiogenesis inhibition by human umbilical vein endothelial cell proliferation and 3D capillary tube formation. EC50 of mut2, mut4, and native in proliferation assay was 110, 140, and 190 ng/mL, respectively, and that in 3D capillary tube formation was 80, 83, and 100 ng/mL. The results of functional studies revealed strong effectiveness of Mut2 followed by Mut4 compared with the native form. Our study confirmed that in silico approach could facilitate development of novel versions of mAb with better characteristics, which could save cost and time.
Collapse
Affiliation(s)
- Seyede Atefeh Hosseini
- Department of Medical Biotechnology and Molecular Science, North Khorasan University of Medical Science, Bojnurd, Iran
| | - Kamran Mansouri
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Shahriyar Ahmadpour
- Department of Medical Biotechnology and Molecular Science, North Khorasan University of Medical Science, Bojnurd, Iran
| | - Mehdi Evazalipour
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Guilan University of Medical Sciences, Rasht, Iran
| | - Elham Sharifian
- Department of Medical Biotechnology and Molecular Science, North Khorasan University of Medical Science, Bojnurd, Iran
| | - Roghaye Arezumand
- Department of Medical Biotechnology and Molecular Science, North Khorasan University of Medical Science, Bojnurd, Iran
| |
Collapse
|
26
|
Khan MAAK, Turjya RR, Islam ABMMK. Computational engineering the binding affinity of Adalimumab monoclonal antibody for designing potential biosimilar candidate. J Mol Graph Model 2021; 102:107774. [DOI: 10.1016/j.jmgm.2020.107774] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 08/15/2020] [Accepted: 10/05/2020] [Indexed: 12/26/2022]
|
27
|
Mukai H, Watanabe Y. Review: PET imaging with macro- and middle-sized molecular probes. Nucl Med Biol 2021; 92:156-170. [PMID: 32660789 DOI: 10.1016/j.nucmedbio.2020.06.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 06/22/2020] [Accepted: 06/22/2020] [Indexed: 12/16/2022]
Abstract
Recent progress in radiolabeling of macro- and middle-sized molecular probes has been extending possibilities to use PET molecular imaging for dynamic application to drug development and therapeutic evaluation. Theranostics concept also accelerated the use of macro- and middle-sized molecular probes for sharpening the contrast of proper target recognition even the cellular types/subtypes and proper selection of the patients who should be treated by the same molecules recognition. Here, brief summary of the present status of immuno-PET, and then further development of advanced technologies related to immuno-PET, peptidic PET probes, and nucleic acids PET probes are described.
Collapse
Affiliation(s)
- Hidefumi Mukai
- Laboratory for Molecular Delivery and Imaging Technology, RIKEN Center for Biosystems Dynamics Research, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.
| | - Yasuyoshi Watanabe
- Laboratory for Pathophysiological and Health Science, RIKEN Center for Biosystems Dynamics Research, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.
| |
Collapse
|
28
|
Abstract
Nanorobotics, which has long been a fantasy in the realm of science fiction, is now a reality due to the considerable developments in diverse fields including chemistry, materials, physics, information and nanotechnology in the past decades. Not only different prototypes of nanorobots whose sizes are nanoscale are invented for various biomedical applications, but also robotic nanomanipulators which are able to handle nano-objects obtain substantial achievements for applications in biomedicine. The outstanding achievements in nanorobotics have significantly expanded the field of medical robotics and yielded novel insights into the underlying mechanisms guiding life activities, remarkably showing an emerging and promising way for advancing the diagnosis & treatment level in the coming era of personalized precision medicine. In this review, the recent advances in nanorobotics (nanorobots, nanorobotic manipulations) for biomedical applications are summarized from several facets (including molecular machines, nanomotors, DNA nanorobotics, and robotic nanomanipulators), and the future perspectives are also presented.
Collapse
|
29
|
Predicting antibody affinity changes upon mutations by combining multiple predictors. Sci Rep 2020; 10:19533. [PMID: 33177627 PMCID: PMC7658247 DOI: 10.1038/s41598-020-76369-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 10/19/2020] [Indexed: 02/07/2023] Open
Abstract
Antibodies are proteins working in our immune system with high affinity and specificity for target antigens, making them excellent tools for both biotherapeutic and bioengineering applications. The prediction of antibody affinity changes upon mutations (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${{\Delta \Delta {\mathrm{G}}}}_{\mathrm{binding}}$$\end{document}ΔΔGbinding) is important for antibody engineering. Numerous computational methods have been proposed based on different approaches including molecular mechanics and machine learning. However, the accuracy by each individual predictor is not enough for efficient antibody development. In this study, we develop a new prediction method by combining multiple predictors based on machine learning. Our method was tested on the SiPMAB database, evaluating the Pearson’s correlation coefficient between predicted and experimental \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${{\Delta \Delta {\mathrm{G}}}}_{\mathrm{binding}}$$\end{document}ΔΔGbinding. Our method achieved higher accuracy (R = 0.69) than previous molecular mechanics or machine-learning based methods (R = 0.59) and the previous method using the average of multiple predictors (R = 0.64). Feature importance analysis indicated that the improved accuracy was obtained by combining predictors with different importance, which have different protocols for calculating energies and for generating mutant and unbound state structures. This study demonstrates that machine learning is a powerful framework for combining different approaches to predict antibody affinity changes.
Collapse
|
30
|
Structure-based design and discovery of novel anti-tissue factor antibodies with cooperative double-point mutations, using interaction analysis. Sci Rep 2020; 10:17590. [PMID: 33067496 PMCID: PMC7567794 DOI: 10.1038/s41598-020-74545-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 10/05/2020] [Indexed: 01/21/2023] Open
Abstract
The generation of a wide range of candidate antibodies is important for the successful development of drugs that simultaneously satisfy multiple requirements. To find cooperative mutations and increase the diversity of mutants, an in silico double-point mutation approach, in which 3D models of all possible double-point mutant/antigen complexes are constructed and evaluated using interaction analysis, was developed. Starting from an antibody with very high affinity, four double-point mutants were designed in silico. Two of the double-point mutants exhibited improved affinity or affinity comparable to that of the starting antibody. The successful identification of two active double-point mutants showed that a cooperative mutation could be found by utilizing information regarding the interactions. The individual single-point mutants of the two active double-point mutants showed decreased affinity or no expression. These results suggested that the two active double-point mutants cannot be obtained through the usual approach i.e. a combination of improved single-point mutants. In addition, a triple-point mutant, which combines the distantly located active double-point mutation and an active single-point mutation collaterally obtained in the process of the double-point mutation strategy, was designed. The triple-point mutant showed improved affinity. This finding suggested that the effects of distantly located mutations are independent and additive. The double-point mutation approach using the interaction analysis of 3D structures expands the design repertoire for mutants, and hopefully paves a way for the identification of cooperative multiple-point mutations.
Collapse
|
31
|
Myung Y, Rodrigues CHM, Ascher DB, Pires DEV. mCSM-AB2: guiding rational antibody design using graph-based signatures. Bioinformatics 2020; 36:1453-1459. [PMID: 31665262 DOI: 10.1093/bioinformatics/btz779] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 10/07/2019] [Accepted: 10/23/2019] [Indexed: 12/11/2022] Open
Abstract
MOTIVATION A lack of accurate computational tools to guide rational mutagenesis has made affinity maturation a recurrent challenge in antibody (Ab) development. We previously showed that graph-based signatures can be used to predict the effects of mutations on Ab binding affinity. RESULTS Here we present an updated and refined version of this approach, mCSM-AB2, capable of accurately modelling the effects of mutations on Ab-antigen binding affinity, through the inclusion of evolutionary and energetic terms. Using a new and expanded database of over 1800 mutations with experimental binding measurements and structural information, mCSM-AB2 achieved a Pearson's correlation of 0.73 and 0.77 across training and blind tests, respectively, outperforming available methods currently used for rational Ab engineering. AVAILABILITY AND IMPLEMENTATION mCSM-AB2 is available as a user-friendly and freely accessible web server providing rapid analysis of both individual mutations or the entire binding interface to guide rational antibody affinity maturation at http://biosig.unimelb.edu.au/mcsm_ab2. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Yoochan Myung
- Department of Biochemistry and Molecular Biology.,ACRF Facility for Innovative Cancer Drug Discovery, Bio21 Institute, University of Melbourne, Melbourne, VIC 3010, Australia.,Structural Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia
| | - Carlos H M Rodrigues
- Department of Biochemistry and Molecular Biology.,ACRF Facility for Innovative Cancer Drug Discovery, Bio21 Institute, University of Melbourne, Melbourne, VIC 3010, Australia.,Structural Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia
| | - David B Ascher
- Department of Biochemistry and Molecular Biology.,ACRF Facility for Innovative Cancer Drug Discovery, Bio21 Institute, University of Melbourne, Melbourne, VIC 3010, Australia.,Structural Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia.,Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
| | - Douglas E V Pires
- Department of Biochemistry and Molecular Biology.,ACRF Facility for Innovative Cancer Drug Discovery, Bio21 Institute, University of Melbourne, Melbourne, VIC 3010, Australia.,Structural Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia.,School of Computing and Information Systems, University of Melbourne, Melbourne, VIC 3010, Australia
| |
Collapse
|
32
|
Vascon F, Gasparotto M, Giacomello M, Cendron L, Bergantino E, Filippini F, Righetto I. Protein electrostatics: From computational and structural analysis to discovery of functional fingerprints and biotechnological design. Comput Struct Biotechnol J 2020; 18:1774-1789. [PMID: 32695270 PMCID: PMC7355722 DOI: 10.1016/j.csbj.2020.06.029] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 06/16/2020] [Accepted: 06/19/2020] [Indexed: 12/31/2022] Open
Abstract
Computationally driven engineering of proteins aims to allow them to withstand an extended range of conditions and to mediate modified or novel functions. Therefore, it is crucial to the biotechnological industry, to biomedicine and to afford new challenges in environmental sciences, such as biocatalysis for green chemistry and bioremediation. In order to achieve these goals, it is important to clarify molecular mechanisms underlying proteins stability and modulating their interactions. So far, much attention has been given to hydrophobic and polar packing interactions and stability of the protein core. In contrast, the role of electrostatics and, in particular, of surface interactions has received less attention. However, electrostatics plays a pivotal role along the whole life cycle of a protein, since early folding steps to maturation, and it is involved in the regulation of protein localization and interactions with other cellular or artificial molecules. Short- and long-range electrostatic interactions, together with other forces, provide essential guidance cues in molecular and macromolecular assembly. We report here on methods for computing protein electrostatics and for individual or comparative analysis able to sort proteins by electrostatic similarity. Then, we provide examples of electrostatic analysis and fingerprints in natural protein evolution and in biotechnological design, in fields as diverse as biocatalysis, antibody and nanobody engineering, drug design and delivery, molecular virology, nanotechnology and regenerative medicine.
Collapse
Affiliation(s)
- Filippo Vascon
- Synthetic Biology and Biotechnology Unit, Department of Biology, University of Padua, Italy
| | - Matteo Gasparotto
- Synthetic Biology and Biotechnology Unit, Department of Biology, University of Padua, Italy
| | - Marta Giacomello
- Bioenergetic Organelles Unit, Department of Biology, University of Padua, Italy
- Department of Biomedical Sciences, University of Padua, Italy
| | - Laura Cendron
- Synthetic Biology and Biotechnology Unit, Department of Biology, University of Padua, Italy
| | - Elisabetta Bergantino
- Synthetic Biology and Biotechnology Unit, Department of Biology, University of Padua, Italy
| | - Francesco Filippini
- Synthetic Biology and Biotechnology Unit, Department of Biology, University of Padua, Italy
| | - Irene Righetto
- Synthetic Biology and Biotechnology Unit, Department of Biology, University of Padua, Italy
| |
Collapse
|
33
|
Daberdaku S, Ferrari C. Antibody interface prediction with 3D Zernike descriptors and SVM. Bioinformatics 2020; 35:1870-1876. [PMID: 30395191 DOI: 10.1093/bioinformatics/bty918] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 09/21/2018] [Accepted: 11/01/2018] [Indexed: 12/23/2022] Open
Abstract
MOTIVATION Antibodies are a class of proteins capable of specifically recognizing and binding to a virtually infinite number of antigens. This binding malleability makes them the most valuable category of biopharmaceuticals for both diagnostic and therapeutic applications. The correct identification of the antigen-binding residues in the antibody is crucial for all antibody design and engineering techniques and could also help to understand the complex antigen binding mechanisms. However, the antibody-binding interface prediction field appears to be still rather underdeveloped. RESULTS We present a novel method for antibody interface prediction from their experimentally solved structures based on 3D Zernike Descriptors. Roto-translationally invariant descriptors are computed from circular patches of the antibody surface enriched with a chosen subset of physico-chemical properties from the AAindex1 amino acid index set, and are used as samples for a binary classification problem. An SVM classifier is used to distinguish interface surface patches from non-interface ones. The proposed method was shown to outperform other antigen-binding interface prediction software. AVAILABILITY AND IMPLEMENTATION Linux binaries and Python scripts are available at https://github.com/sebastiandaberdaku/AntibodyInterfacePrediction. The datasets generated and/or analyzed during the current study are available at https://doi.org/10.6084/m9.figshare.5442229. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Sebastian Daberdaku
- Department of Comparative Biomedicine and Food Science, University of Padova, Legnaro, Italy
| | - Carlo Ferrari
- Department of Information Engineering, University of Padova, Padova, Italy
| |
Collapse
|
34
|
Kuroda D, Tsumoto K. Engineering Stability, Viscosity, and Immunogenicity of Antibodies by Computational Design. J Pharm Sci 2020; 109:1631-1651. [DOI: 10.1016/j.xphs.2020.01.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 12/25/2019] [Accepted: 01/10/2020] [Indexed: 12/18/2022]
|
35
|
Stimple SD, Smith MD, Tessier PM. Directed evolution methods for overcoming trade-offs between protein activity and stability. AIChE J 2020; 66. [PMID: 32719568 DOI: 10.1002/aic.16814] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Engineered proteins are being widely developed and employed in applications ranging from enzyme catalysts to therapeutic antibodies. Directed evolution, an iterative experimental process composed of mutagenesis and library screening, is a powerful technique for enhancing existing protein activities and generating entirely new ones not observed in nature. However, the process of accumulating mutations for enhanced protein activity requires chemical and structural changes that are often destabilizing, and low protein stability is a significant barrier to achieving large enhancements in activity during multiple rounds of directed evolution. Here we highlight advances in understanding the origins of protein activity/stability trade-offs for two important classes of proteins (enzymes and antibodies) as well as innovative experimental and computational methods for overcoming such trade-offs. These advances hold great potential for improving the generation of highly active and stable proteins that are needed to address key challenges related to human health, energy and the environment.
Collapse
Affiliation(s)
- Samuel D. Stimple
- Department of Pharmaceutical Sciences Biointerfaces Institute, University of Michigan Ann Arbor Michigan
- Department of Chemical Engineering Biointerfaces Institute, University of Michigan Ann Arbor Michigan
| | - Matthew D. Smith
- Department of Chemical Engineering Biointerfaces Institute, University of Michigan Ann Arbor Michigan
| | - Peter M. Tessier
- Department of Pharmaceutical Sciences Biointerfaces Institute, University of Michigan Ann Arbor Michigan
- Department of Chemical Engineering Biointerfaces Institute, University of Michigan Ann Arbor Michigan
- Department of Biomedical Engineering Biointerfaces Institute, University of Michigan Ann Arbor Michigan
| |
Collapse
|
36
|
Akiba H, Tamura H, Caaveiro JMM, Tsumoto K. Computer-guided library generation applied to the optimization of single-domain antibodies. Protein Eng Des Sel 2019; 32:423-431. [PMID: 32167147 DOI: 10.1093/protein/gzaa006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 01/30/2020] [Accepted: 03/02/2020] [Indexed: 12/16/2022] Open
Abstract
Computer-guided library generation is a plausible strategy to optimize antibodies. Herein, we report the improvement of the affinity of a single-domain camelid antibody for its antigen using such approach. We first conducted experimental and computational alanine scanning to describe the precise energetic profile of the antibody-antigen interaction surface. Based on this characterization, we hypothesized that in-silico mutagenesis could be employed to guide the development of a small library for phage display with the goal of improving the affinity of an antibody for its antigen. Optimized antibody mutants were identified after three rounds of selection, in which an alanine residue at the core of the antibody-antigen interface was substituted by residues with large side-chains, generating diverse kinetic responses, and resulting in greater affinity (>10-fold) for the antigen.
Collapse
Affiliation(s)
- Hiroki Akiba
- Center for Drug Design Research, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito-Asagi, Ibaraki 567-0085, Japan.,Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Hiroko Tamura
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Jose M M Caaveiro
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.,Department of Global Healthcare, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Kouhei Tsumoto
- Center for Drug Design Research, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito-Asagi, Ibaraki 567-0085, Japan.,Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.,Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.,Medical Proteomics Laboratory, Institute of Medical Sciences, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8629, Japan
| |
Collapse
|
37
|
Chiu ML, Goulet DR, Teplyakov A, Gilliland GL. Antibody Structure and Function: The Basis for Engineering Therapeutics. Antibodies (Basel) 2019; 8:antib8040055. [PMID: 31816964 PMCID: PMC6963682 DOI: 10.3390/antib8040055] [Citation(s) in RCA: 258] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 11/25/2019] [Accepted: 11/28/2019] [Indexed: 12/11/2022] Open
Abstract
Antibodies and antibody-derived macromolecules have established themselves as the mainstay in protein-based therapeutic molecules (biologics). Our knowledge of the structure–function relationships of antibodies provides a platform for protein engineering that has been exploited to generate a wide range of biologics for a host of therapeutic indications. In this review, our basic understanding of the antibody structure is described along with how that knowledge has leveraged the engineering of antibody and antibody-related therapeutics having the appropriate antigen affinity, effector function, and biophysical properties. The platforms examined include the development of antibodies, antibody fragments, bispecific antibody, and antibody fusion products, whose efficacy and manufacturability can be improved via humanization, affinity modulation, and stability enhancement. We also review the design and selection of binding arms, and avidity modulation. Different strategies of preparing bispecific and multispecific molecules for an array of therapeutic applications are included.
Collapse
Affiliation(s)
- Mark L. Chiu
- Drug Product Development Science, Janssen Research & Development, LLC, Malvern, PA 19355, USA
- Correspondence:
| | - Dennis R. Goulet
- Department of Medicinal Chemistry, University of Washington, P.O. Box 357610, Seattle, WA 98195-7610, USA;
| | - Alexey Teplyakov
- Biologics Research, Janssen Research & Development, LLC, Spring House, PA 19477, USA; (A.T.); (G.L.G.)
| | - Gary L. Gilliland
- Biologics Research, Janssen Research & Development, LLC, Spring House, PA 19477, USA; (A.T.); (G.L.G.)
| |
Collapse
|
38
|
Structural and thermodynamic basis for the recognition of the substrate-binding cleft on hen egg lysozyme by a single-domain antibody. Sci Rep 2019; 9:15481. [PMID: 31664051 PMCID: PMC6820745 DOI: 10.1038/s41598-019-50722-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 09/10/2019] [Indexed: 01/06/2023] Open
Abstract
Single-domain antibodies (VHHs or nanobodies), developed from heavy chain-only antibodies of camelids, are gaining attention as next-generation therapeutic agents. Despite their small size, the high affinity and specificity displayed by VHHs for antigen molecules rival those of IgGs. How such small antibodies achieve that level of performance? Structural studies have revealed that VHHs tend to recognize concave surfaces of their antigens with high shape-complementarity. However, the energetic contribution of individual residues located at the binding interface has not been addressed in detail, obscuring the actual mechanism by which VHHs target the concave surfaces of proteins. Herein, we show that a VHH specific for hen egg lysozyme, D3-L11, not only displayed the characteristic binding of VHHs to a concave region of the surface of the antigen, but also exhibited a distribution of energetic hot-spots like those of IgGs and conventional protein-protein complexes. The highly preorganized and energetically compact interface of D3-L11 recognizes the concave epitope with high shape complementarity by the classical lock-and-key mechanism. Our results shed light on the fundamental basis by which a particular VHH accommodate to the concave surface of an antigens with high affinity in a specific manner, enriching the mechanistic landscape of VHHs.
Collapse
|
39
|
Jorgolli M, Nevill T, Winters A, Chen I, Chong S, Lin F, Mock M, Chen C, Le K, Tan C, Jess P, Xu H, Hamburger A, Stevens J, Munro T, Wu M, Tagari P, Miranda LP. Nanoscale integration of single cell biologics discovery processes using optofluidic manipulation and monitoring. Biotechnol Bioeng 2019; 116:2393-2411. [PMID: 31112285 PMCID: PMC6771990 DOI: 10.1002/bit.27024] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 05/16/2019] [Accepted: 05/16/2019] [Indexed: 12/12/2022]
Abstract
The new and rapid advancement in the complexity of biologics drug discovery has been driven by a deeper understanding of biological systems combined with innovative new therapeutic modalities, paving the way to breakthrough therapies for previously intractable diseases. These exciting times in biomedical innovation require the development of novel technologies to facilitate the sophisticated, multifaceted, high-paced workflows necessary to support modern large molecule drug discovery. A high-level aspiration is a true integration of "lab-on-a-chip" methods that vastly miniaturize cellulmical experiments could transform the speed, cost, and success of multiple workstreams in biologics development. Several microscale bioprocess technologies have been established that incrementally address these needs, yet each is inflexibly designed for a very specific process thus limiting an integrated holistic application. A more fully integrated nanoscale approach that incorporates manipulation, culture, analytics, and traceable digital record keeping of thousands of single cells in a relevant nanoenvironment would be a transformative technology capable of keeping pace with today's rapid and complex drug discovery demands. The recent advent of optical manipulation of cells using light-induced electrokinetics with micro- and nanoscale cell culture is poised to revolutionize both fundamental and applied biological research. In this review, we summarize the current state of the art for optical manipulation techniques and discuss emerging biological applications of this technology. In particular, we focus on promising prospects for drug discovery workflows, including antibody discovery, bioassay development, antibody engineering, and cell line development, which are enabled by the automation and industrialization of an integrated optoelectronic single-cell manipulation and culture platform. Continued development of such platforms will be well positioned to overcome many of the challenges currently associated with fragmented, low-throughput bioprocess workflows in biopharma and life science research.
Collapse
Affiliation(s)
| | - Tanner Nevill
- Product ApplicationsBerkeley Lights, IncEmeryvilleCalifornia
| | - Aaron Winters
- Amgen ResearchOne Amgen Center DriveThousand OaksCalifornia
| | - Irwin Chen
- Amgen ResearchOne Amgen Center DriveThousand OaksCalifornia
| | - Su Chong
- Amgen ResearchOne Amgen Center DriveThousand OaksCalifornia
| | - Fen‐Fen Lin
- Amgen ResearchOne Amgen Center DriveThousand OaksCalifornia
| | - Marissa Mock
- Amgen ResearchOne Amgen Center DriveThousand OaksCalifornia
| | - Ching Chen
- Amgen ResearchOne Amgen Center DriveThousand OaksCalifornia
| | - Kim Le
- Drug Substance Technologies, One Amgen Center DriveThousand OaksCalifornia
| | - Christopher Tan
- Drug Substance Technologies, One Amgen Center DriveThousand OaksCalifornia
| | - Philip Jess
- Product ApplicationsBerkeley Lights, IncEmeryvilleCalifornia
| | - Han Xu
- Drug DiscoveryA2 BiotherapeuticsWestlake VillageCalifornia
| | - Agi Hamburger
- Drug DiscoveryA2 BiotherapeuticsWestlake VillageCalifornia
| | - Jennitte Stevens
- Drug Substance Technologies, One Amgen Center DriveThousand OaksCalifornia
| | - Trent Munro
- Drug Substance Technologies, One Amgen Center DriveThousand OaksCalifornia
| | - Ming Wu
- Department of Electrical Engineering and Computer SciencesUniversity of California at BerkeleyBerkeleyCalifornia
| | - Philip Tagari
- Amgen ResearchOne Amgen Center DriveThousand OaksCalifornia
| | - Les P. Miranda
- Amgen ResearchOne Amgen Center DriveThousand OaksCalifornia
| |
Collapse
|
40
|
Homology Modeling-Based in Silico Affinity Maturation Improves the Affinity of a Nanobody. Int J Mol Sci 2019; 20:ijms20174187. [PMID: 31461846 PMCID: PMC6747709 DOI: 10.3390/ijms20174187] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/21/2019] [Accepted: 08/22/2019] [Indexed: 01/08/2023] Open
Abstract
Affinity maturation and rational design have a raised importance in the application of nanobody (VHH), and its unique structure guaranteed these processes quickly done in vitro. An anti-CD47 nanobody, Nb02, was screened via a synthetic phage display library with 278 nM of KD value. In this study, a new strategy based on homology modeling and Rational Mutation Hotspots Design Protocol (RMHDP) was presented for building a fast and efficient platform for nanobody affinity maturation. A three-dimensional analytical structural model of Nb02 was constructed and then docked with the antigen, the CD47 extracellular domain (CD47ext). Mutants with high binding affinity are predicted by the scoring of nanobody-antigen complexes based on molecular dynamics trajectories and simulation. Ultimately, an improved mutant with an 87.4-fold affinity (3.2 nM) and 7.36 °C higher thermal stability was obtained. These findings might contribute to computational affinity maturation of nanobodies via homology modeling using the recent advancements in computational power. The add-in of aromatic residues which formed aromatic-aromatic interaction plays a pivotal role in affinity and thermostability improvement. In a word, the methods used in this study might provide a reference for rapid and efficient in vitro affinity maturation of nanobodies.
Collapse
|
41
|
Tadokoro T, Jahan ML, Ito Y, Tahara M, Chen S, Imai A, Sugimura N, Yoshida K, Saito M, Ose T, Hashiguchi T, Takeda M, Fukuhara H, Maenaka K. Biophysical characterization and single-chain Fv construction of a neutralizing antibody to measles virus. FEBS J 2019; 287:145-159. [PMID: 31287622 DOI: 10.1111/febs.14991] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 05/01/2019] [Accepted: 07/06/2019] [Indexed: 12/22/2022]
Abstract
The measles virus (MV) is a major cause of childhood morbidity and mortality worldwide. We previously established a mouse monoclonal antibody, 2F4, which shows high neutralizing titers against eight different genotypes of MV. However, the molecular basis for the neutralizing activity of the 2F4 antibody remains incompletely understood. Here, we have evaluated the binding characteristics of a Fab fragment of the 2F4 antibody. Using the MV infectious assay, we demonstrated that 2F4 Fab inhibits viral entry via either of two cellular receptors, SLAM and Nectin4. Surface plasmon resonance (SPR) analysis of recombinant proteins indicated that 2F4 Fab interacts with MV hemagglutinin (MV-H) with a KD value at the nm level. Furthermore, we designed a single-chain Fv fragment of 2F4 antibody as another potential biopharmaceutical to target measles. The stable 2F4 scFv was successfully prepared by the refolding method and shown to interact with MV-H at the μm level. Like 2F4 Fab, scFv inhibited receptor binding and viral entry. This indicates that 2F4 mAb uses the receptor-binding site and/or a neighboring region as an epitope with high affinity. These results provide insight into the neutralizing activity and potential therapeutic use of antibody fragments for MV infection.
Collapse
Affiliation(s)
- Takashi Tadokoro
- Faculty of Pharmaceutical Science, Hokkaido University, Sapporo, Japan
| | - Mst Lubna Jahan
- Faculty of Pharmaceutical Science, Hokkaido University, Sapporo, Japan
| | - Yuri Ito
- Faculty of Pharmaceutical Science, Hokkaido University, Sapporo, Japan
| | - Maino Tahara
- Department of Virology 3, National Institute of Infectious Diseases, Tokyo, Japan
| | - Surui Chen
- Faculty of Pharmaceutical Science, Hokkaido University, Sapporo, Japan
| | - Atsutoshi Imai
- Faculty of Pharmaceutical Science, Hokkaido University, Sapporo, Japan
| | - Natsumi Sugimura
- Faculty of Pharmaceutical Science, Hokkaido University, Sapporo, Japan
| | - Koki Yoshida
- Faculty of Pharmaceutical Science, Hokkaido University, Sapporo, Japan
| | - Mizuki Saito
- Faculty of Pharmaceutical Science, Hokkaido University, Sapporo, Japan
| | - Toyoyuki Ose
- Faculty of Pharmaceutical Science, Hokkaido University, Sapporo, Japan
| | - Takao Hashiguchi
- Department of Virology, Faculty of Medicine, Kyushu University, Fukuoka, Japan
| | - Makoto Takeda
- Department of Virology 3, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hideo Fukuhara
- Faculty of Pharmaceutical Science, Hokkaido University, Sapporo, Japan
| | - Katsumi Maenaka
- Faculty of Pharmaceutical Science, Hokkaido University, Sapporo, Japan
| |
Collapse
|
42
|
Tabasinezhad M, Talebkhan Y, Wenzel W, Rahimi H, Omidinia E, Mahboudi F. Trends in therapeutic antibody affinity maturation: From in-vitro towards next-generation sequencing approaches. Immunol Lett 2019; 212:106-113. [PMID: 31247224 DOI: 10.1016/j.imlet.2019.06.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 06/08/2019] [Accepted: 06/24/2019] [Indexed: 12/12/2022]
Abstract
Current advances in antibody engineering driving the strongest growth area in biotherapeutic agents development. Affinity improvement that is mainly important for biological activity and clinical efficacy of therapeutic antibodies, has still remained a challenging task. In the human body, during a course of immune response affinity maturation increase antibody activity by several rounds of somatic hypermutation and clonal selection in the germinal center. The final outputs are antibodies representing higher affinity and specificity against a particular antigen. In the realm of biotechnology, exploring of mutations which improve antibody affinity while preserving its specificity and stability is an extremely time-consuming and laborious process. Recent advances in computational algorithms and DNA sequencing technologies help researchers to redesign antibody structure to achieve desired properties such as improved binding affinity. In this review, we briefly described the principle of affinity maturation and different corresponding in vitro techniques. Also, we recapitulated the most recent advancements in the field of antibody affinity maturation including computational approaches and next-generation sequencing (NGS).
Collapse
Affiliation(s)
- Maryam Tabasinezhad
- Biotechnology Research Centre, Pasteur Institute of Iran, Tehran, Iran; Institute of Nanotechnology, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Yeganeh Talebkhan
- Biotechnology Research Centre, Pasteur Institute of Iran, Tehran, Iran
| | - Wolfgang Wenzel
- Institute of Nanotechnology, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Hamzeh Rahimi
- Molecular Medicine Department, Pasteur Institute of Iran, Tehran, Iran
| | - Eskandar Omidinia
- Genetics & Metabolism Research Centre, Pasteur Institute of Iran, Tehran, Iran.
| | | |
Collapse
|
43
|
Cannon DA, Shan L, Du Q, Shirinian L, Rickert KW, Rosenthal KL, Korade M, van Vlerken-Ysla LE, Buchanan A, Vaughan TJ, Damschroder MM, Popovic B. Experimentally guided computational antibody affinity maturation with de novo docking, modelling and rational design. PLoS Comput Biol 2019; 15:e1006980. [PMID: 31042706 PMCID: PMC6513101 DOI: 10.1371/journal.pcbi.1006980] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 05/13/2019] [Accepted: 03/27/2019] [Indexed: 01/05/2023] Open
Abstract
Antibodies are an important class of therapeutics that have significant clinical impact for the treatment of severe diseases. Computational tools to support antibody drug discovery have been developing at an increasing rate over the last decade and typically rely upon a predetermined co-crystal structure of the antibody bound to the antigen for structural predictions. Here, we show an example of successful in silico affinity maturation of a hybridoma derived antibody, AB1, using just a homology model of the antibody fragment variable region and a protein-protein docking model of the AB1 antibody bound to the antigen, murine CCL20 (muCCL20). In silico affinity maturation, together with alanine scanning, has allowed us to fine-tune the protein-protein docking model to subsequently enable the identification of two single-point mutations that increase the affinity of AB1 for muCCL20. To our knowledge, this is one of the first examples of the use of homology modelling and protein docking for affinity maturation and represents an approach that can be widely deployed.
Collapse
Affiliation(s)
- Daniel A. Cannon
- Department of Antibody Discovery and Protein Engineering, AstraZeneca, Cambridge, United Kingdom
| | - Lu Shan
- Department of Antibody Discovery and Protein Engineering, AstraZeneca, Gaithersburg, Maryland, United States of America
| | - Qun Du
- Department of Antibody Discovery and Protein Engineering, AstraZeneca, Gaithersburg, Maryland, United States of America
| | - Lena Shirinian
- Department of Antibody Discovery and Protein Engineering, AstraZeneca, Gaithersburg, Maryland, United States of America
| | - Keith W. Rickert
- Department of Antibody Discovery and Protein Engineering, AstraZeneca, Gaithersburg, Maryland, United States of America
| | - Kim L. Rosenthal
- Department of Antibody Discovery and Protein Engineering, AstraZeneca, Gaithersburg, Maryland, United States of America
| | - Martin Korade
- Department of Oncology Research, AstraZeneca, Gaithersburg, Maryland, United States of America
| | | | - Andrew Buchanan
- Department of Antibody Discovery and Protein Engineering, AstraZeneca, Cambridge, United Kingdom
| | - Tristan J. Vaughan
- Department of Antibody Discovery and Protein Engineering, AstraZeneca, Cambridge, United Kingdom
| | - Melissa M. Damschroder
- Department of Antibody Discovery and Protein Engineering, AstraZeneca, Gaithersburg, Maryland, United States of America
| | - Bojana Popovic
- Department of Antibody Discovery and Protein Engineering, AstraZeneca, Cambridge, United Kingdom
- * E-mail:
| |
Collapse
|
44
|
Arlotta KJ, Owen SC. Antibody and antibody derivatives as cancer therapeutics. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2019; 11:e1556. [DOI: 10.1002/wnan.1556] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 02/20/2019] [Accepted: 03/10/2019] [Indexed: 12/20/2022]
Affiliation(s)
- Keith J. Arlotta
- Department of Biomedical Engineering University of Utah Salt Lake City Utah
| | - Shawn C. Owen
- Department of Biomedical Engineering University of Utah Salt Lake City Utah
- Department of Pharmaceutics and Pharmaceutical Chemistry University of Utah Salt Lake City Utah
| |
Collapse
|
45
|
Structure-guided design fine-tunes pharmacokinetics, tolerability, and antitumor profile of multispecific frizzled antibodies. Proc Natl Acad Sci U S A 2019; 116:6812-6817. [PMID: 30894493 DOI: 10.1073/pnas.1817246116] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Aberrant activation of Wnt/β-catenin signaling occurs frequently in cancer. However, therapeutic targeting of this pathway is complicated by the role of Wnt in stem cell maintenance and tissue homeostasis. Here, we evaluated antibodies blocking 6 of the 10 human Wnt/Frizzled (FZD) receptors as potential therapeutics. Crystal structures revealed a common binding site for these monoclonal antibodies (mAbs) on FZD, blocking the interaction with the Wnt palmitoleic acid moiety. However, these mAbs displayed gastrointestinal toxicity or poor plasma exposure in vivo. Structure-guided engineering was used to refine the binding of each mAb for FZD receptors, resulting in antibody variants with improved in vivo tolerability and developability. Importantly, the lead variant mAb significantly inhibited tumor growth in the HPAF-II pancreatic tumor xenograft model. Taken together, our data demonstrate that anti-FZD cancer therapeutic antibodies with broad specificity can be fine-tuned to navigate in vivo exposure and tolerability while driving therapeutic efficacy.
Collapse
|
46
|
Exploring designability of electrostatic complementarity at an antigen-antibody interface directed by mutagenesis, biophysical analysis, and molecular dynamics simulations. Sci Rep 2019; 9:4482. [PMID: 30872635 PMCID: PMC6418251 DOI: 10.1038/s41598-019-40461-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 02/08/2019] [Indexed: 12/05/2022] Open
Abstract
Antibodies protect organisms from a huge variety of foreign antigens. Antibody diversity originates from both genetic and structural levels. Antigen recognition relies on complementarity between antigen-antibody interfaces. Recent methodological advances in structural biology and the accompanying rapid increase of the number of crystal structures of proteins have enabled atomic-level manipulation of protein structures to effect alterations in function. In this study, we explored the designability of electrostatic complementarity at an antigen-antibody interface on the basis of a crystal structure of the complex. We designed several variants with altered charged residues at the interface and characterized the designed variants by surface plasmon resonance, circular dichroism, differential scanning calorimetry, and molecular dynamics simulations. Both successes and failures of the structure-based design are discussed. The variants that compensate electrostatic interactions can restore the interface complementarity, enabling the cognate antigen-antibody binding. Retrospectively, we also show that these mutational effects could be predicted by the simulations. Our study demonstrates the importance of charged residues on the physical properties of this antigen-antibody interaction and suggests that computational approaches can facilitate design of antibodies that recognize a weakly immunogenic antigen.
Collapse
|
47
|
Phage Display Libraries: From Binders to Targeted Drug Delivery and Human Therapeutics. Mol Biotechnol 2019; 61:286-303. [DOI: 10.1007/s12033-019-00156-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
48
|
Soong JX, Chan SK, Lim TS, Choong YS. Optimisation of human V H domain antibodies specific to Mycobacterium tuberculosis heat shock protein (HSP16.3). J Comput Aided Mol Des 2019; 33:375-385. [PMID: 30689080 DOI: 10.1007/s10822-019-00186-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 01/22/2019] [Indexed: 11/29/2022]
Abstract
Mycobacterium tuberculosis (Mtb) 16.3 kDa heat shock protein 16.3 (HSP16.3) is a latency-associated antigen that can be targeted for latent tuberculosis (TB) diagnostic and therapeutic development. We have previously developed human VH domain antibodies (dAbs; clone E3 and F1) specific against HSP16.3. In this work, we applied computational methods to optimise and design the antibodies in order to improve the binding affinity with HSP16.3. The VH domain antibodies were first docked to the dimer form of HSP16.3 and further sampled using molecular dynamics simulation. The calculated binding free energy of the HSP16.3-dAb complexes showed non-polar interactions were responsible for the antigen-antibody association. Per-residue free energy decomposition and computational alanine scanning have identified one hotspot residue for E3 (Y391) and 4 hotspot residues for F1 (M394, Y396, R397 and M398). These hotspot residues were then mutated and evaluated by binding free energy calculations. Phage ELISA assay was carried out on the potential mutants (E3Y391W, F1M394E, F1R397N and F1M398Y). The experimental assay showed improved binding affinities of E3Y391W and F1M394E against HSP16.3 compared with the wild type E3 and F1. This case study has thus showed in silico methods are able to assist in optimisation or improvement of antibody-antigen binding.
Collapse
Affiliation(s)
- Jia Xin Soong
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Minden, 11800, Penang, Malaysia
| | - Soo Khim Chan
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Minden, 11800, Penang, Malaysia
| | - Theam Soon Lim
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Minden, 11800, Penang, Malaysia.,Analytical Biochemistry Research Centre, Universiti Sains Malaysia, Minden, 11800, Penang, Malaysia
| | - Yee Siew Choong
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Minden, 11800, Penang, Malaysia.
| |
Collapse
|
49
|
Ebrahimi Z, Asgari S, Ahangari Cohan R, Hosseinzadeh R, Hosseinzadeh G, Arezumand R. Rational affinity enhancement of fragmented antibody by ligand-based affinity improvement approach. Biochem Biophys Res Commun 2018; 506:653-659. [DOI: 10.1016/j.bbrc.2018.10.127] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Accepted: 10/21/2018] [Indexed: 11/28/2022]
|
50
|
Zhao J, Nussinov R, Wu WJ, Ma B. In Silico Methods in Antibody Design. Antibodies (Basel) 2018; 7:E22. [PMID: 31544874 PMCID: PMC6640671 DOI: 10.3390/antib7030022] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 06/28/2018] [Accepted: 06/28/2018] [Indexed: 01/10/2023] Open
Abstract
Antibody therapies with high efficiency and low toxicity are becoming one of the major approaches in antibody therapeutics. Based on high-throughput sequencing and increasing experimental structures of antibodies/antibody-antigen complexes, computational approaches can predict antibody/antigen structures, engineering the function of antibodies and design antibody-antigen complexes with improved properties. This review summarizes recent progress in the field of in silico design of antibodies, including antibody structure modeling, antibody-antigen complex prediction, antibody stability evaluation, and allosteric effects in antibodies and functions. We listed the cases in which these methods have helped experimental studies to improve the affinities and physicochemical properties of antibodies. We emphasized how the molecular dynamics unveiled the allosteric effects during antibody-antigen recognition and antibody-effector recognition.
Collapse
Affiliation(s)
- Jun Zhao
- Division of Biotechnology Review and Research I, Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, US Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993, USA.
- Interagency Oncology Task Force (IOTF) Fellowship: Oncology Product Research/Review Fellow, National Cancer Institute, Bethesda, MD 20892, USA.
- Cancer and Inflammation Program, National Cancer Institute, Frederick, MD 21702, USA.
| | - Ruth Nussinov
- Basic Science Program, Leidos Biomedical Research, Inc. Cancer and Inflammation Program, National Cancer Institute, Frederick, MD 21702, USA.
- Sackler Inst. of Molecular Medicine, Department of Human Genetics and Molecular Medicine, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel.
| | - Wen-Jin Wu
- Division of Biotechnology Review and Research I, Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, US Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993, USA.
| | - Buyong Ma
- Basic Science Program, Leidos Biomedical Research, Inc. Cancer and Inflammation Program, National Cancer Institute, Frederick, MD 21702, USA.
| |
Collapse
|