1
|
Cooper LN, Ansari MY, Capshaw G, Galazyuk A, Lauer AM, Moss CF, Sears KE, Stewart M, Teeling EC, Wilkinson GS, Wilson RC, Zwaka TP, Orman R. Bats as instructive animal models for studying longevity and aging. Ann N Y Acad Sci 2024. [PMID: 39365995 DOI: 10.1111/nyas.15233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2024]
Abstract
Bats (order Chiroptera) are emerging as instructive animal models for aging studies. Unlike some common laboratory species, they meet a central criterion for aging studies: they live for a long time in the wild or in captivity, for 20, 30, and even >40 years. Healthy aging (i.e., healthspan) in bats has drawn attention to their potential to improve the lives of aging humans due to bat imperviousness to viral infections, apparent low rate of tumorigenesis, and unique ability to repair DNA. At the same time, bat longevity also permits the accumulation of age-associated systemic pathologies that can be examined in detail and manipulated, especially in captive animals. Research has uncovered additional and critical advantages of bats. In multiple ways, bats are better analogs to humans than are rodents. In this review, we highlight eight diverse areas of bat research with relevance to aging: genome sequencing, telomeres, and DNA repair; immunity and inflammation; hearing; menstruation and menopause; skeletal system and fragility; neurobiology and neurodegeneration; stem cells; and senescence and mortality. These examples demonstrate the broad relevance of the bat as an animal model and point to directions that are particularly important for human aging studies.
Collapse
Affiliation(s)
- Lisa Noelle Cooper
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, Ohio, USA
| | - Mohammad Y Ansari
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, Ohio, USA
| | - Grace Capshaw
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, Maryland, USA
| | - Alex Galazyuk
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, Ohio, USA
| | - Amanda M Lauer
- Department of Otolaryngology - HNS, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Cynthia F Moss
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, Maryland, USA
| | - Karen E Sears
- Department of Ecology and Evolutionary Biology, Department of Molecular, Cellular, and Developmental Biology, University of California Los Angeles, Los Angeles, California, USA
| | - Mark Stewart
- Department of Physiology & Pharmacology, SUNY Downstate Health Sciences University, Brooklyn, New York, USA
| | - Emma C Teeling
- School of Biology and Environmental Science, Science Centre East, University College Dublin, Dublin, Ireland
| | - Gerald S Wilkinson
- Department of Biology, University of Maryland at College Park, College Park, Maryland, USA
| | - Rachel C Wilson
- Department of Biology, Whitman College, Walla Walla, Washington, USA
| | - Thomas P Zwaka
- Black Family Stem Cell Institute, Huffington Center for Cell-based Research in Parkinson's Disease, Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Rena Orman
- Department of Physiology & Pharmacology, SUNY Downstate Health Sciences University, Brooklyn, New York, USA
| |
Collapse
|
2
|
Richdon S, Menchaca Rodriguez A, Price E, Wormell D, McCabe G, Jones G. Thirty years of conservation breeding: Assessing the genetic diversity of captive Livingstone's fruit bats. Zoo Biol 2024; 43:395-404. [PMID: 38837463 DOI: 10.1002/zoo.21845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/18/2024] [Accepted: 05/21/2024] [Indexed: 06/07/2024]
Abstract
Fruit bats (genus Pteropus) are typically island-endemic species important in seed dispersal and reforestation that are vulnerable to increased extinction risk. An effective method of reducing extinction risk in vulnerable species that cannot be conserved in their native habitat is establishing an ex-situ captive breeding programme. Due to anthropogenic threats and low population numbers, in the early 1990s, a captive breeding programme was established at Jersey Zoo, British Isles, for Critically Endangered Livingstone's fruit bats (Pteropus livingstonii). Here we use six polymorphic microsatellite loci to assess genetic diversity in the captive breeding population of Livingstone's fruit bats (P. livingstonii), 30 years after the programme's establishment, investigating change over generations and comparing our findings with published data from the wild population. We found no significant difference between the genetic diversity in the captive and wild populations of Livingstone's fruit bats (P. livingstonii), in both expected heterozygosity and allelic richness. The captive population has retained a comparable level of genetic diversity to that documented in the wild, and there has been no significant decline in genetic diversity over the last 30 years. We advise that a full pedigree of the paternal lineage is created to improve the management of the captive breeding programme and further reduce the possibility of inbreeding. However, it appears that the captive breeding programme is currently effective at maintaining genetic diversity at levels comparable to those seen in the wild population, which suggests reintroductions could be viable if genetic diversity remains stable in captivity.
Collapse
Affiliation(s)
- Sarah Richdon
- School of Biological Sciences, University of Bristol, Bristol, UK
- Bristol Zoological Society, Clifton, Bristol, UK
| | | | - Eluned Price
- Durrell Wildlife Conservation Trust, La Profonde Rue, Jersey, UK
| | - Dominic Wormell
- Durrell Wildlife Conservation Trust, La Profonde Rue, Jersey, UK
| | | | - Gareth Jones
- School of Biological Sciences, University of Bristol, Bristol, UK
| |
Collapse
|
3
|
Pekar JE, Lytras S, Ghafari M, Magee AF, Parker E, Havens JL, Katzourakis A, Vasylyeva TI, Suchard MA, Hughes AC, Hughes J, Robertson DL, Dellicour S, Worobey M, Wertheim JO, Lemey P. The recency and geographical origins of the bat viruses ancestral to SARS-CoV and SARS-CoV-2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.12.548617. [PMID: 37502985 PMCID: PMC10369958 DOI: 10.1101/2023.07.12.548617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
The emergence of SARS-CoV in 2002 and SARS-CoV-2 in 2019 has led to increased sampling of related sarbecoviruses circulating primarily in horseshoe bats. These viruses undergo frequent recombination and exhibit spatial structuring across Asia. Employing recombination-aware phylogenetic inference on bat sarbecoviruses, we find that the closest-inferred bat virus ancestors of SARS-CoV and SARS-CoV-2 existed just ~1-3 years prior to their emergence in humans. Phylogeographic analyses examining the movement of related sarbecoviruses demonstrate that they traveled at similar rates to their horseshoe bat hosts and have been circulating for thousands of years in Asia. The closest-inferred bat virus ancestor of SARS-CoV likely circulated in western China, and that of SARS-CoV-2 likely circulated in a region comprising southwest China and northern Laos, both a substantial distance from where they emerged. This distance and recency indicate that the direct ancestors of SARS-CoV and SARS-CoV-2 could not have reached their respective sites of emergence via the bat reservoir alone. Our recombination-aware dating and phylogeographic analyses reveal a more accurate inference of evolutionary history than performing only whole-genome or single gene analyses. These results can guide future sampling efforts and demonstrate that viral genomic fragments extremely closely related to SARS-CoV and SARS-CoV-2 were circulating in horseshoe bats, confirming their importance as the reservoir species for SARS viruses.
Collapse
Affiliation(s)
- Jonathan E Pekar
- Bioinformatics and Systems Biology Graduate Program, University of California San Diego, La Jolla, CA 92093, USA
- Department of Biomedical Informatics, University of California San Diego, La Jolla, CA 92093, USA
- These authors contributed equally
| | - Spyros Lytras
- Medical Research Council-University of Glasgow Centre for Virus Research, Glasgow, UK
- These authors contributed equally
| | - Mahan Ghafari
- Department of Biology, University of Oxford, Oxford, UK
| | - Andrew F Magee
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Edyth Parker
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jennifer L Havens
- Bioinformatics and Systems Biology Graduate Program, University of California San Diego, La Jolla, CA 92093, USA
| | | | - Tetyana I Vasylyeva
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Marc A Suchard
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Biostatistics, Fielding School of Public Health, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Computational Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Alice C Hughes
- School of Biological Sciences, University of Hong Kong, Hong Kong
- China Biodiversity Green Development Foundation, Beijing, China
| | - Joseph Hughes
- Medical Research Council-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - David L Robertson
- Medical Research Council-University of Glasgow Centre for Virus Research, Glasgow, UK
- These authors jointly supervised the work
| | - Simon Dellicour
- Spatial Epidemiology Lab (SpELL), Université Libre de Bruxelles, CP160/12, 50 av. FD Roosevelt, 1050, Bruxelles, Belgium
- Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory for Clinical and Epidemiological Virology, KU Leuven, Leuven, Belgium
- These authors jointly supervised the work
| | - Michael Worobey
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA
- These authors jointly supervised the work
| | - Joel O Wertheim
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
- These authors jointly supervised the work
| | - Philippe Lemey
- Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory for Clinical and Epidemiological Virology, KU Leuven, Leuven, Belgium
- These authors jointly supervised the work
| |
Collapse
|
4
|
Fan B, Wang Y, Huang X, Zhang X, Yang J, Jiang T. The Potential to Encode Detailed Information About Parasites in the Acoustic Signals of Chinese Horseshoe Bats (Rhinolophus sinicus). Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.908209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Condition-dependent acoustic signals that potentially reveal information about the signaler’s physical or physiological condition are common and important in the animal kingdom. Given the negative effects of parasites on the health and fitness of their hosts, it is reasonable to expect animal acoustic signals to reflect detailed information concerning parasite infection. However, despite previous studies having verified the potential of sexually selected vocalizations to provide information on parasitism based on the correlations between call acoustic properties and parasitism in some animal taxa, less is known about whether acoustic signals used in a non-sexual context also reflect parasite infection especially for highly vocal bats. We thus investigated the relationships between the acoustic properties of distress calls and echolocation pulses and the infestation intensity of gamasid mites and bat flies in Chinese horseshoe bats (Rhinolophus sinicus) to determine whether acoustic signals potentially contain information about parasite infection. We found that bats infected with more gamasid mites uttered significantly shorter echolocation pulses, suggesting that echolocation pulses may contain information on the intensity of mite infection. Additionally, bats infected with more gamasid mites emitted distress calls with narrower bandwidth, while bats with more bat flies emitted calls with longer pause duration. These results suggest that distress calls may not only reflect a signaler’s parasite infection intensity but also may provide information concerning infection with specific parasites. In short, our findings suggest that acoustic signals of bats potentially reflect detailed information about parasite infection.
Collapse
|
5
|
Kerth G. Long-term field studies in bat research: importance for basic and applied research questions in animal behavior. Behav Ecol Sociobiol 2022; 76:75. [PMID: 35669868 PMCID: PMC9135593 DOI: 10.1007/s00265-022-03180-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 05/06/2022] [Accepted: 05/11/2022] [Indexed: 11/26/2022]
Abstract
Animal species differ considerably in longevity. Among mammals, short-lived species such as shrews have a maximum lifespan of about a year, whereas long-lived species such as whales can live for more than two centuries. Because of their slow pace of life, long-lived species are typically of high conservation concern and of special scientific interest. This applies not only to large mammals such as whales, but also to small-sized bats and mole-rats. To understand the typically complex social behavior of long-lived mammals and protect their threatened populations, field studies that cover substantial parts of a species' maximum lifespan are required. However, long-term field studies on mammals are an exception because the collection of individualized data requires considerable resources over long time periods in species where individuals can live for decades. Field studies that span decades do not fit well in the current career and funding regime in science. This is unfortunate, as the existing long-term studies on mammals yielded exciting insights into animal behavior and contributed data important for protecting their populations. Here, I present results of long-term field studies on the behavior, demography, and life history of bats, with a particular focus on my long-term studies on wild Bechstein's bats. I show that long-term studies on individually marked populations are invaluable to understand the social system of bats, investigate the causes and consequences of their extraordinary longevity, and assess their responses to changing environments with the aim to efficiently protect these unique mammals in the face of anthropogenic global change.
Collapse
Affiliation(s)
- Gerald Kerth
- Zoological Institute and Museum, Applied Zoology and Nature Conservation, University of Greifswald, Greifswald, Germany
| |
Collapse
|
6
|
Mundinger C, Scheuerlein A, Kerth G. Long-term study shows that increasing body size in response to warmer summers is associated with a higher mortality risk in a long-lived bat species. Proc Biol Sci 2021; 288:20210508. [PMID: 34074120 PMCID: PMC8170209 DOI: 10.1098/rspb.2021.0508] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 05/10/2021] [Indexed: 12/27/2022] Open
Abstract
Change in body size is one of the universal responses to global warming, with most species becoming smaller. While small size in most species corresponds to low individual fitness, small species typically show high population growth rates in cross-species comparisons. It is unclear, therefore, how climate-induced changes in body size ultimately affect population persistence. Unravelling the relationship between body size, ambient temperature and individual survival is especially important for the conservation of endangered long-lived mammals such as bats. Using an individual-based 24-year dataset from four free-ranging Bechstein's bat colonies (Myotis bechsteinii), we show for the first time a link between warmer summer temperatures, larger body sizes and increased mortality risk. Our data reveal a crucial time window in June-July, when juveniles grow to larger body sizes in warmer conditions. Body size is also affected by colony size, with larger colonies raising larger offspring. At the same time, larger bats have higher mortality risks throughout their lives. Our results highlight the importance of understanding the link between warmer weather and body size as a fitness-relevant trait for predicting species-specific extinction risks as consequences of global warming.
Collapse
Affiliation(s)
- Carolin Mundinger
- Applied Zoology and Nature Conservation, Zoological Institute and Museum, University of Greifswald, Greifswald, Germany
| | - Alexander Scheuerlein
- Applied Zoology and Nature Conservation, Zoological Institute and Museum, University of Greifswald, Greifswald, Germany
| | - Gerald Kerth
- Applied Zoology and Nature Conservation, Zoological Institute and Museum, University of Greifswald, Greifswald, Germany
| |
Collapse
|
7
|
Culina A, Linton DM, Pradel R, Bouwhuis S, Macdonald DW. Live fast, don't die young: Survival-reproduction trade-offs in long-lived income breeders. J Anim Ecol 2019; 88:746-756. [PMID: 30737781 PMCID: PMC6850603 DOI: 10.1111/1365-2656.12957] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 01/04/2019] [Indexed: 11/30/2022]
Abstract
Trade-offs between survival and reproduction are at the core of life-history theory, and essential to understanding the evolution of reproductive tactics as well as population dynamics and stability. Factors influencing these trade-offs are multiple and often addressed in isolation. Further problems arise as reproductive states and survival in wild populations are estimated based on imperfect and potentially biased observation processes, which might lead to flawed conclusions. In this study, we aimed at elucidating trade-offs between current reproduction (both pregnancy and lactation), survival and future reproduction, including the specific costs of first reproduction, in long-lived, income breeding small mammals, an under-studied group. We developed a novel statistical framework that encapsulates the breeding life cycle of females, and accounts for incomplete information on female pregnancy and lactation and imperfect and biased recapture rates. We applied this framework to longitudinal data on two sympatric, closely related bat species (Myotis daubentonii and M. nattereri). We revealed the existence of several, to our knowledge previously unknown, trends in survival and breeding of these closely related, sympatric species and detected remarkable differences in their age and costs of first reproduction, as well as their survival-reproduction trade-offs. Our results indicate that species with this type of life history exhibit a mixture of patterns expected for long-lived and short-lived animals, and between income and capital breeders. Thus, we call for more studies to be conducted in similar study systems, increasing our ability to fully understand the evolutionary origin and fitness effects of trade-offs and senescence.
Collapse
Affiliation(s)
- Antica Culina
- WildCRU, Zoology DepartmentThe Recanati‐Kaplan CentreUniversity of OxfordTubney, AbingdonUK
- Netherlands Institute of EcologyNIOO‐KNAWWageningenNetherlands
| | - Danielle Marie Linton
- WildCRU, Zoology DepartmentThe Recanati‐Kaplan CentreUniversity of OxfordTubney, AbingdonUK
| | - Roger Pradel
- CEFE UMR 5175CNRS Université de MontpellierUniversité Paul‐ Valery MontpellierEPHEMontpellier Cedex 05France
| | | | - David W. Macdonald
- WildCRU, Zoology DepartmentThe Recanati‐Kaplan CentreUniversity of OxfordTubney, AbingdonUK
| |
Collapse
|
8
|
Linton DM, Macdonald DW. Spring weather conditions influence breeding phenology and reproductive success in sympatric bat populations. J Anim Ecol 2018; 87:1080-1090. [PMID: 29635800 DOI: 10.1111/1365-2656.12832] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 03/26/2018] [Indexed: 12/01/2022]
Abstract
Climate is known to influence breeding phenology and reproductive success in temperate-zone bats, but long-term population level studies and interspecific comparisons are rare. Investigating the extent to which intrinsic (i.e. age), and extrinsic (i.e. spring weather conditions), factors influence such key demographic parameters as the proportion of females becoming pregnant, or completing lactation, each breeding season, is vital to understanding of bat population ecology and life-history traits. Using data from 12 breeding seasons (2006-2017), encompassing the reproductive histories of 623 Myotis daubentonii and 436 Myotis nattereri adult females, we compare rates of recruitment to the breeding population and show that these species differ in their relative sensitivity to environmental conditions and climatic variation, affecting annual reproductive success at the population level. We demonstrate that (1) spring weather conditions influence breeding phenology, with warm, dry and calm conditions leading to earlier parturition dates and advanced juvenile development, whilst cold, wet and windy weather delays birth timing and juvenile growth; (2) reproductive rates in first-year females are influenced by spring weather conditions in that breeding season and in the preceding breeding season when each cohort was born. Pregnancy and lactation rates were both higher when favourable spring foraging conditions were more prevalent; (3) reproductive success increases with age in both species, but at different rates; (4) reproductive rates were consistently higher, and showed less interannual variation, in second-year and older M. daubentonii (mean 91.55% ± 0.05 SD) than M. nattereri (mean 72.74% ± 0.15 SD); (5) estimates of reproductive success at the population level were highly correlated with the size of the juvenile cohort recorded each breeding season. Improving understanding of the influence of environmental conditions, especially extreme climatic fluctuations, and the identification of critical periods (i.e. spring for reproductive female bats in temperate zones), which have disproportionate and lasting impacts on breeding phenology and reproductive success at a population level, is critical for improving predictions of the likely impact of climate change on bat populations.
Collapse
Affiliation(s)
- Danielle M Linton
- Department of Zoology, Wildlife Conservation Research Unit (WildCRU), The Recanati-Kaplan Centre, University of Oxford, Tubney, UK
| | - David W Macdonald
- Department of Zoology, Wildlife Conservation Research Unit (WildCRU), The Recanati-Kaplan Centre, University of Oxford, Tubney, UK
| |
Collapse
|
9
|
Wu H, Jiang T, Huang X, Feng J. Patterns of sexual size dimorphism in horseshoe bats: Testing Rensch's rule and potential causes. Sci Rep 2018; 8:2616. [PMID: 29422495 PMCID: PMC5805768 DOI: 10.1038/s41598-018-21077-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 01/29/2018] [Indexed: 11/10/2022] Open
Abstract
Rensch's rule, stating that sexual size dimorphism (SSD) becomes more evident and male-biased with increasing body size, has been well supported for taxa that exhibit male-biased SSD. Bats, primarily having female-biased SSD, have so far been tested for whether SSD allometry conforms to Rensch's rule in only three studies. However, these studies did not consider phylogeny, and thus the mechanisms underlying SSD variations in bats remain unclear. Thus, the present study reviewed published and original data, including body size, baculum size, and habitat types in 45 bats of the family Rhinolophidae to determine whether horseshoe bats follow Rensch's rule using a phylogenetic comparative framework. We also investigated the potential effect of postcopulatory sexual selection and habitat type on SSD. Our findings indicated that Rensch's rule did not apply to Rhinolophidae, suggesting that SSD did not significantly vary with increasing size. This pattern may be attributable interactions between weak sexual selection to male body size and strong fecundity selection for on female body size. The degree of SSD among horseshoe bats may be attributed to a phylogenetic effect rather than to the intersexual competition for food or to baculum length. Interestingly, we observed that species in open habitats exhibited greater SSD than those in dense forests, suggesting that habitat types may be associated with variations in SSD in horseshoe bats.
Collapse
Affiliation(s)
- Hui Wu
- College of Animal Science and Technology, Jilin Agricultural University, Xincheng ST 2888, Changchun, 130118, China
- Jilin Provincal Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Jingyue St 2555, Changchun, 130117, China
| | - Tinglei Jiang
- Jilin Provincal Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Jingyue St 2555, Changchun, 130117, China.
- Key Laboratory of Vegetation Ecology of Education Ministry, Institute of Grassland Science, Northeast Normal University, Changchun, 130024, China.
| | - Xiaobin Huang
- Jilin Provincal Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Jingyue St 2555, Changchun, 130117, China
| | - Jiang Feng
- College of Animal Science and Technology, Jilin Agricultural University, Xincheng ST 2888, Changchun, 130118, China.
- Jilin Provincal Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Jingyue St 2555, Changchun, 130117, China.
- Key Laboratory of Vegetation Ecology of Education Ministry, Institute of Grassland Science, Northeast Normal University, Changchun, 130024, China.
| |
Collapse
|
10
|
Bailey SE, Mao X, Struebig M, Tsagkogeorga G, Csorba G, Heaney LR, Sedlock J, Stanley W, Rouillard JM, Rossiter SJ. The use of museum samples for large-scale sequence capture: a study of congeneric horseshoe bats (family Rhinolophidae). Biol J Linn Soc Lond 2015. [DOI: 10.1111/bij.12620] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Sebastian E. Bailey
- School of Biological and Chemical Sciences; Queen Mary University of London; London E1 4NS UK
| | - Xiuguang Mao
- School of Biological and Chemical Sciences; Queen Mary University of London; London E1 4NS UK
- SKLEC; Institute of Molecular Ecology and Evolution; East China Normal University; Shanghai 200062 China
| | - Monika Struebig
- School of Biological and Chemical Sciences; Queen Mary University of London; London E1 4NS UK
- The Genome Centre; John Vane Science Centre; Queen Mary University of London; Charterhouse Square London EC1M 6BQ UK
| | - Georgia Tsagkogeorga
- School of Biological and Chemical Sciences; Queen Mary University of London; London E1 4NS UK
| | - Gabor Csorba
- Hungarian Natural History Museum; Baross 13 1088 Budapest Hungary
| | - Lawrence R. Heaney
- The Field Museum of Natural History; 1400 S. Lake Shore Drive Chicago IL 60605-2496 USA
| | - Jodi Sedlock
- The Field Museum of Natural History; 1400 S. Lake Shore Drive Chicago IL 60605-2496 USA
| | - William Stanley
- The Field Museum of Natural History; 1400 S. Lake Shore Drive Chicago IL 60605-2496 USA
| | | | - Stephen J. Rossiter
- School of Biological and Chemical Sciences; Queen Mary University of London; London E1 4NS UK
| |
Collapse
|
11
|
Rioux-Paquette E, Garant D, Martin AM, Coulson G, Festa-Bianchet M. Paternity in eastern grey kangaroos: moderate skew despite strong sexual dimorphism. Behav Ecol 2015. [DOI: 10.1093/beheco/arv052] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
12
|
Puechmaille SJ, Borissov IM, Zsebok S, Allegrini B, Hizem M, Kuenzel S, Schuchmann M, Teeling EC, Siemers BM. Female mate choice can drive the evolution of high frequency echolocation in bats: a case study with Rhinolophus mehelyi. PLoS One 2014; 9:e103452. [PMID: 25075972 PMCID: PMC4116191 DOI: 10.1371/journal.pone.0103452] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 06/28/2014] [Indexed: 12/04/2022] Open
Abstract
Animals employ an array of signals (i.e. visual, acoustic, olfactory) for communication. Natural selection favours signals, receptors, and signalling behaviour that optimise the received signal relative to background noise. When the signal is used for more than one function, antagonisms amongst the different signalling functions may constrain the optimisation of the signal for any one function. Sexual selection through mate choice can strongly modify the effects of natural selection on signalling systems ultimately causing maladaptive signals to evolve. Echolocating bats represent a fascinating group in which to study the evolution of signalling systems as unlike bird songs or frog calls, echolocation has a dual role in foraging and communication. The function of bat echolocation is to generate echoes that the calling bat uses for orientation and food detection with call characteristics being directly related to the exploitation of particular ecological niches. Therefore, it is commonly assumed that echolocation has been shaped by ecology via natural selection. Here we demonstrate for the first time using a novel combined behavioural, ecological and genetic approach that in a bat species, Rhinolophus mehelyi: (1) echolocation peak frequency is an honest signal of body size; (2) females preferentially select males with high frequency calls during the mating season; (3) high frequency males sire more off-spring, providing evidence that echolocation calls may play a role in female mate choice. Our data refute the sole role of ecology in the evolution of echolocation and highlight the antagonistic interplay between natural and sexual selection in shaping acoustic signals.
Collapse
Affiliation(s)
- Sébastien J. Puechmaille
- Sensory Ecology Group, Max Planck Institute for Ornithology, Seewiesen, Germany
- School of Biology & Environmental Science, University College Dublin, Belfield, Dublin, Ireland
- Tabachka Bat Research Station, Tabachka, Bulgaria
- * E-mail:
| | - Ivailo M. Borissov
- Sensory Ecology Group, Max Planck Institute for Ornithology, Seewiesen, Germany
- Tabachka Bat Research Station, Tabachka, Bulgaria
| | - Sándor Zsebok
- Sensory Ecology Group, Max Planck Institute for Ornithology, Seewiesen, Germany
- Tabachka Bat Research Station, Tabachka, Bulgaria
- MTA-ELTE-MTM Ecology Research Group, Budapest, Hungary
| | | | - Mohammed Hizem
- Tunis Superior Institute for Biological Applied Sciences, Tunis, Tunisia
| | - Sven Kuenzel
- Department Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Maike Schuchmann
- Sensory Ecology Group, Max Planck Institute for Ornithology, Seewiesen, Germany
- Tabachka Bat Research Station, Tabachka, Bulgaria
| | - Emma C. Teeling
- School of Biology & Environmental Science, University College Dublin, Belfield, Dublin, Ireland
| | - Björn M. Siemers
- Sensory Ecology Group, Max Planck Institute for Ornithology, Seewiesen, Germany
- Tabachka Bat Research Station, Tabachka, Bulgaria
| |
Collapse
|