1
|
Sena DAC, de Andrade Santos PP, de Pontes Santos HB, da Silveira EJD, Pereira Pinto L, de Souza LB. The role of OCT4 and CD44 in lower lip carcinogenesis. Oral Maxillofac Surg 2025; 29:36. [PMID: 39820576 DOI: 10.1007/s10006-024-01324-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 12/26/2024] [Indexed: 01/19/2025]
Abstract
PURPOSE Carcinogenesis is characterized by the transformation of normal cells into malignant cells. Concerning the lower lip, exposure to UV radiation is the main etiological factor associated with the development of epidermoid carcinomas and actinic cheilitis. According to the hierarchical model theory, cancer development is driven by populations of cancer stem cells. In this context, this study aimed to compare the expression of octamer-binding transcription factor 4 (OCT4) and CD44 in 40 lower lip epidermoid carcinoma (LLEC) and 40 actinic cheilitis (AC) cases. METHODS OCT4 and CD44 expressions were assessed semi-quantitatively according to the percentage of positive epithelial cells (PP) and intensity of expression (IE), resulting in a total immunolabeling score (PIT). RESULTS No statistically significant differences were detected between OCT4 and CD44 immunoexpression and clinicopathological parameters, except for lymph node metastasis, in which a decrease in CD44 expression in the core tumor of cases with lymph node metastasis was observed. Furthermore, decreased CD44 expression was observed in LLEC cases when compared to AC cases. CONCLUSIONS The findings reported herein suggest a higher participation of CD44 in early carcinogenesis stages. In addition, the imbalance between OCT4 and CD44 immunoexpressions suggests the presence of different neoplastic cell subpopulations.
Collapse
Affiliation(s)
- Dáurea Adília Cóbe Sena
- Department of Dentistry, Oral Pathology, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | | | | | | | - Leão Pereira Pinto
- Department of Dentistry, Oral Pathology, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Lélia Batista de Souza
- Department of Dentistry, Oral Pathology, Federal University of Rio Grande do Norte, Natal, RN, Brazil.
- Department of Dentistry, Federal University of Rio Grande do Norte, Avenida Senador Salgado Filho, 1787, Lagoa Nova, Natal, RN, CEP: 59056-000, Brazil.
| |
Collapse
|
2
|
Saravanan M. Comment on "Prognostic biomarkers in oral squamous cell carcinoma: A systematic review". Oral Oncol 2024; 153:106805. [PMID: 38653000 DOI: 10.1016/j.oraloncology.2024.106805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 04/10/2024] [Indexed: 04/25/2024]
Affiliation(s)
- Muthupandian Saravanan
- AMR & Nanotherapeutics Lab, Department of Pharmacology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai 600 077, India.
| |
Collapse
|
3
|
Dai Y, Wu Z, Chen Y, Ye X, Wang C, Zhu H. OCT4's role and mechanism underlying oral squamous cell carcinoma. J Zhejiang Univ Sci B 2023; 24:796-806. [PMID: 37701956 PMCID: PMC10500100 DOI: 10.1631/jzus.b2200602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 04/06/2023] [Indexed: 09/14/2023]
Abstract
Oral squamous cell carcinoma (OSCC), a common malignancy of the head and neck, ranks sixth worldwide in terms of cancers with the most negative impact, owing to tumor relapse rates, cervical lymphnode metastasis, and the lack of an efficacious systemic therapy. Its prognosis is poor, and its mortality rate is high. Octamer-binding transcription factor 4 (OCT4) is a member of the Pit-Oct-Unc (POU) family and is a key reprogramming factor that produces a marked effect in preserving the pluripotency and self-renewal state of embryonic stem cells (ESCs). According to recent studies, OCT4 participates in retaining the survival of OSCC cancer stem cells (CSCs), which has far-reaching implications for the occurrence, recurrence, metastasis, and prognosis of oral carcinogenesis. Therefore, we summarize the structure, subtypes, and function of OCT4 as well as its role in the occurrence, progression, and prognosis of OSCC.
Collapse
Affiliation(s)
- Yuwei Dai
- Department of Oral and Maxillofacial Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
- School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Ziqiong Wu
- School of Stomatology, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yitong Chen
- School of Stomatology, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Xinjian Ye
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Disease of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, China
| | - Chaowei Wang
- Department of Oral and Maxillofacial Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Huiyong Zhu
- Department of Oral and Maxillofacial Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| |
Collapse
|
4
|
Zisis V, Andreadis D, Anastasiadou PA, Akrivou M, Vizirianakis IS, Anagnostou L, Malamos D, Paraskevopoulos K, Poulopoulos A. Expression of the Embryonic Cancer Stem Cells' Biomarkers SOX2 and OCT3/4 in Oral Leukoplakias and Squamous Cell Carcinomas: A Preliminary Study. Cureus 2023; 15:e45482. [PMID: 37859926 PMCID: PMC10584277 DOI: 10.7759/cureus.45482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/18/2023] [Indexed: 10/21/2023] Open
Abstract
INTRODUCTION Cancer stem cells (CSCs) are incriminated for initiating the process of carcinogenesis either de novo or through the transformation of oral potentially malignant disorders (OPMDs) to oral squamous cell carcinoma (OSCC). The aim of this study was to detect the expression of embryonic-type CSC markers OCT3/4 and SOX2 in OSCCs and oral leukoplakias (OLs), the most common of OPMDs. MATERIALS AND METHODS The study type is experimental, and the study design is characterized as semiquantitative research, which belongs to the branch of experimental research. The experiment was conducted in the Department of Oral Medicine/Pathology, School of Dentistry, Aristotle University of Thessaloniki, Greece. This study focuses on the semiquantitative immunohistochemical (IHC) pattern of expression of CSCs protein-biomarkers SOX2 and OCT3/4, in paraffin embedded samples of 21 OSCCs of different grades of differentiation and 30 cases of OLs with different grades of dysplasia, compared to five cases of normal oral mucosa in both terms of cells' stain positivity and intensity. Statistical analysis was performed through SPSS 2017 Pearson Chi-square and the significance level was set at 0.05 (p=0.05). The expression of the respective genes of SOX2 and OCT3/4 was studied through quantitative polymerase chain reaction (qPCR), in paraffin-embedded samples of 12 cases of OLs with mild/non dysplasia and 19 cases moderately/poorly differentiated OSCCs(n=19) and five normal mucosa using the Independent Paired T-test. RESULTS The genes SOX2 and Oct3/4 were expressed in all examined cases although no statistically significant correlations among normal, OL and OSCC, were established. A nuclear/membrane staining of OCT3/4 was noticed only in three out of 21 OSCCs but in none of OLs or normal cases (without statistical significance). A characteristic nuclear staining of SOX2 was noticed in the majority of the samples, mostly in the basal and parabasal layers of the epithelium. SOX2 was significantly detected in the OSCCs group (strong positivity in 17/21) than in the OL group (30 cases, mostly mildly stained) (p-value=0.007), and the normal oral epithelium (mild stained, p=0.065). Furthermore, SOX2 was overexpressed in well differentiated OSCCs group (5/OSCCs, strongly stained) rather than in mildly dysplastic and non-dysplastic OLs samples (14/OLs, mildly stained) (p-value =0.035). CONCLUSION The characteristic expression of SOX2 but not of OCT3/4 in OLs' and OSCCs' lesions suggests the presence of neoplastic cells with certain CSC characteristics whose implication in the early stages of oral tumorigenesis could be further evaluated. The clinical use of SOX2, as prognostic factor, requires further experimental evaluation in larger number of samples.
Collapse
Affiliation(s)
- Vasileios Zisis
- Oral Medicine/Pathology, School of Dentistry, Aristotle University of Thessaloniki, Thessaloniki, GRC
| | - Dimitrios Andreadis
- Oral Medicine/Pathology, School of Dentistry, Aristotle University of Thessaloniki, Thessaloniki, GRC
| | - Pinelopi A Anastasiadou
- Oral Medicine/Pathology, School of Dentistry, Aristotle University of Thessaloniki, Thessaloniki, GRC
| | - Meni Akrivou
- Pharmacology, Aristotle University of Thessaloniki, Thessaloniki, GRC
| | - Ioannis S Vizirianakis
- Health Sciences, University of Nicosia, Nicosia, CYP
- Pharmacy, Aristotle University of Thessaloniki, Thessaloniki, GRC
| | - Lefteris Anagnostou
- Oral Medicine/Pathology, School of Dentistry, Aristotle University of Thessaloniki, Thessaloniki, GRC
| | - Dimitrios Malamos
- Oral Medicine, National and Kapodistrian University of Athens, Athens, GRC
| | | | - Athanasios Poulopoulos
- Oral Medicine/Pathology, School of Dentistry, Aristotle University of Thessaloniki, Thessaloniki, GRC
| |
Collapse
|
5
|
Cierpikowski P, Leszczyszyn A, Bar J. The Role of Hedgehog Signaling Pathway in Head and Neck Squamous Cell Carcinoma. Cells 2023; 12:2083. [PMID: 37626893 PMCID: PMC10453169 DOI: 10.3390/cells12162083] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/12/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the sixth leading malignancy worldwide, with a poor prognosis and limited treatment options. Molecularly targeted therapies for HNSCC are still lacking. However, recent reports provide novel insights about many molecular alterations in HNSCC that may be useful in future therapies. Therefore, it is necessary to identify new biomarkers that may provide a better prediction of the disease and promising targets for personalized therapy. The poor response of HNSCC to therapy is attributed to a small population of tumor cells called cancer stem cells (CSCs). Growing evidence indicates that the Hedgehog (HH) signaling pathway plays a crucial role in the development and maintenance of head and neck tissues. The HH pathway is normally involved in embryogenesis, stem cell renewal, and tissue regeneration. However, abnormal activation of the HH pathway is also associated with carcinogenesis and CSC regulation. Overactivation of the HH pathway was observed in several tumors, including basal cell carcinoma, that are successfully treated with HH inhibitors. However, clinical studies about HH pathways in HNSCC are still rare. In this review, we summarize the current knowledge and recent advances regarding the HH pathway in HNSCC and discuss its possible implications for prognosis and future therapy.
Collapse
Affiliation(s)
- Piotr Cierpikowski
- Department of Maxillofacial Surgery, The Ludwik Rydygier Specialist Hospital, Osiedle Zlotej Jesieni 1, 31-826 Krakow, Poland
| | - Anna Leszczyszyn
- Dental Surgery Outpatient Clinic, 4th Military Clinical Hospital, Weigla 5, 53-114 Wroclaw, Poland;
| | - Julia Bar
- Department of Immunopathology and Molecular Biology, Wroclaw Medical University, Bujwida 44, 50-345 Wroclaw, Poland
| |
Collapse
|
6
|
Kumar HA, Desai A, Mohiddin G, Mishra P, Bhattacharyya A, Nishat R. Cancer Stem Cells in Head and Neck Squamous Cell Carcinoma. JOURNAL OF PHARMACY AND BIOALLIED SCIENCES 2023; 15:S826-S830. [PMID: 37694019 PMCID: PMC10485429 DOI: 10.4103/jpbs.jpbs_81_23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 09/12/2023] Open
Abstract
Cancer stem cells (CSCs) are a small sub-population of cells within a tumor mass proficient of tumor initiation and progression. Distinguishing features possessed by CSCs encompass self-renewal, regeneration and capacity to differentiate. These cells are attributed to the phenomenon of aggression, recurrence and metastasis in neoplasms. Due to their cancer initiating and contributing features, a proper understanding of these CSCs and its microenvironment would aid in better understanding of cancer and designing better targeted therapeutic strategies for improved clinical outcome, thus improving the prognosis. This article dispenses a narrative review of CSCs in the context of head and neck carcinoma under the sub headings of overview of cancer stem cells, methods of isolation of these cells, putative CSC markers of head and neck cancer, signaling pathways used by these cells and their therapeutic implications.
Collapse
Affiliation(s)
- Harish A. Kumar
- Department of Oral Pathology and Microbiology, Kalinga Institute of Dental Sciences, KIIT Deemed to be University, Bhubaneshwar, Odhisa, India
| | - Anupama Desai
- Department of Periodontology and Oral Implantology, A.M.E’S Dental College, Raichur, Karnataka, India
| | - Gouse Mohiddin
- Department of Oral Pathology and Microbiology, Kalinga Institute of Dental Sciences, KIIT Deemed to be University, Bhubaneshwar, Odhisa, India
| | - Pallavi Mishra
- Department of Oral Pathology and Microbiology, Kalinga Institute of Dental Sciences, KIIT Deemed to be University, Bhubaneshwar, Odhisa, India
| | - Arnab Bhattacharyya
- Department of Oral Pathology and Microbiology, Kalinga Institute of Dental Sciences, KIIT Deemed to be University, Bhubaneshwar, Odhisa, India
| | - Roquaiya Nishat
- Oral Pathology and Microbiology, Private Practitioner, Shri Balaji Dental Clinic, Patia, Bhubaneswar, Odisha, India
| |
Collapse
|
7
|
Venugopal DC, Caleb CL, Kirupakaran NP, Shyamsundar V, Ravindran S, Yasasve M, Krishnamurthy A, Harikrishnan T, Sankarapandian S, Ramshankar V. Clinicopathological Significance of Cancer Stem Cell Markers (OCT-3/4 and SOX-2) in Oral Submucous Fibrosis and Oral Squamous Cell Carcinoma. Biomedicines 2023; 11:biomedicines11041040. [PMID: 37189658 DOI: 10.3390/biomedicines11041040] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/10/2023] [Accepted: 03/13/2023] [Indexed: 03/30/2023] Open
Abstract
Oral submucous fibrosis (OSMF) is highly prevalent in South East Asia with higher rates of malignant transformation in Indian subcontinent. Numerous biomarkers are now being studied to predict disease prognosis and detect malignant alterations at an early stage. Patients with clinically and biopsy-proven oral submucous fibrosis and oral squamous cell carcinoma were included in the study as the experimental group, while patients without a tobacco or betel nut habit who had their third molars surgically removed were included as the healthy control group. For the immunohistochemistry (IHC) investigation, 5-μm slices from formalin-fixed, paraffin-embedded tissue blocks (FFPE) were obtained. Fresh tissues (n = 45) from all three groups were collected and gene expression was studied using relative quantitation-based qPCR. The protein expression of octamer-binding transcription factor 3/4 (OCT 3/4) and sex-determining region Y-box 2 (SOX 2) was evaluated in the experimental group and compared with healthy controls. The IHC results showed a significant correlation with the expression of OCT 3/4 (p value = 0.000; χ2 = 20.244) and SOX 2 (p value = 0.006; χ2 = 10.101) among OSCC and OSMF patients in comparison to healthy controls. Both OCT 3/4 and SOX 2 showed overexpression of four-fold and three-fold in OSMF when compared to OSCC and healthy controls, respectively. This study shows the significant importance of cancer stem cell markers OCT 3/4 and SOX 2 to assess the disease prognosis in OSMF.
Collapse
|
8
|
IFIT2 Depletion Promotes Cancer Stem Cell-like Phenotypes in Oral Cancer. Biomedicines 2023; 11:biomedicines11030896. [PMID: 36979874 PMCID: PMC10045464 DOI: 10.3390/biomedicines11030896] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/05/2023] [Accepted: 03/09/2023] [Indexed: 03/17/2023] Open
Abstract
(1) Background: Cancer stem cells (CSCs) are a small cell population associated with chemoresistance, metastasis and increased mortality rate in oral cancer. Interferon-induced proteins with tetratricopeptide repeats 2 (IFIT2) depletion results in epithelial to mesenchymal transition, invasion, metastasis, and chemoresistance in oral cancer. To date, no study has demonstrated the effect of IFIT2 depletion on the CSC-like phenotype in oral cancer cells. (2) Methods: Q-PCR, sphere formation, Hoechst 33,342 dye exclusion, immunofluorescence staining, and flow cytometry assays were performed to evaluate the expression of the CSC markers in IFIT2-depleted cells. A tumorigenicity assay was adopted to assess the tumor formation ability. Immunohistochemical staining was used to examine the protein levels of IFIT2 and CD24 in oral cancer patients. (3) Results: The cultured IFIT2 knockdown cells exhibited an overexpression of ABCG2 and CD44 and a downregulation of CD24 and gave rise to CSC-like phenotypes. Clinically, there was a positive correlation between IFIT2 and CD24 in the patients. IFIT2high/CD24high/CD44low expression profiles predicted a better prognosis in HNC, including oral cancer. The TNF-α blockade abolished the IFIT2 depletion-induced sphere formation, indicating that TNF-α may be involved in the CSC-like phenotypes in oral cancer. (4) Conclusions: The present study demonstrates that IFIT2 depletion promotes CSC-like phenotypes in oral cancer.
Collapse
|
9
|
Afshari K, Sohal KS. Potential Alternative Therapeutic Modalities for Management Head and Neck Squamous Cell Carcinoma: A Review. Cancer Control 2023; 30:10732748231185003. [PMID: 37328298 DOI: 10.1177/10732748231185003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) includes malignancies of the lip and oral cavity, oropharynx, nasopharynx, larynx, and hypopharynx. It is among the most common malignancy worldwide, affecting nearly 1 million people annually. The traditional treatment options for HNSCC include surgery, radiotherapy, and conventional chemotherapy. However, these treatment options have their specific sequelae, which produce high rates of recurrence and severe treatment-related disabilities. Recent technological advancements have led to tremendous progress in understanding tumor biology, and hence the emergence of several alternative therapeutic modalities for managing cancers (including HNSCC). These treatment options are stem cell targeted therapy, gene therapy, and immunotherapy. Therefore, this review article aims to provide an overview of these alternative treatments of HNSCC.
Collapse
Affiliation(s)
- Keihan Afshari
- Department of Oral and Maxillofacial Surgery, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Karpal Singh Sohal
- Department of Oral and Maxillofacial Surgery, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| |
Collapse
|
10
|
Molecular Biomarkers of Malignant Transformation in Head and Neck Dysplasia. Cancers (Basel) 2022; 14:cancers14225581. [PMID: 36428690 PMCID: PMC9688631 DOI: 10.3390/cancers14225581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/01/2022] [Accepted: 11/07/2022] [Indexed: 11/16/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) and its treatments are associated with substantial morbidity, often resulting in cosmetic deformity and loss of physiologic functions including speech and swallowing. Despite advancements in treatment, 5-year survival rates for mucosal malignancies remain below 70%. Effective prevention of HNSCC demands an understanding of the molecular pathways of carcinogenesis. Specifically, defining features of pre-cancerous dysplastic lesions that indicate a better or worse prognosis is necessary to help identify patients who are likely to develop a carcinoma and allow a more aggressive approach to management. There remains a need for identification of biomarkers that can provide both early prognostic and predictive value in clinical decision-making by serving as both therapeutic targets as well as predictors of therapy response. Here, we comprehensively review the most frequently altered molecular biomarkers of malignant transformation in head and neck dysplasia. These markers are involved in a wide range of cellular processes in head and neck carcinogenesis, including extracellular matrix degradation, cell motility and invasion, cell-cell adhesion, solute transport, immortalization, metabolism, the cell cycle and apoptosis, transcription, and cell signaling.
Collapse
|
11
|
Panda A, Mishra P, Mohanty A, Sundaragiri KS, Singh A, Jha K. Is Epithelial-Mesenchymal Transition a New Roadway in the Pathogenesis of Oral Submucous Fibrosis: A Comprehensive Review. Cureus 2022; 14:e29636. [PMID: 36321045 PMCID: PMC9606484 DOI: 10.7759/cureus.29636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2022] [Indexed: 11/17/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) collectively refers to a series of episodes that reshape polarized, intact epithelial cells into discrete motile cells that can conquer the extracellular matrix (ECM). It performs a pivotal role in embryonic development, wound healing, and tissue repair. Surprisingly, the exact mechanism can also lead to the onset of malignancy and organ fibrosis contributing to scar formation and loss of function. transforming growth factor signaling, WNT signaling, Notch signaling, Hedgehog signaling, and receptor tyrosine kinase signaling, as well as non-transcriptional changes in response to extracellular cues, such as growth factors and cytokines, hypoxia, and contact with the surrounding ECM, are responsible for the initiation of EMT. Although the pathogenesis of oral submucous fibrosis (OSMF) is multifactorial, compelling evidence suggests that it results from collagen deregulation. EMT is one of the spotlight events in the pathogenesis of OSMF, with myofibroblasts and keratinocytes being the victim cells. EMT is an essential step in both physiological and pathological events. The importance of EMT in the malignant development of OSMF and the inflammatory reaction preceding fibrosis implies a new upcoming area of research. This review aims to focus on the EMT events that function as a double-edged sword between wound healing and fibrosis and further discuss the mechanisms along with the molecular pathways that direct changes in gene expression essential for the same in the oral cavity. As OSMF involves a risk of malignant transformation, understanding the cellular and molecular events will open more avenues for therapeutic breakthroughs targeting EMT.
Collapse
|
12
|
Shahoumi LA. Oral Cancer Stem Cells: Therapeutic Implications and Challenges. FRONTIERS IN ORAL HEALTH 2022; 2:685236. [PMID: 35048028 PMCID: PMC8757826 DOI: 10.3389/froh.2021.685236] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 06/25/2021] [Indexed: 12/12/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is currently one of the 10 most common malignancies worldwide, characterized by a biologically highly diverse group of tumors with non-specific biomarkers and poor prognosis. The incidence rate of HNSCC varies widely throughout the world, with an evident prevalence in developing countries such as those in Southeast Asia and Southern Africa. Tumor relapse and metastasis following traditional treatment remain major clinical problems in oral cancer management. Current evidence suggests that therapeutic resistance and metastasis of cancer are mainly driven by a unique subpopulation of tumor cells, termed cancer stem cells (CSCs), or cancer-initiating cells (CICs), which are characterized by their capacity for self-renewal, maintenance of stemness and increased tumorigenicity. Thus, more understanding of the molecular mechanisms of CSCs and their behavior may help in developing effective therapeutic interventions that inhibit tumor growth and progression. This review provides an overview of the main signaling cascades in CSCs that drive tumor repropagation and metastasis in oral cancer, with a focus on squamous cell carcinoma. Other oral non-SCC tumors, including melanoma and malignant salivary gland tumors, will also be considered. In addition, this review discusses some of the CSC-targeted therapeutic strategies that have been employed to combat disease progression, and the challenges of targeting CSCs, with the aim of improving the clinical outcomes for patients with oral malignancies. Targeting of CSCs in head and neck cancer (HNC) represents a promising approach to improve disease outcome. Some CSC-targeted therapies have already been proven to be successful in pre-clinical studies and they are now being tested in clinical trials, mainly in combination with conventional treatment regimens. However, some studies revealed that CSCs may not be the only players that control disease relapse and progression of HNC. Further, clinical research studying a combination of therapies targeted against head and neck CSCs may provide significant advances.
Collapse
Affiliation(s)
- Linah A Shahoumi
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA, United States
| |
Collapse
|
13
|
Cirillo N, Wu C, Prime SS. Heterogeneity of Cancer Stem Cells in Tumorigenesis, Metastasis, and Resistance to Antineoplastic Treatment of Head and Neck Tumours. Cells 2021; 10:cells10113068. [PMID: 34831291 PMCID: PMC8619944 DOI: 10.3390/cells10113068] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 11/01/2021] [Accepted: 11/04/2021] [Indexed: 11/29/2022] Open
Abstract
The discovery of a small subset of cancer cells with self-renewal properties that can give rise to phenotypically diverse tumour populations has shifted our understanding of cancer biology. Targeting cancer stem cells (CSCs) is becoming a promising therapeutic strategy in various malignancies, including head and neck squamous cell carcinoma (HNSCC). Diverse sub-populations of head and neck cancer stem cells (HNCSCs) have been identified previously using CSC specific markers, the most common being CD44, Aldehyde Dehydrogenase 1 (ALDH1), and CD133, or by side population assays. Interestingly, distinct HNCSC subsets play different roles in the generation and progression of tumours. This article aims to review the evidence for a role of specific CSCs in HNSCC tumorigenesis, invasion, and metastasis, together with resistance to treatment.
Collapse
Affiliation(s)
- Nicola Cirillo
- Melbourne Dental School, The University of Melbourne, Carlton, VIC 3053, Australia;
- Correspondence:
| | - Carmen Wu
- Melbourne Dental School, The University of Melbourne, Carlton, VIC 3053, Australia;
| | - Stephen S. Prime
- Centre for Immunology and Regenerative Medicine, Institute of Dentistry, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London E1 4NS, UK;
| |
Collapse
|
14
|
Thankappan P, Ramadoss MN, Joseph TI, Augustine PI, Shaga IB, Thilak J. Human Papilloma Virus and Cancer Stem Cell markers in Oral Epithelial Dysplasia-An Immunohistochemical Study. Rambam Maimonides Med J 2021; 12:RMMJ.10451. [PMID: 34709167 PMCID: PMC8549839 DOI: 10.5041/rmmj.10451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVES To study the correlation between the putative cancer stem cell (CSC) markers aldehyde dehydrogenase 1 (ALDH1), cluster of differentiation 44 (CD44), sex-determining region Y-box 2 (SOX2), and octamer-binding protein 4 (OCT4) and human papilloma virus (HPV) infection using p16, the surrogate marker of HPV in oral epithelial dysplasia (OED) and normal mucosa. METHODS Five sections each from 40 histopathologically diagnosed cases of different grades of OED and 10 cases of normal oral mucosa without dysplasia were immunohistochemically stained with p16, ALDH1, CD44, SOX2, and OCT4, respectively. RESULTS Expression of ALDH1 and SOX2 was significantly increased in OED cases, whereas CD44 and OCT4 expression was increased in normal mucosa. P16-positive OED cases showed upregulation of ALDH1 and OCT4 expression as compared to p16-negative cases, while CD44 and SOX2 expression was downregulated in p16-positive OED cases; however, the results were not statistically significant. CONCLUSION The present study indicated a suggestive link between p16 and cancer stem cell marker expression in HPV-associated OED, and that p16 has a significant role in CSC progression in OED. This is the first study to evaluate the expression of putative CSC markers in HPV-associated OED. However, low study numbers are a potential limiting factor in this study.
Collapse
Affiliation(s)
- Prasanth Thankappan
- Department of Oral and Maxillofacial Pathology, Sree Mookambika Institute of Dental Sciences, Kulasekharam, Kanyakumari District, Tamil Nadu, India
- To whom correspondence should be addressed. E-mail:
| | - Madhavan Nirmal Ramadoss
- Department of Oral and Maxillofacial Pathology, Rajah Muthiah Dental College and Hospital, Annamalai University, Chidambaram, Tamil Nadu, India
| | - Tharmasahayam Isaac Joseph
- Department of Oral and Maxillofacial Pathology, Sree Mookambika Institute of Dental Sciences, Kulasekharam, Kanyakumari District, Tamil Nadu, India
| | - Percy Ida Augustine
- Department of Oral and Maxillofacial Pathology, Sree Mookambika Institute of Dental Sciences, Kulasekharam, Kanyakumari District, Tamil Nadu, India
| | - Isaacjoseph Bevin Shaga
- Department of Orthodontics and Dentofacial Orthopedics, Rajas Dental College, Tirunelveli District, Tamil Nadu, India
| | - Jashree Thilak
- International Cancer Center, Neyyoor, Kanyakumari District, Tamil Nadu, India
| |
Collapse
|
15
|
Silva CTX, Saddi VA, Silva KSFE, Sugita DM, Guillo LA. Expression of the cancer stem cell marker OCT4 is associated with worse prognosis and survival in cutaneous melanoma. Melanoma Res 2021; 31:439-448. [PMID: 34433195 DOI: 10.1097/cmr.0000000000000767] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cutaneous melanoma has an aggressive clinical presentation, showing rapid rate of growth and metastatic dissemination due to the permanence of cancer stem cells. The present study was to evaluate the expression of the self-renewal regulatory factor and the clinical significance of the transcription factor OCT4 in melanoma. Melanoma tissues were stained by immunohistochemistry and the correlation between the expression of this marker was determined through clinical-pathological variables and survival outcomes. Positive expression of nuclear and cytoplasmic OCT4 was observed in 49% and 41.2% of cases, respectively. The positive expression of nuclear OCT4 in melanoma was significantly associated with prognostic factors, such as Breslow depth, Clark's level, ulceration and metastasis. Survival of patients was 56% compared to positive nuclear OCT4 expression and 94.2% when compared to the low expression of the gene. Nuclear OCT4 positive genotype indicated aggressive tumor behavior with a worse clinical outcome, which indicates OCT4 as a useful biomarker in the prognosis of melanoma.
Collapse
Affiliation(s)
| | - Vera Aparecida Saddi
- Laboratory of Genetics and Biodiversity, Department of Environmental and Health Science, Pontifical Catholic University of Goiás
| | | | | | - Lidia Andreu Guillo
- Cell Biochemistry Laboratory, Department of Biochemistry and Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia, Goiás, Brazil
| |
Collapse
|
16
|
Chen X, Adhikary G, Shrestha S, Xu W, Keillor JW, Naselsky W, Eckert RL. Transglutaminase 2 Maintains Hepatocyte Growth Factor Signaling to Enhance the Cancer Cell Phenotype. Mol Cancer Res 2021; 19:2026-2035. [PMID: 34593609 PMCID: PMC10088464 DOI: 10.1158/1541-7786.mcr-21-0306] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/14/2021] [Accepted: 09/20/2021] [Indexed: 11/16/2022]
Abstract
Transglutaminase 2 (TG2) is a key epidermal squamous cell carcinoma cancer cell survival protein. However, how TG2 maintains the aggressive cancer phenotype is not well understood. The present studies show that TG2, which is highly expressed in epidermal cancer stem-like cells (ECS cells), maintains hepatocyte growth factor (HGF) signaling to drive an aggressive ECS cell cancer phenotype. Inhibiting TG2 reduces MET tyrosine kinase receptor expression and activity and attenuates the cancer cell phenotype. Moreover, inhibition of TG2 or HGF/MET function reduces downstream MEK1/2 and ERK1/2 activity, and this is associated with reduced cancer cell spheroid formation, invasion, and migration, and reduced stem and EMT marker expression. Treatment of TG2 knockdown cells with HGF partially restores the aggressive cancer phenotype, confirming that MET signaling is downstream of TG2. MET knockout reduces ERK1/2 signaling, doubles the time to initial tumor appearance, and reduces overall tumor growth. These findings suggest that TG2 maintains HGF/MET and MAPK (MEK1/2 and ERK1/2) signaling to drive the aggressive ECS cell cancer phenotype and tumor formation, and that TG2-dependent MET signaling may be a useful anti-cancer target. IMPLICATIONS: TG2 is an important epidermal squamous cell carcinoma stem cell survival protein. We show that TG2 activates an HGF/MET, MEK1/2 ERK1/2 signaling cascade that maintains the aggressive cancer phenotype.
Collapse
Affiliation(s)
- Xi Chen
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Gautam Adhikary
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Suruchi Shrestha
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Wen Xu
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Jeffrey W Keillor
- Department of Chemistry, University of Ottawa, Ottawa, Ontario, Canada
| | - Warren Naselsky
- Department of Surgery, Division of Thoracic Oncology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Richard L Eckert
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland. .,Department of Dermatology, University of Maryland School of Medicine, Baltimore, Maryland.,Department of Reproductive Biology, University of Maryland School of Medicine, Baltimore, Maryland.,Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
17
|
Cancer Stem Cells in Oropharyngeal Cancer. Cancers (Basel) 2021; 13:cancers13153878. [PMID: 34359786 PMCID: PMC8345685 DOI: 10.3390/cancers13153878] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/17/2021] [Accepted: 07/20/2021] [Indexed: 12/16/2022] Open
Abstract
Oropharyngeal cancer (OPC), which is a common type of head and neck squamous cell carcinoma (HNSCC), is associated with tobacco and alcohol use, and human papillomavirus (HPV) infection. Underlying mechanisms and as a result prognosis of the HPV-positive and HPV-negative OPC patients are different. Like stem cells, the ability of self-renewal and differentiate, cancer stem cells (CSCs) have roles in tumor invasion, metastasis, drug resistance, and recurrence after therapy. Research revealed their roles to some extent in all of these processes but there are still many unresolved points to connect to CSC-targeted therapy. In this review, we will focus on what we currently know about CSCs of OPC and limitations of our current knowledge. We will present perspectives that will broaden our understanding and recent literature which may connect to therapy.
Collapse
|
18
|
Ding X, Yan Y, Zhang C, Xu X, Yang F, Liu Y, Wang G, Qin Y. OCT4 regulated neointimal formation in injured mouse arteries by matrix metalloproteinase 2-mediated smooth muscle cells proliferation and migration. J Cell Physiol 2020; 236:5421-5431. [PMID: 33372301 DOI: 10.1002/jcp.30248] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 12/14/2020] [Accepted: 12/16/2020] [Indexed: 11/09/2022]
Abstract
The excessive proliferation and migration of vascular smooth muscle cells (VSMCs) play vital roles in neointimal hyperplasia and vascular restenosis. In the present study, we aimed to investigate the function and mechanism of octamer-binding transcription factor 4 (OCT4, a key transcription factor for maintaining stem cells in de-differentiated state) on neointima formation in response to vascular injury. Quantitative reverse-transcription polymerase chain reaction and western blot results displayed a significant increase of OCT4 levels in injured carotid arteries. Immunohistochemistry and immunofluorescence assays confirmed that the increased OCT4 expression was primarily localized in α-SMA-positive VSMCs from neointima, and colocalized with PCNA in the nuclei of VSMCs. Adenovirus-mediated OCT4 overexpression in injured carotid arteries exacerbated intimal thickening, while OCT4 knockdown significantly inhibited intimal thickening. In-vitro experiments confirmed that the increased OCT4 expression in VMSCs could be induced by platelet-derived growth factor-BB (PDGF-BB) in a time-dependent manner. Overexpression of OCT4 greatly promoted VSMCs proliferation and migration, while OCT4 knockdown significantly retarded the PDGF-BB-induced excessive proliferation and migration of VSMCs. Bioinformatics analysis, dual-luciferase reporter assay, and chromatin immunoprecipitation assay confirmed that OCT4 could upregulate matrix metalloproteinases 2 (MMP2) expression through promoting its transcription. Moreover, knockdown of MMP2 significantly attenuated OCT4-mediated VSMCs proliferation and migration. These results indicated that OCT4 facilitated neointimal formation in response to vascular injury by MMP2-mediated VSMCs proliferation and migration, and targeting OCT4 in VSMCs might be a novel therapeutic strategy for vascular restenosis.
Collapse
Affiliation(s)
- Xueyan Ding
- Department of Cardiology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China.,Department of Cardiology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Yan Yan
- Department of Cardiovascular Surgery, Institute of Cardiac Surgery, Changhai Hospital, Naval Medical University, Shanghai, China.,Department of Cardiothoracic Surgery, No. 903 Hospital of Chinese People's Liberation Army, Hangzhou, Zhejiang, China
| | - Chengke Zhang
- Department of Cardiology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Xudong Xu
- Department of Cardiology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Fan Yang
- Department of Cardiovascular Surgery, Institute of Cardiac Surgery, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Yang Liu
- Department of Cardiovascular Surgery, Institute of Cardiac Surgery, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Guokun Wang
- Department of Cardiovascular Surgery, Institute of Cardiac Surgery, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Yongwen Qin
- Department of Cardiology, Changhai Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
19
|
The regulation of Oct4 in human gingival fibroblasts stimulated by cyclosporine A: Preliminary observations. J Dent Sci 2020; 15:176-180. [PMID: 32595898 PMCID: PMC7305449 DOI: 10.1016/j.jds.2019.10.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 10/07/2019] [Indexed: 11/21/2022] Open
Abstract
Background/purpose Oct4, a key transcription factor, could reprogram human somatic fibroblasts into embryonic stem cell-like pluripotent cells. The exact mechanism of cyclosporine A (CsA)-induced gingival overgrowth is still unclear. The aim of this study was to investigate the effects of CsA on the expression of Oct4 in cultured human gingival fibroblasts (HGFs) in vitro. Materials and methods The effects of CsA on HGFs were used to elucidate whether Oct4 expression could be induced by CsA by using quantitative real-time reverse transcription-polymerase chain reaction and western blot. Cell growth in CsA-treated HGFs with Oct4 lentiviral-mediated shRNAi knockdown was evaluated by tetrazolium bromide reduction assay. Results CsA was found to upregulate Oct4 transcript in a dose-dependent manner (p < 0.05). CsA also dose-dependently increased Oct4 protein expression (p < 0.05). The lentivirus expressing sh-Oct4 successfully prevented the CsA-induced Oct4 mRNA and protein in HGFs (p < 0.05). However, knockdown of Oct4 was insufficient to inhibit CsA-stimulated cell growth in HGFs. Furthermore, double knockdown with pluripotency-associated transcription factor Nanog showed that the down-regulation of Oct4/Nanog by lentiviral infection significantly inhibited CsA-stimulated cell growth (p < 0.05). Conclusion Taken together, CsA was first found to upregulate Oct4 mRNA and protein expression in HGFs. The silencing Oct4 could not suppress cell growth unless Nanog was repressed simultaneously.
Collapse
|
20
|
Ghazi N, Aali N, Shahrokhi VR, Mohajertehran F, Saghravanian N. Relative Expression of SOX2 and OCT4 in Oral Squamous Cell Carcinoma and Oral Epithelial Dysplasia. Rep Biochem Mol Biol 2020; 9:171-179. [PMID: 33178866 DOI: 10.29252/rbmb.9.2.171] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Background Over 90% of oral cancers including oral squamous cell carcinoma (OSCC), originate from the oral cavity epithelium. Early detection for this lesion is as important. Evaluating cancer stem cell markers can improve the accuracy of early diagnosis, and be used as an OSCC prognostic indicator. We aimed to evaluate SOX2 and OCT4 gene expression among different grades of OSCC and oral epithelial dysplasia (OED) lesions. Methods Sixty samples that contains 45 OSCC and 15 OED samples were retrieved from the pathology department archives at the dental school of Mashhad. Demographic and pathological patient data including the tumor stage and tumor grade were assessed. Finally, SOX2 and OCT4 expression was examined using qRT-PCR. Results There was a significant difference in SOX2 and OCT4 expression between OSCC and OED samples (p< 0.001). The mean expression of SOX2 and OCT4 in OSCC samples were significantly higher than in the OED group (p< 0.001). The mean expression of SOX2 and OCT4 was higher in grade II and grade III OSCC compared to grade I. There was no significant relationship between the gene expression of SOX2 or OCT4 to the demographic, site and stage of tumors. The correlation between SOX2 and OCT4 expression (p= 0.001) was significant in grade III OSCC specimens compared to other grades (p= 0.005, r= 0.68). Conclusion The increased expression of SOX2 and OCT4 in higher grades and the significant correlation of these genes with each other among OSCC specimens could suggest the role of SOX2 or OCT4 in oral mucosal carcinogenesis.
Collapse
Affiliation(s)
- Narges Ghazi
- Department of Oral and Maxillofacial Pathology, School of Dentistry, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Narges Aali
- Oral and Maxillofacial Disease Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vahid-Reza Shahrokhi
- Oral and Maxillofacial Disease Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farnaz Mohajertehran
- Department of Oral and Maxillofacial Pathology, School of Dentistry, Mashhad University of Medical Sciences, Mashhad, Iran.,Oral and Maxillofacial Disease Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Nasrollah Saghravanian
- Oral and Maxillofacial Disease Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
21
|
Varun BR, Jayanthi P, Ramani P. Cancer stem cells: A comprehensive review on identification and therapeutic implications. J Oral Maxillofac Pathol 2020; 24:190. [PMID: 32508482 PMCID: PMC7269290 DOI: 10.4103/jomfp.jomfp_336_19] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 12/15/2019] [Indexed: 12/17/2022] Open
Abstract
Cancer stem cells (CSCs) are distinct subpopulations of tumor cells that possess the ability for perpetual self-renewal and proliferation. They produce downstream progenitor cells and cancer cells that drive tumor growth. Studies of many cancer types including oral squamous cell carcinoma (OSCC) have identified CSCs using specific markers, but it is still unclear as to where in the stem cell hierarchy these markers fall. This is compounded further by the presence of multiple CSC subtypes within OSCC, making investigation reliant on the use of multiple markers. This review paper focuses on the current knowledge in CSC markers including OCT4, SOX2, NANOG, aldehyde dehydrogenase 1, CD44, CD24, CD133 and Musashi-1, highlighting their use and validity in OSCC CSC research.
Collapse
Affiliation(s)
- B R Varun
- Department of Oral and Maxillofacial Pathology, PMS College of Dental Sciences and Research, Thiruvananthapuram, Tamil Nadu, India
| | - P Jayanthi
- Department of Oral and Maxillofacial Pathology, Azeezia College of Dental Sciences and Research, Kollam, Kerala, India
| | - Pratibha Ramani
- Department of Oral and Maxillofacial Pathology, Saveetha Dental College, Chennai, Tamil Nadu, India
| |
Collapse
|
22
|
Swain N, Thakur M, Pathak J, Swain B. SOX2, OCT4 and NANOG: The core embryonic stem cell pluripotency regulators in oral carcinogenesis. J Oral Maxillofac Pathol 2020; 24:368-373. [PMID: 33456249 PMCID: PMC7802841 DOI: 10.4103/jomfp.jomfp_22_20] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 06/08/2020] [Accepted: 06/11/2020] [Indexed: 02/06/2023] Open
Abstract
Embryonic stem cells provide their major contribution to embryogenesis through formation of germ layers as they have pluripotency potential and capacity for self-renewal. Retention of pluripotency of these stem cells depends on expression/level of transcription factors, i.e., SOX2, OCT4 and NANOG. During organogenesis, the altered expression of the molecules also influences these stem cells to lose their pluripotency and turn toward the lineage selection. As the differentiation progresses, the maintenance of the somatic cells including the oral squamous cells also depends on differential expression of the transcription factors to some extent. Recently, many experimental and observational studies documented the significant contribution in carcinogenesis of various human cancers. In this review, we have attempted to summarize the evidences indicating about the putative role of these master pluripotency regulators in various phases of oral carcinogenesis i.e. initiation , progression and prognosis of oral squamous cell carcinoma.
Collapse
Affiliation(s)
- Niharika Swain
- Department of Oral Pathology, MGM Dental College and Hospital, MGM Institute of Health Sciences, Navi Mumbai, Maharashtra, India
| | - Mansee Thakur
- Department of Medical Biotechnology, MGM School of Biomedical Sciences, MGM Institute of Health Sciences, Navi Mumbai, Maharashtra, India
| | - Jigna Pathak
- Department of Oral Pathology, MGM Dental College and Hospital, MGM Institute of Health Sciences, Navi Mumbai, Maharashtra, India
| | - Biswaranjan Swain
- Department of Electronics and Communications Engineering, Institute of Technical Education and Research, S’O’A Deemed to be University, Bhubaneswar, Odisha, India
| |
Collapse
|
23
|
Hsieh PL, Liao YW, Pichler M, Yu CC. MicroRNAs as Theranostics Targets in Oral Carcinoma Stem Cells. Cancers (Basel) 2020; 12:cancers12020340. [PMID: 32028645 PMCID: PMC7072536 DOI: 10.3390/cancers12020340] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 01/30/2020] [Accepted: 01/31/2020] [Indexed: 12/25/2022] Open
Abstract
Oral cancer belongs to head and neck squamous cell carcinoma and has been recognized as one of the most prevalent malignancies worldwide. Recent studies have suggested that cancer stem cells (CSCs) may participate in tumor initiation, metastasis and even recurrence, so the regulation of CSCs has drawn significant attention over the past decade. Among various molecules that are associated with CSCs, non-coding RNAs (ncRNAs) have been indicated as key players in the acquisition and maintenance of cancer stemness. In addition, accumulating studies have shown that the aberrant expression of these ncRNAs may serve as surrogate diagnostic markers or even therapeutic targets for cancer treatment. The current study reviews the previous work by us and others to summarize how these ncRNAs affect oral cancer stemness and their potential theranostic applications. A better understanding of the implication of these ncRNAs in oral tumorigenesis will facilitate the translation of basic ncRNA research into clinical application in the future.
Collapse
Affiliation(s)
- Pei-Ling Hsieh
- Department of Anatomy, School of Medicine, China Medical University, Taichung 404, Taiwan;
| | - Yi-Wen Liao
- School of Dentistry, Chung Shan Medical University, Taichung 40201, Taiwan;
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| | - Martin Pichler
- Research Unit of Non-Coding RNAs and Genome Editing, Division of Clinical Oncology, Department of Medicine, Comprehensive Cancer Center Graz, Medical University of Graz, 8036 Graz, Austria;
| | - Cheng-Chia Yu
- School of Dentistry, Chung Shan Medical University, Taichung 40201, Taiwan;
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
- Institute of Oral Sciences, Chung Shan Medical University, Taichung 40201, Taiwan
- Correspondence: ; Tel.: +886-4-24718668
| |
Collapse
|
24
|
El-Guindy DM, Wasfy RE, Abdel Ghafar MT, Ali DA, Elkady AM. Oct4 expression in gastric carcinoma: association with tumor proliferation, angiogenesis and survival. J Egypt Natl Canc Inst 2019; 31:3. [PMID: 32372156 DOI: 10.1186/s43046-019-0005-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 09/20/2019] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Octamer-binding transcription factor 4 (Oct4) is a transcription factor that has an important role in stem cell differentiation and self-renewal. Oct4 has also been implicated in tumorigenicity of different cancers. This study aimed to analyze Oct4 expression in gastric carcinoma (GC) and to evaluate the relation between Oct4 expression and clinicopathologic parameters, tumor proliferation, and angiogenesis in addition to patient survival. RESULTS Oct4 mRNA was detected by quantitative reverse transcription PCR (qRT-PCR) in 45 GC specimens and adjacent non-cancerous tissues. We found a significant difference in Oct4 mRNA relative expression levels in GC tissue compared with adjacent non-cancerous tissues (p < 0.001). Furthermore, immunohistochemistry (IHC) was performed to study the Oct4 expression in GC cases. High Oct4 immunostaining was detected in 62.2% of GC specimens. High Oct4 expression both by mRNA relative quantitation and IHC were significantly related to poorly differentiated tumors, nodal metastasis, and stage III tumors. Moreover, high Oct4 IHC expression was also associated with cases positive for Ki-67 and VEGF expressions (p < 0.001 and 0.021, respectively). Oct4 expression identified by both mRNA relative quantitation and IHC was significantly related (p < 0.001). As regards patient survival, high Oct4 expression was significantly related to poor overall survival (OS) and disease-free survival (DFS) (p = 0.029 and 0.031, respectively). CONCLUSION Oct4 plays a valuable role in the progression and prognosis of GC. High Oct4 expression is associated with high tumor grade, nodal metastasis, stage III tumors, and poor OS and DFS. High Oct4 is also significantly associated with Ki-67 and VGEF expression, thus enhancing tumor proliferation and angiogenesis.
Collapse
Affiliation(s)
- Dina M El-Guindy
- Pathology Department, Faculty of Medicine, Tanta University, Tanta, Egypt.
| | - Rania E Wasfy
- Pathology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | | | - Dina A Ali
- Clinical Pathology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Asmaa M Elkady
- Clinical Oncology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| |
Collapse
|
25
|
Chen D, Wang CY. Targeting cancer stem cells in squamous cell carcinoma. PRECISION CLINICAL MEDICINE 2019; 2:152-165. [PMID: 31598386 PMCID: PMC6770277 DOI: 10.1093/pcmedi/pbz016] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 08/14/2019] [Accepted: 08/14/2019] [Indexed: 12/24/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is a highly aggressive tumor and the sixth
most common cancer worldwide. Current treatment strategies for HNSCC are surgery,
radiotherapy, chemotherapy, immunotherapy or combinatorial therapies. However, the overall
5-year survival rate of HNSCC patients remains at about 50%. Cancer stem cells (CSCs), a
small population among tumor cells, are able to self-renew and differentiate into
different tumor cell types in a hierarchical manner, similar to normal tissue. In HNSCC,
CSCs are proposed to be responsible for tumor initiation, progression, metastasis, drug
resistance, and recurrence. In this review, we discuss the molecular and cellular
characteristics of CSCs in HNSCC. We summarize current approaches used in the literature
for identification of HNSCC CSCs, and mechanisms required for CSC regulation. We also
highlight the role of CSCs in treatment failure and therapeutic targeting options for
eliminating CSCs in HNSCC.
Collapse
Affiliation(s)
- Demeng Chen
- Laboratory of Molecular Signaling, Division of Oral Biology and Medicine, School of Dentistry, UCLA, Los Angeles, CA 90095, USA
| | - Cun-Yu Wang
- Laboratory of Molecular Signaling, Division of Oral Biology and Medicine, School of Dentistry, UCLA, Los Angeles, CA 90095, USA.,Department of Bioengineering, Henry Samueli School of Engineering and Applied Science, UCLA, Los Angeles, CA 90095, USA.,Jonsson Comprehensive Cancer Center and Broad Stem Cell Research Center, UCLA, Los Angeles, CA 90095, USA
| |
Collapse
|
26
|
KLF4 expression in the surgical cut margin is associated with disease relapse of oral squamous cell carcinoma. Oral Surg Oral Med Oral Pathol Oral Radiol 2019; 128:154-165. [DOI: 10.1016/j.oooo.2019.02.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 02/20/2019] [Accepted: 02/25/2019] [Indexed: 02/07/2023]
|
27
|
Chen B, Zhu Z, Li L, Ye W, Zeng J, Gao J, Wang S, Zhang L, Huang Z. Effect of overexpression of Oct4 and Sox2 genes on the biological and oncological characteristics of gastric cancer cells. Onco Targets Ther 2019; 12:4667-4682. [PMID: 31417271 PMCID: PMC6592062 DOI: 10.2147/ott.s209734] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Accepted: 05/07/2019] [Indexed: 11/23/2022] Open
Abstract
Objective: Using the gastric cancer cell line SGC7901, we constructed a cell line that overexpressed octamer-binding protein 4 (Oct4) and SRY-box 2 (Sox2) to explore the stem cell oncological and biological characteristics of these cells and to elucidate the mechanisms of Oct4 and Sox2 in cancer. Methods: A lentiviral vector containing the Sox2 gene was constructed and transfected into a gastric cancer cell line overexpressing Oct4 (SGC7901-Oct4) to obtain a stably transfected cell line (SGC7901-Oct4-Sox2). Oct4 and Sox2 expression was detected by RT-PCR and Western blotting. The proliferation, drug resistance, migration, and invasion abilities of the cells were assessed using in vitro (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium), drug resistance, scratch-wound migration, transwell migration, transwell invasion, and spherical clone formation assays, and their tumorigenic ability was assessed using a tumor formation experiment in mice. Results: Compared with the control group, the expression of Oct4, Sox2, CD44, and E-cadherin was significantly higher in the group that overexpressed Oct4 and Sox2, while the expression of c-Myc and Klf4 did not significantly change. The proliferation, drug resistance, migration, and invasion abilities were significantly enhanced in the overexpression group, and the tumorigenic ability in mice was also significantly enhanced, with significantly increased tumor size and weight. Conclusion: The proliferation, drug resistance, migration, invasion, and tumorigenic abilities of SGC7901 cells overexpressing Oct4 and Sox2 were significantly improved. Oct4 and Sox2 play important roles in the proliferation, migration, invasion, and tumorigenicity of gastric cancer cells, and the two genes may be synergistic to a certain degree.
Collapse
Affiliation(s)
- Borong Chen
- Department of Gastrointestinal Surgery, Xiamen Cancer Hospital, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian 361003, People's Republic of China
| | - Zhipeng Zhu
- Department of Gastrointestinal Surgery, Xiamen Cancer Hospital, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian 361003, People's Republic of China
| | - Lulu Li
- Department of Gastrointestinal Surgery, Xiamen Cancer Hospital, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian 361003, People's Republic of China
| | - Weipeng Ye
- Department of Clinical Medicine, Fujian Medical University, Fuzhou, Fujian 350004, People's Republic of China
| | - Junjie Zeng
- Department of Gastrointestinal Surgery, Xiamen Cancer Hospital, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian 361003, People's Republic of China
| | - Jin Gao
- Department of Gastrointestinal Surgery, Xiamen Cancer Hospital, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian 361003, People's Republic of China
| | - Shengjie Wang
- Department of Gastrointestinal Surgery, Xiamen Cancer Hospital, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian 361003, People's Republic of China
| | - Liang Zhang
- Department of Gastrointestinal Surgery, Xiamen Cancer Hospital, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian 361003, People's Republic of China
| | - Zhengjie Huang
- Department of Gastrointestinal Surgery, Xiamen Cancer Hospital, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian 361003, People's Republic of China.,Department of Clinical Medicine, Fujian Medical University, Fuzhou, Fujian 350004, People's Republic of China
| |
Collapse
|
28
|
Kim J, Kim HS, Shim JJ, Lee J, Kim AY, Kim J. Critical role of the fibroblast growth factor signalling pathway in Ewing's sarcoma octamer-binding transcription factor 4-mediated cell proliferation and tumorigenesis. FEBS J 2019; 286:4443-4472. [PMID: 31155838 DOI: 10.1111/febs.14946] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 02/18/2019] [Accepted: 05/31/2019] [Indexed: 12/27/2022]
Abstract
Certain bone and soft tissue (BST) tumours harbour a chromosomal translocation [t(6;22)(p21;q12)], which fuses the Ewing's sarcoma (EWS) gene at 22q12 with the octamer-binding transcription factor 4 (Oct-4) gene at 6p21, resulting in the chimeric EWS-Oct-4 protein that possesses high transactivation ability. Although abnormal activation of signalling pathways can lead to human cancer development, the pathways underlying these processes in human BST tumours remain poorly explored. Here, we investigated the functional significance of fibroblast growth factor (FGF) signalling in human BST tumours. To identify the gene(s) involved in the FGF signalling pathway and potentially regulated by EWS-Oct-4 (also called EWS-POU5F1), we performed RNA-Seq analysis, electrophoretic mobility shift assays, chromatin immunoprecipitation assays, and xenograft assays. Treating GBS6 or ZHBTc4 cells-expressing EWS-Oct-4 with the small molecule FGF receptor (FGFR) inhibitors PD173074, NVPBGJ398, ponatinib, and dovitinib suppressed cellular proliferation. Gene expression analysis revealed that, among 22 Fgf and four Fgfr family members, Fgf-4 showed the highest upregulation (by 145-fold) in ZHBTc4 cells-expressing EWS-Oct-4. Computer-assisted analysis identified a putative EWS-Oct-4-binding site at +3017/+3024, suggesting that EWS-Oct-4 regulates Fgf-4 expression in human BST tumours. Fgf-4 enhancer constructs showed that EWS-Oct-4 transactivated the Fgf-4 gene reporter in vitro, and that overexpression of EWS-Oct-4 stimulated endogenous Fgf-4 gene expression in vivo. Finally, PD173074 significantly decreased tumour volume in mice. Taken together, these data suggest that FGF-4 signalling is involved in EWS-Oct-4-mediated tumorigenesis, and that its inhibition impairs tumour growth in vivo significantly.
Collapse
Affiliation(s)
- Junghoon Kim
- Laboratory of Molecular and Cellular Biology, Department of Life Science, Sogang University, Seoul, Korea
| | - Hyo Sun Kim
- Laboratory of Molecular and Cellular Biology, Department of Life Science, Sogang University, Seoul, Korea
| | - Jung-Jae Shim
- Laboratory of Molecular and Cellular Biology, Department of Life Science, Sogang University, Seoul, Korea
| | - Jungwoon Lee
- Laboratory of Molecular and Cellular Biology, Department of Life Science, Sogang University, Seoul, Korea
| | - Ah-Young Kim
- Laboratory of Molecular and Cellular Biology, Department of Life Science, Sogang University, Seoul, Korea
| | - Jungho Kim
- Laboratory of Molecular and Cellular Biology, Department of Life Science, Sogang University, Seoul, Korea
| |
Collapse
|
29
|
Role of OCT4 in cancer stem-like cells and chemotherapy resistance. Biochim Biophys Acta Mol Basis Dis 2019; 1866:165432. [PMID: 30904611 DOI: 10.1016/j.bbadis.2019.03.005] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/07/2019] [Accepted: 03/17/2019] [Indexed: 02/06/2023]
Abstract
Cancer stem-like cells (CSCs) contribute to the tumorigenicity, progression, and chemoresistance of cancers. It is not known whether CSCs arise from normal stem cells or if they arise from differentiated cancer cells by acquiring self-renewal features. These CSCs share stem cell markers that normal stem cells express. There is a rising interest in octamer-binding transcription factor 4 (OCT4), one of the stem cell factors that are essential in embryogenesis and pluripotency. OCT4 is also overexpressed in CSCs of various cancers. Although the majority of the studies in CSCs reported a positive association between the expression of OCT4 and chemoresistance and an inverse correlation between OCT4 and clinical prognosis, there are studies rebuking these findings, possibly due to the sparsity of stem cells within tumors and the heterogeneity of tumors. In addition, post-translational modification of OCT4 affects its activity and warrants further investigation for its association with chemoresistance and prognosis.
Collapse
|
30
|
Lee SH, Kieu C, Martin CE, Han J, Chen W, Kim JS, Kang MK, Kim RH, Park NH, Kim Y, Shin KH. NFATc3 plays an oncogenic role in oral/oropharyngeal squamous cell carcinomas by promoting cancer stemness via expression of OCT4. Oncotarget 2019; 10:2306-2319. [PMID: 31040921 PMCID: PMC6481346 DOI: 10.18632/oncotarget.26774] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 02/22/2019] [Indexed: 02/07/2023] Open
Abstract
Nuclear factor of activated T cells (NFATc1-c4), a family of transcription factors, is involved in many biological processes by regulating various downstream target genes. However, their role in cancer progression remains controversial. We here report that NFATc3 is the dominant isoform of NFAT in human oral epithelial cells, and its expression was increased in a stepwise manner during the progression of oral/oropharyngeal squamous cell carcinoma (OSCC). More importantly, NFATc3 was highly enriched in self-renewing cancer stem-like cells (CSCs) of OSCC. Increased expression of NFATc3 was required for the maintenance of CSC self-renewal, as NFATc3 inhibition suppressed tumor sphere formation in OSCC cells. Conversely, ectopic NFATc3 expression in non-tumorigenic immortalized oral epithelial cells resulted in the acquisition of self-renewal and increase in CSC phenotype, such as enhanced ALDH1HIGH cell population, mobility and drug resistance, indicating the functional role of NFATc3 in the maintenance of CSC phenotype. NFATc3 expression also converted the non-tumorigenic oral epithelial cells to malignant phenotypes. Mechanistic investigations further reveal that NFATc3 binds to the promoter of OCT4, a stemness transcription factor, for its activation, thereby promoting CSC phenotype. Moreover, suppression of OCT4 abrogated CSC phenotype in the cell with ectopic NFATc3 overexpression and OSCC, and ectopic OCT4 expression sufficiently induced CSC phenotype. Our study indicates that NFATc3 plays an important role in the maintenance of cancer stemness and OSCC progression via novel NFATc3-OCT4 axis, suggesting that this axis may be a potential therapeutic target for OSCC CSCs.
Collapse
Affiliation(s)
- Sung Hee Lee
- The Shapiro Family Laboratory of Viral Oncology and Aging Research, UCLA School of Dentistry, Los Angeles 90095, CA, USA
| | - Calvin Kieu
- The Shapiro Family Laboratory of Viral Oncology and Aging Research, UCLA School of Dentistry, Los Angeles 90095, CA, USA
| | - Charlotte Ellen Martin
- The Shapiro Family Laboratory of Viral Oncology and Aging Research, UCLA School of Dentistry, Los Angeles 90095, CA, USA
| | - Jiho Han
- The Shapiro Family Laboratory of Viral Oncology and Aging Research, UCLA School of Dentistry, Los Angeles 90095, CA, USA
| | - Wei Chen
- The Shapiro Family Laboratory of Viral Oncology and Aging Research, UCLA School of Dentistry, Los Angeles 90095, CA, USA
| | - Jin Seok Kim
- Laboratory of Stem Cell and Cancer Epigenetics, UCLA School of Dentistry, Los Angeles 90095, CA, USA
| | - Mo K Kang
- The Shapiro Family Laboratory of Viral Oncology and Aging Research, UCLA School of Dentistry, Los Angeles 90095, CA, USA.,UCLA Jonsson Comprehensive Cancer Center, Los Angeles 90095, CA, USA
| | - Reuben H Kim
- The Shapiro Family Laboratory of Viral Oncology and Aging Research, UCLA School of Dentistry, Los Angeles 90095, CA, USA.,UCLA Jonsson Comprehensive Cancer Center, Los Angeles 90095, CA, USA
| | - No-Hee Park
- The Shapiro Family Laboratory of Viral Oncology and Aging Research, UCLA School of Dentistry, Los Angeles 90095, CA, USA.,UCLA Jonsson Comprehensive Cancer Center, Los Angeles 90095, CA, USA.,Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles 90095, CA, USA
| | - Yong Kim
- Laboratory of Stem Cell and Cancer Epigenetics, UCLA School of Dentistry, Los Angeles 90095, CA, USA.,UCLA Jonsson Comprehensive Cancer Center, Los Angeles 90095, CA, USA.,UCLA Broad Stem Cell Research Center, Box 957357, Los Angeles 90095, CA, USA
| | - Ki-Hyuk Shin
- The Shapiro Family Laboratory of Viral Oncology and Aging Research, UCLA School of Dentistry, Los Angeles 90095, CA, USA.,UCLA Jonsson Comprehensive Cancer Center, Los Angeles 90095, CA, USA
| |
Collapse
|
31
|
Patel AK, Vipparthi K, Thatikonda V, Arun I, Bhattacharjee S, Sharan R, Arun P, Singh S. A subtype of cancer-associated fibroblasts with lower expression of alpha-smooth muscle actin suppresses stemness through BMP4 in oral carcinoma. Oncogenesis 2018; 7:78. [PMID: 30287850 PMCID: PMC6172238 DOI: 10.1038/s41389-018-0087-x] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 07/02/2018] [Accepted: 09/04/2018] [Indexed: 12/11/2022] Open
Abstract
Cancer-associated fibroblasts (CAFs) demonstrate the characteristics of myofibroblast differentiation by often expressing the ultrastructure of alpha-smooth muscle actin (αSMA). However, heterogeneity among cancer-associated fibroblasts (CAFs), with respect to αSMA expression, has been demonstrated in several clinical studies of oral cancer. Like normal stem cells, stem-like cancer cells (SLCCs) are also regulated extrinsically by its microenvironment; therefore, we postulated that the heterogeneous oral-CAFs would differently regulate oral-SLCCs. Using transcriptomics, we clearly demonstrated that the gene expression differences between oral tumor-derived CAFs were indeed the molecular basis of heterogeneity. This also grouped these CAFs in two distinct clusters, which were named as C1 and C2. Interestingly, the oral-CAFs belonging to C1 or C2 clusters showed low or high αSMA-score, respectively. Our data with tumor tissues and in vitro co-culture experiments interestingly demonstrated a negative correlation between αSMA-score and cell proliferation, whereas, the frequency of oral-SLCCs was significantly positively correlated with αSMA-score. The oral-CAF-subtype with lower score for αSMA (C1-type CAFs) was more supportive for cell proliferation but suppressive for the self-renewal growth of oral-SLCCs. Further, we found the determining role of BMP4 in C1-type CAFs-mediated suppression of self-renewal of oral-SLCCs. Overall, we have discovered an unexplored interaction between CAFs with lower-αSMA expression and SLCCs in oral tumors and provided the first evidence about the involvement of CAF-expressed BMP4 in regulation of self-renewal of oral-SLCCs.
Collapse
Affiliation(s)
| | | | - Venu Thatikonda
- National Institute of Biomedical Genomics, Kalyani, India.,German Cancer Research Center, Heidelberg, Germany
| | | | | | | | | | - Sandeep Singh
- National Institute of Biomedical Genomics, Kalyani, India.
| |
Collapse
|
32
|
Rodrigues MFSD, Miguita L, De Andrade NP, Heguedusch D, Rodini CO, Moyses RA, Toporcov TN, Gama RR, Tajara EE, Nunes FD. GLI3 knockdown decreases stemness, cell proliferation and invasion in oral squamous cell carcinoma. Int J Oncol 2018; 53:2458-2472. [PMID: 30272273 PMCID: PMC6203148 DOI: 10.3892/ijo.2018.4572] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 06/29/2018] [Indexed: 12/24/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) is an extremely aggressive disease associated with a poor prognosis. Previous studies have established that cancer stem cells (CSCs) actively participate in OSCC development, progression and resistance to conventional treatments. Furthermore, CSCs frequently exhibit a deregulated expression of normal stem cell signalling pathways, thereby acquiring their distinctive abilities, of which self-renewal is an example. In this study, we examined the effects of GLI3 knockdown in OSCC, as well as the differentially expressed genes in CSC-like cells (CSCLCs) expressing high (CD44high) or low (CD44low) levels of CD44. The prognostic value of GLI3 in OSCC was also evaluated. The OSCC cell lines were sorted based on CD44 expression; gene expression was evaluated using a PCR array. Following this, we examined the effects of GLI3 knockdown on CD44 and ESA expression, colony and sphere formation capability, stem-related gene expression, proliferation and invasion. The overexpression of genes related to the Notch, transforming growth factor (TGF)β, FGF, Hedgehog, Wnt and pluripotency maintenance pathways was observed in the CD44high cells. GLI3 knockdown was associated with a significant decrease in different CSCLC fractions, spheres and colonies in addition to the downregulation of the CD44, Octamer-binding transcription factor 4 (OCT4; also known as POU5F1) and BMI1 genes. This downregulation was accompanied by an increase in the expression of the Involucrin (IVL) and S100A9 genes. Cellular proliferation and invasion were inhibited following GLI3 knockdown. In OSCC samples, a high GLI3 expression was associated with tumour size but not with prognosis. On the whole, the findings of this study demonstrate for the first time, at least to the best of our knowledge, that GLI3 contributes to OSCC stemness and malignant behaviour. These findings suggest the potential for the development of novel therapies, either in isolation or in combination with other drugs, based on CSCs in OSCC.
Collapse
Affiliation(s)
| | - Lucyene Miguita
- Department of Oral Pathology, School of Dentistry, University of São Paulo, São Paulo 05508000, Brazil
| | - Nathália Paiva De Andrade
- Department of Oral Pathology, School of Dentistry, University of São Paulo, São Paulo 05508000, Brazil
| | - Daniele Heguedusch
- Department of Oral Pathology, School of Dentistry, University of São Paulo, São Paulo 05508000, Brazil
| | | | - Raquel Ajub Moyses
- Department of Head and Neck Surgery, School of Medicine, University of São Paulo, São Paulo 03178200, Brazil
| | | | - Ricardo Ribeiro Gama
- Department of Head and Neck Surgery, Barretos Cancer Hospital, Barretos 014784400, Brazil
| | - Eloiza Elena Tajara
- Department of Molecular Biology, School of Medicine of São José do Rio Preto, São José do Rio Preto 15090000, Brazil
| | - Fabio Daumas Nunes
- Department of Oral Pathology, School of Dentistry, University of São Paulo, São Paulo 05508000, Brazil
| |
Collapse
|
33
|
Yang SH, Lee TY, Ho CA, Yang CY, Huang WY, Lin YC, Nieh S, Lin YS, Chen SF, Lin FH. Exposure to nicotine-derived nitrosamine ketone and arecoline synergistically facilitates tumor aggressiveness via overexpression of epidermal growth factor receptor and its downstream signaling in head and neck squamous cell carcinoma. PLoS One 2018; 13:e0201267. [PMID: 30148841 PMCID: PMC6110482 DOI: 10.1371/journal.pone.0201267] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 07/11/2018] [Indexed: 12/12/2022] Open
Abstract
Long-term nicotine-derived nitrosamine ketone (NNK) and arecoline exposure promotes carcinogenesis and head and neck squamous cell carcinoma (HNSCC) progression, although most associated data on the two were analyzed individually. The molecular mechanisms underlying tumor progression associated with the synergistic effects of NNK and arecoline remain unclear. We treated SCC-25 and FaDu cells with NNK and arecoline (separately or in combination) for 3 months. Comparative analysis was performed to investigate the mechanism underlying the acquisition of properties related to tumor promotion, including stemness, anti-apoptosis, and resistance to HNSCC therapeutics. Long-term exposure to NNK and arecoline resulted in an increase in cancer stem cell properties, anti-apoptosis, and the resistance to cisplatin in HNSCC. We detected abundant epidermal growth factor receptor (EGFR) expression in HNSCC cells after combined treatment with NNK and arecoline. EGFR was pivotal in inducing tumor promotion and anti-apoptosis in cancer cells by inducing pAKT and NFκB. Combined treatment with NNK and arecoline synergistically facilitated tumor aggressiveness via EGFR–AKT signaling. Targeting EGFR–AKT signaling may be a feasible strategy for treating HNSCC.
Collapse
Affiliation(s)
- Shih-Hsien Yang
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
- Department of Medical Administration Office, National Defense Medical Center & Tri-Service General Hospital Beitou Branch, Taipei, Taiwan
| | - Tsai-Yu Lee
- Tri-Service General Hospital Songshan Branch, National Defense Medical Center, Division of Colon and Rectum Surgery, Department of Surgery, Taipei, Taiwan
- Tri-Service General Hospital, National Defense Medical Center, Division of Colon and Rectum Surgery, Department of Surgery, Taipei, Taiwan
| | - Chun An Ho
- Department of Pathology, National Defense Medical Center & Tri-Service General Hospital, Taipei, Taiwan
| | - Chin-Yuh Yang
- Department of Dentistry, Cheng Hsin Hospital, Taipei, Taiwan
| | - Wen-Yen Huang
- Department of Radiation Oncology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Yu-Chun Lin
- Department of Pathology, National Defense Medical Center & Tri-Service General Hospital, Taipei, Taiwan
| | - Shin Nieh
- Department of Pathology, National Defense Medical Center & Tri-Service General Hospital, Taipei, Taiwan
| | - Yaoh-Shiang Lin
- Department of Otorhinolaryngology, Head and Neck Surgery, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
- * E-mail: (FH Lin); (YS Lin); (SF Chen)
| | - Su-Feng Chen
- Department of Dental Hygiene and School of Dentistry, China Medical University, Taichung, Taiwan
- * E-mail: (FH Lin); (YS Lin); (SF Chen)
| | - Fu-Huang Lin
- School of Public Health, National Defense Medical Center, Taipei, Taiwan
- * E-mail: (FH Lin); (YS Lin); (SF Chen)
| |
Collapse
|
34
|
Lin SS, Peng CY, Liao YW, Chou MY, Hsieh PL, Yu CC. miR-1246 Targets CCNG2 to Enhance Cancer Stemness and Chemoresistance in Oral Carcinomas. Cancers (Basel) 2018; 10:cancers10080272. [PMID: 30115848 PMCID: PMC6115994 DOI: 10.3390/cancers10080272] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 08/07/2018] [Accepted: 08/13/2018] [Indexed: 01/10/2023] Open
Abstract
MiRNAs have been recognized as crucial components in carcinogenesis, but whether miR-1246 affects the cancer stemness and drug resistance in oral squamous cell carcinoma (OSCC) has not been fully understood and its downstream targets still need to be unraveled. In the present work, we employed miRNAs RT-PCR analysis to evaluate the expression of miR-1246 in tumor tissues and oral cancer stem cells (OCSC). Stemness phenotypes, including self-renewal, migration, invasion, colony formation capacities, and in vivo oncogenicity of oral cancer cells following transfected with miR-1246 inhibitors or mimics were examined. Our results suggested that the expression level of miR-1246 was significantly upregulated in the tumor tissues and OCSC. Kaplan-Meier survival analysis of OSCC patients with high levels of miR-1246 had the worst survival rate compared to their low-expression counterparts. Inhibition of miR-1246 in OCSC significantly reduced the stemness hallmarks, while overexpression of miR-1246 enhanced these characteristics. Moreover, we showed that downregulation of miR-1246 decreased chemoresistance. In addition, we verified that miR-1246-inhibited CCNG2 contributed to the cancer stemness of OSCC. These results demonstrated the significance of miR-1246 in the regulation of OSCC stemness. Targeting miR-1246-CCNG2 axis may be beneficial to suppress cancer relapse and metastasis in OSCC patients.
Collapse
Affiliation(s)
- Shih-Shen Lin
- School of Dentistry, Chung Shan Medical University, Taichung 40201, Taiwan.
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung 40201, Taiwan.
| | - Chih-Yu Peng
- School of Dentistry, Chung Shan Medical University, Taichung 40201, Taiwan.
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung 40201, Taiwan.
| | - Yi-Wen Liao
- School of Dentistry, Chung Shan Medical University, Taichung 40201, Taiwan.
| | - Ming-Yung Chou
- School of Dentistry, Chung Shan Medical University, Taichung 40201, Taiwan.
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung 40201, Taiwan.
- Institute of Oral Sciences, Chung Shan Medical University, Taichung 40201, Taiwan.
| | - Pei-Ling Hsieh
- Department of Anatomy, School of Medicine, China Medical University, Taichung 40402, Taiwan.
| | - Cheng-Chia Yu
- School of Dentistry, Chung Shan Medical University, Taichung 40201, Taiwan.
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung 40201, Taiwan.
- Institute of Oral Sciences, Chung Shan Medical University, Taichung 40201, Taiwan.
| |
Collapse
|
35
|
Miyamoto T, Mizuno N, Kosaka M, Fujitani Y, Ohno E, Ohtsuka A. Conclusive Evidence for OCT4
Transcription in Human Cancer Cell Lines: Possible Role of a Small OCT4-Positive Cancer Cell Population. Stem Cells 2018; 36:1341-1354. [DOI: 10.1002/stem.2851] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 06/17/2018] [Accepted: 05/01/2018] [Indexed: 12/30/2022]
Affiliation(s)
- Tomoyuki Miyamoto
- Department of Human Morphology; Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences; Kita, Okayama Japan
- Faculty of Medical Bioscience, Department of Medical Life Science; Kyushu University of Health and Welfare/Cancer Cell Institute of Kyushu University of Health and Welfare, , Yoshino; Nobeoka, Miyazaki Japan
| | - Nobuhiko Mizuno
- Department of Human Morphology; Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences; Kita, Okayama Japan
| | - Mitsuko Kosaka
- Department of Human Morphology; Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences; Kita, Okayama Japan
| | - Yoko Fujitani
- Department of Human Morphology; Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences; Kita, Okayama Japan
| | - Eiji Ohno
- Faculty of Medical Bioscience, Department of Medical Life Science; Kyushu University of Health and Welfare/Cancer Cell Institute of Kyushu University of Health and Welfare, , Yoshino; Nobeoka, Miyazaki Japan
| | - Aiji Ohtsuka
- Department of Human Morphology; Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences; Kita, Okayama Japan
| |
Collapse
|
36
|
Oct-4 and CD44 in epithelial stem cells like of benign odontogenic lesions. Histochem Cell Biol 2018; 150:371-377. [PMID: 29971493 DOI: 10.1007/s00418-018-1692-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/29/2018] [Indexed: 10/28/2022]
Abstract
Benign epithelial odontogenic lesions are great clinical importance entities that develop in the jaws from the tissues that form teeth. It has been shown that benign and malignant tumors are present in a large number of tumor stem cells, which has great implications in the development of these lesions. Oct-4 and CD44 have been demonstrated as important markers for tumoral stem cells. The aim of this study was investigate the presence of stem cell markers Oct-4 and CD44 in benign epithelial odontogenic lesions. Twenty odontogenic keratocysts (OKC), 20 ameloblastomas (AMB) of the solid/multicystic type and 20 adenomatoid odontogenic tumors (AOT) were retrospectively analyzed for immunohistochemical detection of Oct-4 and CD44 in their epithelial component. All cases were positive for the two markers, with the majority exhibiting a high expression. Analysis of the expression of Oct-4 revealed no statistically significant differences (p = 0.406) between the lesions studied. Regarding CD44, there was a significant difference between the cases of AMB and AOT in relation with OKC, with the latter presenting a greater labelling (p = 0.034). No statistically significant correlation between Oct-4 and CD44 was observed in the lesions. In our findings, the presence of stem cell-like phenotype at various sites of the epithelial component of the odontogenic lesions was identified, suggesting its possible participation in histogenesis and differentiation without, however, exerting influence on the aggressiveness of the lesions.
Collapse
|
37
|
Rodrigues MFSD, Xavier FCDA, Andrade NP, Lopes C, Miguita Luiz L, Sedassari BT, Ibarra AMC, López RVM, Kliemann Schmerling C, Moyses RA, Tajara da Silva EE, Nunes FD. Prognostic implications of CD44, NANOG, OCT4, and BMI1 expression in tongue squamous cell carcinoma. Head Neck 2018; 40:1759-1773. [PMID: 29607565 DOI: 10.1002/hed.25158] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 12/23/2017] [Accepted: 02/08/2018] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Tongue squamous cell carcinoma (SCC) contains a cell subpopulation referred to as cancer stem cells (CSCs), which are responsible for tumor growth, metastasis, and resistance to chemotherapy and radiotherapy. The CSC markers have been used to isolate these cells and as biomarkers to predict overall survival. METHODS The CSC markers CD44, NANOG, OCT4, and BMI1 were investigated using reverse transcriptase-quantitative polymerase chain reaction (RT-qPCR) and immunohistochemistry and correlated with clinicopathological parameters. RESULTS The CD44 overexpression was associated with disease-related death (P = 0.02) and worst prognosis. NANOG was upregulated in nontumoral margins and associated with T1/T2 classification, lymph node metastasis, and worst prognosis. OCT4 was associated with lymph node metastasis and worst overall survival. BMI1 and CD44v3 were overexpressed in tongue SCC. Coexpression of CD44++ /NANOG++ was associated with worst overall survival when compared with patients with CD44-/+ /NANOG-/+ . CONCLUSION The CSC markers might play an important role not only in CSC trait acquisition but also in tongue SCC development and progression.
Collapse
Affiliation(s)
- Maria Fernanda Setúbal Destro Rodrigues
- Oral and Maxillofacial Pathology Department, School of Dentistry, University of São Paulo, São Paulo, Brazil.,Postgraduate Program in Biophotonics Applied to Health Sciences, Nove de Julho University (UNINOVE), São Paulo, São Paulo, Brazil
| | | | - Nathália Paiva Andrade
- Oral and Maxillofacial Pathology Department, School of Dentistry, University of São Paulo, São Paulo, Brazil
| | - Camila Lopes
- Oral and Maxillofacial Pathology Department, School of Dentistry, University of São Paulo, São Paulo, Brazil
| | - Lucyene Miguita Luiz
- Oral and Maxillofacial Pathology Department, School of Dentistry, University of São Paulo, São Paulo, Brazil
| | - Bruno Tavares Sedassari
- Oral and Maxillofacial Pathology Department, School of Dentistry, University of São Paulo, São Paulo, Brazil
| | - Ana Melissa Ccopa Ibarra
- Postgraduate Program in Biophotonics Applied to Health Sciences, Nove de Julho University (UNINOVE), São Paulo, São Paulo, Brazil
| | | | - Claudia Kliemann Schmerling
- Department of Molecular Biology, São José do Rio Preto School of Medicine, São José do Rio Preto, São Paulo, Brazil
| | - Raquel Ajub Moyses
- Department of Molecular Biology, São José do Rio Preto School of Medicine, São José do Rio Preto, São Paulo, Brazil
| | | | - Fabio Daumas Nunes
- Oral and Maxillofacial Pathology Department, School of Dentistry, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
38
|
Wang TY, Peng CY, Lee SS, Chou MY, Yu CC, Chang YC. Acquisition cancer stemness, mesenchymal transdifferentiation, and chemoresistance properties by chronic exposure of oral epithelial cells to arecoline. Oncotarget 2018; 7:84072-84081. [PMID: 27557511 PMCID: PMC5356645 DOI: 10.18632/oncotarget.11432] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 08/13/2016] [Indexed: 12/20/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC), one of the most deadliest malignancies in the world, is caused primarily by areca nut chewing in Southeast Asia. The mechanisms by which areca nut participates in OSCC tumorigenesis are not well understood. In this study, we investigated the effects of low dose long-term arecoline (10 μg/mL, 90-days), a major areca nut alkaloid, on enhancement cancer stemness of human oral epithelial (OE) cells. OE cells with chronic arecoline exposure resulted in increased ALDH1 population, CD44 positivity, stemness-related transcription factors (Oct4, Nanog, and Sox2), epithelial-mesenchymal transdifferentiation (EMT) traits, chemoresistance, migration/invasiveness/anchorage independent growth and in vivo tumor growth as compared to their untreated controls. Mechanistically, ectopic miR-145 over-expression in chronic arecoline-exposed OE (AOE) cells inhibited the cancer stemness and xenografic. In AOE cells, luciferase reporter assays further revealed that miR-145 directly targets the 3′ UTR regions of Oct4 and Sox2 and overexpression of Sox2/Oct4 effectively reversed miR-145-regulated cancer stemness-associated phenomenas. Additionally, clinical results further revealed that Sox2 and Oct4 expression was inversely correlated with miR-145 in the tissues of areca quid chewing-associated OSCC patients. This study hence attempts to provide novel insight into areca nut-induced oral carcinogenesis and new intervention for the treatment of OSCC patients, especially in areca nut users.
Collapse
Affiliation(s)
- Tung Yuan Wang
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan
| | - Chih-Yu Peng
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan.,Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Shiuan-Shinn Lee
- School of Public Health, Chung Shan Medical University, Taichung, Taiwan
| | - Ming-Yung Chou
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan.,Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan.,Institute of Oral Sciences, Chung Shan Medical University, Taichung, Taiwan
| | - Cheng-Chia Yu
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan.,Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan.,Institute of Oral Sciences, Chung Shan Medical University, Taichung, Taiwan
| | - Yu-Chao Chang
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan.,Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
39
|
Lu MY, Liao YW, Chen PY, Hsieh PL, Fang CY, Wu CY, Yen ML, Peng BY, Wang DP, Cheng HC, Wu CZ, Shih YH, Wang DJ, Yu CC, Tsai LL. Targeting LncRNA HOTAIR suppresses cancer stemness and metastasis in oral carcinomas stem cells through modulation of EMT. Oncotarget 2017; 8:98542-98552. [PMID: 29228709 PMCID: PMC5716749 DOI: 10.18632/oncotarget.21614] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 08/26/2017] [Indexed: 12/25/2022] Open
Abstract
Increasing evidence indicates that long non-coding RNAs (lncRNAs) regulate diverse cellular processes, such as cell growth, apoptosis and tumorigenesis. However, the functional roles of lncRNAs and mechanistic analysis of their interplays with oncogenic pathways in oral cancer remain largely unknown. In the current study, we examined the significance of lncRNA HOTAIR (HOX transcript antisense RNA) in tumor progression of oral squamous cell carcinomas (OSCC). We found the expression of HOTAIR was upregulated in tumor tissues, especially in the metastatic samples. And it was also observed in metastatic OSCC cell lines. Silence of HOTAIR in oral carcinomas stem cells (OCSC) significantly inhibited their cancer stemness, invasiveness and tumourigenicity in xenotransplantation models. By contrast, overexpression of HOTAIR in OSCC enhanced their metastatic potential and epithelial-mesenchymal transition (EMT) characteristics. And we showed that the expression of HOTAIR was positively related to mesenchymal markers and inversely correlated with epithelial marker in clinical samples. Moreover, Kaplan-Meier survival analysis suggested that high level of HOTAIR was a strong predictor of poor survival in OSCC patients. Collectively, our data demonstrated that HOTAIR-mediated cancer stemness and metastasis are associated with the regulation of EMT and HOTAIR may serve as a therapeutic target in OSCC.
Collapse
Affiliation(s)
- Ming-Yi Lu
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan.,Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Yi-Wen Liao
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan
| | - Pei-Yin Chen
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan.,Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Pei-Ling Hsieh
- Institute of Oral Sciences, Chung Shan Medical University, Taichung, Taiwan
| | - Chih-Yuan Fang
- Department of Dentistry, Taipei Municipal Wanfang Hospital, Taipei, Taiwan.,School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chia-Yu Wu
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Dentistry, Taipei Medical University Hospital, Taipei, Taiwan
| | - Ming-Liang Yen
- Department of Dentistry, Taipei Medical University Hospital, Taipei, Taiwan
| | - Bou-Yue Peng
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Dentistry, Taipei Medical University Hospital, Taipei, Taiwan
| | - Dayen Peter Wang
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Dentistry, Taipei Medical University Hospital, Taipei, Taiwan
| | - Hsin-Chung Cheng
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Dentistry, Taipei Medical University Hospital, Taipei, Taiwan
| | - Ching-Zong Wu
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Dentistry, Taipei Medical University Hospital, Taipei, Taiwan
| | - Yung-Hsun Shih
- Department of Dentistry, Taipei Municipal Wanfang Hospital, Taipei, Taiwan.,Department of Dentistry, Taipei Medical University Hospital, Taipei, Taiwan
| | - Duen-Jeng Wang
- Department of Dentistry, Taipei Medical University Hospital, Taipei, Taiwan
| | - Cheng-Chia Yu
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan.,Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan.,Institute of Oral Sciences, Chung Shan Medical University, Taichung, Taiwan
| | - Lo-Lin Tsai
- Department of Dentistry, Taipei Municipal Wanfang Hospital, Taipei, Taiwan.,Department of Dentistry, Taipei Medical University Hospital, Taipei, Taiwan
| |
Collapse
|
40
|
Abstract
Cancer stem cells (CSCs) have been identified in oral cavity squamous cell carcinoma (OCSCC). CSCs possess the ability for perpetual self-renewal and proliferation, producing downstream progenitor cells and cancer cells that drive tumor growth. Studies of many cancer types including OCSCC have identified CSCs using specific markers, but it is still unclear as to where in the stem cell hierarchy these markers fall. This is compounded further by the presence of multiple CSC subtypes within OCSCC, making investigation reliant on the use of multiple markers. This review examines the current knowledge in CSC markers OCT4, SOX2, NANOG, ALDH1, phosphorylated STAT3, CD44, CD24, CD133, and Musashi-1, specifically focusing on their use and validity in OCSCC CSC research and how they may be organized into the CSC hierarchy. OCSCC CSCs also express components of the renin–angiotensin system (RAS), which suggests CSCs may be novel therapeutic targets by modulation of the RAS using existing medications.
Collapse
Affiliation(s)
- Ranui Baillie
- Gillies McIndoe Research Institute, Wellington, New Zealand
| | - Swee T Tan
- Gillies McIndoe Research Institute, Wellington, New Zealand.,Wellington Regional Plastic, Maxillofacial and Burns Unit, Hutt Hospital, Wellington, New Zealand
| | | |
Collapse
|
41
|
Li C, Zhu M, Lou X, Liu C, Chen H, Lin X, Ji W, Li Z, Su C. Transcriptional factor OCT4 promotes esophageal cancer metastasis by inducing epithelial-mesenchymal transition through VEGF-C/VEGFR-3 signaling pathway. Oncotarget 2017; 8:71933-71945. [PMID: 29069758 PMCID: PMC5641101 DOI: 10.18632/oncotarget.18035] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 05/10/2017] [Indexed: 12/03/2022] Open
Abstract
The octamer-binding transcription factor 4 (OCT4) can promote cancer proliferation and metastasis. Esophageal carcinoma (ECC) harbors different quantities of OCT4-positive cancer cells. These cells are highly malignant and prone to metastasis; however, the mechanism remains unknown. In this study, we found that OCT4 enhances vascular endothelial growth factor C (VEGF-C) promoter activity to promote VEGF-C expression and activates VEGF receptor 3 (VEGFR-3) in ECC cells, thereby inducing cancer cell epithelial-mesenchymal transition (EMT). Studies using xenograft models showed that OCT4 promoted xenograft growth and intraperitoneal implantation metastasis of ECC cells. Downregulation of OCT4 expression could inhibit cancer metastasis. OCT4- and VEGF-C-positive ECC presented more malignant biological behaviors and the corresponding patients exhibited a poor prognosis. The study confirmed that the OCT4/VEGF-C/VEGFR-3/EMT signaling plays a role in the progression of ECC. Understanding of how OCT4 regulates EMT and how ECC metastasis occurs will provide useful targets for the biological treatment of ECC.
Collapse
Affiliation(s)
- Chunguang Li
- Department of Thoracic Surgery and Reconstructive Surgery, Changhai Hospital, Second Military Medical University, Shanghai 200433, China.,Department of Molecular Oncology, Eastern Hepatobiliary Surgery Hospital and National Center of Liver Cancer, Second Military Medical University, Shanghai 200433, China
| | - Maoling Zhu
- Department of Gastroenterology, Shanghai Yangpu Hospital, Tongji University, Shanghai 200090, China
| | - Xiaoli Lou
- Department of Thoracic Surgery and Reconstructive Surgery, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Chunying Liu
- Department of Molecular Oncology, Eastern Hepatobiliary Surgery Hospital and National Center of Liver Cancer, Second Military Medical University, Shanghai 200433, China
| | - Hezhong Chen
- Department of Thoracic Surgery and Reconstructive Surgery, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Xuejing Lin
- Department of Molecular Oncology, Eastern Hepatobiliary Surgery Hospital and National Center of Liver Cancer, Second Military Medical University, Shanghai 200433, China
| | - Weidan Ji
- Department of Molecular Oncology, Eastern Hepatobiliary Surgery Hospital and National Center of Liver Cancer, Second Military Medical University, Shanghai 200433, China
| | - Zhigang Li
- Department of Thoracic Surgery, Shanghai Chest Hospital Esophageal Disease Center, Shanghai Jiao-Tong University, Shanghai 200030, China
| | - Changqing Su
- Department of Molecular Oncology, Eastern Hepatobiliary Surgery Hospital and National Center of Liver Cancer, Second Military Medical University, Shanghai 200433, China
| |
Collapse
|
42
|
Wang X, Guo H, Yao B, Helms J. miR-15b inhibits cancer-initiating cell phenotypes and chemoresistance of cisplatin by targeting TRIM14 in oral tongue squamous cell cancer. Oncol Rep 2017; 37:2720-2726. [PMID: 28350138 DOI: 10.3892/or.2017.5532] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 06/17/2016] [Indexed: 11/05/2022] Open
Abstract
Oral tongue squamous cell carcinoma (TSCC) is one of the most lethal cancers within the oral cavity and its prognosis remains dismal due to the paucity of effective therapeutic targets. The formation of cancer-initiating cells (CICs) and epithelial-mesenchymal transition (EMT) are pivotal events involved in the dismal prognosis. They have been shown to be related to the resistance to cisplatin treatment. In the present study, we showed that TRIM14 induced formation of cancer-initiating cells and EMT in TSCC SCC25 cells. Its overexpression promoted cisplatin resistance in the SCC25 cells. We found that overexpression of miR-15b suppressed TRIM14 and inhibited CIC phenotypes in the SCC25 cells. Moreover, overexpression of miR-15b promoted mesenchymal-epithelial transition (MET) in the SCC25 cells and sensitized cisplatin-resistant SCC25 (SCC25-res) cells to cisplatin. Thus, we conclude that miR-15b inhibited cancer stem cell phenotypes and its restoration reversed the chemoresistance of cisplatin by targeting TRIM14 in TSCC. Elucidating the molecular mechanism of EMT and cancer stem cells in TSCC may further aid in the understanding of the pathogenesis and progression of the disease, and offer novel targets for the discovery of new drugs.
Collapse
Affiliation(s)
- Xijun Wang
- Department of Prosthodontics, School of Stomatology, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Hongmei Guo
- Department of Periodontology, School of Stomatology, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Banjamin Yao
- Department of Surgery, University of California Davis, Sacaramento, CA 95817, USA
| | - Julia Helms
- Department of Surgery, University of California Davis, Sacaramento, CA 95817, USA
| |
Collapse
|
43
|
Peng CY, Liao YW, Lu MY, Yu CH, Yu CC, Chou MY. Downregulation of miR-1 enhances tumorigenicity and invasiveness in oral squamous cell carcinomas. J Formos Med Assoc 2017; 116:782-789. [PMID: 28089494 DOI: 10.1016/j.jfma.2016.12.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 11/23/2016] [Accepted: 12/04/2016] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND/PURPOSE Cumulative evidence suggest that microRNAs (miRNAs) function as biosignatures of oral squamous cell carcinomas (OSCC). However, the functional roles of miR-1 as well as its downstream targets in the regulation of tumorigenicity in OSCC remain unclear. METHODS miRNAs RT-PCR analysis was performed to identify miR-1 as a putative candidate on mediating invasiveness of OSCC cells. Consequently, we elucidated the tumorigenicity of OSCC cells with miR-1 downregulation or overexpression, respectively. Finally, miR-1 on OSCC tumor tissues was examined. RESULTS miR-1 levels were significantly downregulated in the malignant OSCC cells. Overexpression of miR-1 significantly reduced migration/invasiveness of OSCC cells. In addition, overexpression of miR-1 decreased cancer stem cells properties. Conversely, downregulation of miR-1 promotes migration and invasiveness in OSCC cells. We have shown that miR-1 is able to target Slug, suppressing their expression. Clinically, lower miR-1 expression was found in patients with advanced nodal metastasis OSCC. CONCLUSION miR-1 as novel biosignatures in OSCC lymph node metastatic patients, supporting the development of novel strategies for OSCC treatment.
Collapse
Affiliation(s)
- Chih-Yu Peng
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan; Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Yi-Wen Liao
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan
| | - Ming-Yi Lu
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan; Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chuan-Hang Yu
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan; Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Cheng-Chia Yu
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan; Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan; Institute of Oral Sciences, Chung Shan Medical University, Taichung, Taiwan.
| | - Ming-Yung Chou
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan; Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan; Institute of Oral Sciences, Chung Shan Medical University, Taichung, Taiwan.
| |
Collapse
|
44
|
Roles of OCT4 in tumorigenesis, cancer therapy resistance and prognosis. Cancer Treat Rev 2016; 51:1-9. [DOI: 10.1016/j.ctrv.2016.10.003] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 10/04/2016] [Accepted: 10/07/2016] [Indexed: 12/15/2022]
|
45
|
Chemotherapeutic effects of luteolin on radio-sensitivity enhancement and interleukin-6/signal transducer and activator of transcription 3 signaling repression of oral cancer stem cells. J Formos Med Assoc 2016; 115:1032-1038. [DOI: 10.1016/j.jfma.2016.08.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 08/18/2016] [Accepted: 08/22/2016] [Indexed: 12/29/2022] Open
|
46
|
Qi YF, Wu L, Li ZQ, Wu ML, Wang HF, Chan KY, Lu LL, Cai SH, Wang HS, Du J. Nodal signaling modulates the expression of Oct-4 via nuclear translocation of β-catenin in lung and prostate cancer cells. Arch Biochem Biophys 2016; 608:34-41. [PMID: 27592306 DOI: 10.1016/j.abb.2016.07.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 07/02/2016] [Accepted: 07/04/2016] [Indexed: 11/16/2022]
Abstract
Nodal is a member of transforming growth factor beta (TGF-β) superfamily. Nodal promotes the self-renewal of human cancer stem cells (CSCs) and triggers carcinogenesis of human cancers via an autocrine manner through Smad2/3 pathway. In our study, generation of Nodal-overexpressed cancer cells was constructed, and the effect of Nodal on the stem cell marker Oct-4 was evaluated by overexpression or blocked Nodal/ALKs signaling pathway in non-small cell lung cancer cells A549 and prostate cancer cells PC3. Functionally, Nodal also increased the proliferation via the β-catenin nuclear translocation. This increase was attributed to GSK-3β dephosphorylating, and activin receptor-like kinase 4/7 (ALK4/7) played a major role in human cancer cells. Our study provides a positive understanding of Nodal function in cancer cells and suggests a potential novel target for clinical therapeutic research.
Collapse
Affiliation(s)
- Yi-Fei Qi
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, No. 132 Waihuandong Road, University Town, Guangzhou 510006, China
| | - Long Wu
- Department of Pharmacology, School of Pharmaceutical Sciences, Jinan University, Guangzhou 510632, China
| | - Zi-Qian Li
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, No. 132 Waihuandong Road, University Town, Guangzhou 510006, China
| | - Meng-Ling Wu
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, No. 132 Waihuandong Road, University Town, Guangzhou 510006, China
| | - Hai-Fang Wang
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, No. 132 Waihuandong Road, University Town, Guangzhou 510006, China
| | - Ka-Ying Chan
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, No. 132 Waihuandong Road, University Town, Guangzhou 510006, China
| | - Lin-Lin Lu
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, No. 132 Waihuandong Road, University Town, Guangzhou 510006, China
| | - Shao-Hui Cai
- Department of Pharmacology, School of Pharmaceutical Sciences, Jinan University, Guangzhou 510632, China
| | - Hong-Sheng Wang
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, No. 132 Waihuandong Road, University Town, Guangzhou 510006, China.
| | - Jun Du
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, No. 132 Waihuandong Road, University Town, Guangzhou 510006, China.
| |
Collapse
|
47
|
Harada K, Ferdous T, Cui D, Kuramitsu Y, Matsumoto T, Ikeda E, Okano H, Ueyama Y. Induction of artificial cancer stem cells from tongue cancer cells by defined reprogramming factors. BMC Cancer 2016; 16:548. [PMID: 27464948 PMCID: PMC4963932 DOI: 10.1186/s12885-016-2416-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 06/15/2016] [Indexed: 12/30/2022] Open
Abstract
Background The cancer stem cells (CSCs), a small subpopulation of cells in tumor are responsible for the tumor initiation, growth, recurrence and metastasis of cancer, as well as resistance of cancers to drugs or radiotherapy. CSCs are an important target for the development of novel strategies in cancer treatment. However, CSCs-targeted new anti-cancer drug discovery is currently hindered by the lack of easy and reliable methods for isolating, collecting and maintaining sufficient number of CSCs. Here, we examined whether introduction of defined reprogramming factors (Oct4, shp53, Sox2, Klf4, l-Myc and Lin28) into HSC2 tongue cancer cells could transform the HSC2 into HSC2 with CSCs properties. Methods We introduced the defined reprogramming factors into HSC2 tongue cancer cells via episomal vectors by electroporation method to generate transfectant cells. We investigated the malignant properties of the transfectant cells by cell proliferation assay, migration assay, wound healing assay, sphere formation assay, chemosensitivity and radiosensitivity assay in vitro; and also examined the tumorigenic potential of the transfectants in vivo. Results The transfectant cells (HSC2/hOCT3/4-shp53-F, HSC2/hSK, HSC2/hUL, HSC2/hOCT3/4-shp53-F + hSK, HSC2/hOCT3/4-shp53-F + hUL, HSC2/hSK + hUL, HSC2/hOCT3/4-shp53-F + hSK + hUL) displayed a malignant phenotype in culture and form tumors on the back of nude mice more efficiently than parental HSC2 and control HSC2/EGFP transfectant cells. They exhibited increased resistance to chemotherapeutic agents; 5-fluorouracil, cisplatin, docetaxel, trifluorothymidine, zoledronic acid, cetuximab, bortezomib and radiation when compared with HSC2 and HSC2/EGFP. Among all the transfected cells, HSC2/hOCT3/4-shp53-F + hSK + hUL cell containing all of the reprogramming factors showed the most aggressive and malignant properties and presented the highest number of spheres in the culture medium containing human recombinant fibroblast Growth Factor-2 (FGF-2) and epidermal Growth Factor (EGF). Conclusion These findings suggest that artificial cancer stem cells obtained by the induction of cellular reprogramming may be useful for investigating the acquisition of potential malignancy as well as screening the CSCs-targeting drugs.
Collapse
Affiliation(s)
- Koji Harada
- Department of Oral and Maxillofacial Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1, Minamikogushi, Ube, 755-8505, Japan.
| | - Tarannum Ferdous
- Department of Oral and Maxillofacial Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1, Minamikogushi, Ube, 755-8505, Japan
| | - Dan Cui
- Department of Pathology, Yamaguchi University Graduate School of Medicine, 1-1-1, Minamikogushi, Ube, 755-8505, Japan
| | - Yasuhiro Kuramitsu
- Department of Biochemistry and Functional Proteomics, Yamaguchi University Graduate School of Medicine, 1-1-1, Minamikogushi, Ube, 755-8505, Japan
| | - Takuya Matsumoto
- Department of Physiology, Keio University, School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Eiji Ikeda
- Department of Pathology, Yamaguchi University Graduate School of Medicine, 1-1-1, Minamikogushi, Ube, 755-8505, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University, School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Yoshiya Ueyama
- Department of Oral and Maxillofacial Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1, Minamikogushi, Ube, 755-8505, Japan
| |
Collapse
|
48
|
Zhou JJ, Meng Z, Zhou Y, Cheng D, Ye HL, Zhou QB, Deng XG, Chen RF. Hepatitis C virus core protein regulates OCT4 expression and promotes cell cycle progression in hepatocellular carcinoma. Oncol Rep 2016; 36:582-8. [PMID: 27121765 DOI: 10.3892/or.2016.4775] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 02/24/2016] [Indexed: 11/05/2022] Open
Abstract
Hepatitis C virus (HCV) core protein plays an important role in the development of hepatocellular carcinoma. octamer-binding protein 4 (OCT4) is critically essential for the pluripotency and self-renewal of embryonic stem cells. Abnormal expression of OCT4 has been detected in several human solid tumors. However, the relationship between HCV core and OCT4 remains uncertain. In the present study, we found that HCV core is capable of upregulating OCT4 expression. The effect of HCV core-induced OCT4 overexpression was abolished by RNAi-mediated scilencing of HCV core. In addition, HCV core-induced OCT4 overexpression resulted in enhanced cell proliferation and cell cycle progression. Inhibition of OCT4 reduced the CCND1 expression and induced G0/G1 cell cycle arrest. Furthermore, OCT4 protein directly binds to CCND1 promoter and transactivates CCND1. These findings suggest that HCV core protein regulates OCT4 expression and promotes cell cycle progression in hepatocellular carcinoma providing new insight into the mechanism of hepatocarcinogenesis by HCV infection.
Collapse
Affiliation(s)
- Jia-Jia Zhou
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Zhe Meng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Yu Zhou
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Di Cheng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Hui-Lin Ye
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Quan-Bo Zhou
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Xiao-Geng Deng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Ru-Fu Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510120, P.R. China
| |
Collapse
|
49
|
Baillie R, Itinteang T, Yu HH, Brasch HD, Davis PF, Tan ST. Cancer stem cells in moderately differentiated oral tongue squamous cell carcinoma. J Clin Pathol 2016; 69:742-4. [PMID: 27095085 PMCID: PMC4975854 DOI: 10.1136/jclinpath-2015-203599] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 03/27/2016] [Indexed: 01/10/2023]
Affiliation(s)
- Ranui Baillie
- Gillies McIndoe Research Institute, Wellington, New Zealand University of Otago, Wellington, New Zealand
| | | | - Helen H Yu
- Gillies McIndoe Research Institute, Wellington, New Zealand
| | - Helen D Brasch
- Gillies McIndoe Research Institute, Wellington, New Zealand Department of Pathology, Hutt Hospital, Wellington, New Zealand
| | - Paul F Davis
- Gillies McIndoe Research Institute, Wellington, New Zealand
| | - Swee T Tan
- Gillies McIndoe Research Institute, Wellington, New Zealand Wellington Regional Plastic, Maxillofacial & Burns Unit, Hutt Hospital, Wellington, New Zealand
| |
Collapse
|
50
|
Moirangthem A, Bondhopadhyay B, Mukherjee M, Bandyopadhyay A, Mukherjee N, Konar K, Bhattacharya S, Basu A. Simultaneous knockdown of uPA and MMP9 can reduce breast cancer progression by increasing cell-cell adhesion and modulating EMT genes. Sci Rep 2016. [PMID: 26906973 DOI: 10.1038/srep21903%2010.1038/srep21903] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
In cancer progression, proteolytic enzymes like serine proteases and metalloproteinases degrade the basement membrane enabling the tumor cells to invade the adjacent tissues. Thus, invasion and metastasis are augmented by these enzymes. Simultaneous silencing of uPA and MMP9 in breast cancer cells decreased the wound healing, migratory, invasive and adhesive capacity of the cells. After simultaneous down regulation, cells were seen to be arrested in the cell cycle. There was a remarkable increase in the expression of cell to cell adhesion molecule E-cadherin, and decrease in Vimentin and Snail expression. In addition, there was a significant decrease in the expression of the stem cell marker Oct-4. In the breast tumor samples it has been observed that, tumors, expressing higher level of uPA and MMP9, express less amount of E-cadherin. It has also been observed that few tumors also show, Vimentin positive in the ductal epithelial area. Thus, our model can help for checking the aggressive tumor invasion by blocking of uPA and MMP9. Our present observations also give the concept of the presence of aggressive epithelial cells with mesenchymal nature in the tumor micro-environment, altering the expression of EMT genes.
Collapse
Affiliation(s)
- Anuradha Moirangthem
- Molecular Biology and Human Genetics Laboratory, Department of Zoology, The University of Burdwan, Golapbag, Burdwan 713104, West Bengal, India
| | - Banashree Bondhopadhyay
- Molecular Biology and Human Genetics Laboratory, Department of Zoology, The University of Burdwan, Golapbag, Burdwan 713104, West Bengal, India
| | - Mala Mukherjee
- Department of Pathology, Burdwan Medical College and Hospital, BurdwanWest Bengal 713104, India
| | - Arghya Bandyopadhyay
- Department of Pathology, Burdwan Medical College and Hospital, BurdwanWest Bengal 713104, India
| | - Narendranath Mukherjee
- Department of Surgery, Burdwan Medical College and Hospital, BurdwanWest Bengal 713104, India
| | - Karabi Konar
- Department of Pathology, Burdwan Medical College and Hospital, BurdwanWest Bengal 713104, India
| | - Shubham Bhattacharya
- Department of Pathology, Burdwan Medical College and Hospital, BurdwanWest Bengal 713104, India
| | - Anupam Basu
- Molecular Biology and Human Genetics Laboratory, Department of Zoology, The University of Burdwan, Golapbag, Burdwan 713104, West Bengal, India
| |
Collapse
|