1
|
Guan A, Alibrandi L, Verma E, Sareen N, Guan Q, Lionetti V, Dhingra S. Clinical translation of mesenchymal stem cells in ischemic heart failure: Challenges and future perspectives. Vascul Pharmacol 2025; 159:107491. [PMID: 40112941 DOI: 10.1016/j.vph.2025.107491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 03/12/2025] [Accepted: 03/17/2025] [Indexed: 03/22/2025]
Abstract
Myocardial infarction (MI) with resulting congestive heart failure is one of the leading causes of death worldwide. Current therapies for treating MI, such as devices, traditional medicine, and surgeries, come with many limitations as patients in their final stages of heart failure have little chances of experiencing any reversible changes. In recent decades, Mesenchymal stem cell (MSC) based therapy has become one of the most popular and rapidly developing fields in treating MI. Their supremacy for clinical applications is partially due to their unique properties and encouraging pre-clinical outcomes in various animal disease models. However, the majority of clinical trials registered for MSC therapy for diverse human diseases, including MI, have fallen short of expectations. This review intends to discuss the recent advances in the clinical application of using MSCs for cardiac repair and discuss challenges facing the clinical translation of MSCs for cardiac regeneration such as restoration of endothelial-cardiomyocyte crosstalk, immunomodulation and immune rejection, poor homing and migration, as well as low retention and survival. Furthermore, we will discuss recent strategies being investigated to help overcome some of these challenges.
Collapse
Affiliation(s)
- Anqi Guan
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, Biomedical Engineering Program, University of Manitoba, Winnipeg, Manitoba R2H 2A6, Canada
| | - Lisa Alibrandi
- TrancriLab, Laboratory of Basic and Applied Medical Sciences, Interdisciplinary Research Center "Health Science", Scuola Superiore Sant'Anna, Pisa, Italy
| | - Elika Verma
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, Biomedical Engineering Program, University of Manitoba, Winnipeg, Manitoba R2H 2A6, Canada
| | - Niketa Sareen
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, Biomedical Engineering Program, University of Manitoba, Winnipeg, Manitoba R2H 2A6, Canada
| | - Qingdong Guan
- Manitoba Blood and Marrow Transplant Program, CancerCare Manitoba; Department of Immunology and Internal Medicina, University of Manitoba, Winnipeg, Canada
| | - Vincenzo Lionetti
- TrancriLab, Laboratory of Basic and Applied Medical Sciences, Interdisciplinary Research Center "Health Science", Scuola Superiore Sant'Anna, Pisa, Italy.; UOSVD Anesthesiology and Intensive Care, Fondazione Toscana G. Monasterio, Pisa, Italy
| | - Sanjiv Dhingra
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, Biomedical Engineering Program, University of Manitoba, Winnipeg, Manitoba R2H 2A6, Canada.
| |
Collapse
|
2
|
Hu M, Zhang Y, Liu J, Chen Y, Kang J, Zhong J, Lin S, Liang Y, Cen R, Zhu X, Zhang C. B2M or CIITA knockdown decreased the alloimmune response of dental pulp stem cells: an in vitro study. Stem Cell Res Ther 2024; 15:425. [PMID: 39538338 PMCID: PMC11562604 DOI: 10.1186/s13287-024-04023-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Dental pulp stem cells (DPSCs) have acquired noteworthy attention for their application in treating ischemic diseases and facilitating tissue regeneration. However, the host's immune response following allogenic DPSC transplantation often handicaps the long-term survival of transplanted cells, thereby limiting the application of DPSCs in cell therapy. This study aims to investigate whether genetic modification can alleviate the immunogenicity of DPSCs. METHODS Beta 2-microglobulin (B2M) and the class II histocompatibility complex transactivator (CIITA) were individually knocked down in DPSCs by lentiviral particles encoding short hairpin (sh) RNAs. The self-renewal capacity and pluripotency of DPSCs-shB2M (B2M silenced DPSCs) and DPSCs-shCIITA (CIITA silenced DPSCs) were evaluated by CCK8 and differentiation assays including osteogenesis, adipogenesis, and neurogenesis. The expression of HLA-I and HLA-II in DPSCs-shB2M and DPSCs-shCIITA after IFN-γ treatment were analyzed by western blotting, immunofluorescence, and flow cytometry. The function of genetically modified cells was assessed by leukocyte-mediated cytotoxicity and T-cell proliferation assays. RESULTS Western blotting, immunofluorescence, and flow cytometry revealed that DPSCs-shB2M and DPSCs-shCIITA exhibited impaired IFN-γ inducible HLA-I and HLA-II expression. There were no significant differences in the self-renewal capacity and pluripotency among DPSCs-shB2M, DPSCs-shCIITA, and control groups (p > 0.05). Lower leukocyte-mediated cytotoxicity and higher cell survival rates were found in DPSCs-shB2M and DPSCs-shCIITA groups compared to the control (p < 0.05). T cell proliferation was significantly inhibited in both DPSCs-shB2M and DPSCs-shCIITA groups (p < 0.05). CONCLUSION Genetic knockdown of B2M or CIITA in DPSCs substantially reduced their immunogenicity without compromising their stemness, thereby broadening the clinical application of DPSCs in cell therapy and tissue regeneration.
Collapse
Affiliation(s)
- Mingxin Hu
- Restorative Dental Sciences, Endodontics, Faculty of Dentistry, The University of Hong Kong, Hong Kong, SAR, China
| | - Yuchen Zhang
- Obstetrics Department, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Junqing Liu
- Restorative Dental Sciences, Endodontics, Faculty of Dentistry, The University of Hong Kong, Hong Kong, SAR, China
| | - Yihan Chen
- Restorative Dental Sciences, Endodontics, Faculty of Dentistry, The University of Hong Kong, Hong Kong, SAR, China
| | - Jun Kang
- Restorative Dental Sciences, Endodontics, Faculty of Dentistry, The University of Hong Kong, Hong Kong, SAR, China
| | - Jialin Zhong
- Restorative Dental Sciences, Endodontics, Faculty of Dentistry, The University of Hong Kong, Hong Kong, SAR, China
| | - Shulan Lin
- Restorative Dental Sciences, Endodontics, Faculty of Dentistry, The University of Hong Kong, Hong Kong, SAR, China
| | - Ye Liang
- Restorative Dental Sciences, Endodontics, Faculty of Dentistry, The University of Hong Kong, Hong Kong, SAR, China
| | - Rong Cen
- Restorative Dental Sciences, Endodontics, Faculty of Dentistry, The University of Hong Kong, Hong Kong, SAR, China
| | - Xiaofei Zhu
- Department of Endodontics, Henry M. Goldman School of Dental Medicine, Boston University, Boston, USA
| | - Chengfei Zhang
- Restorative Dental Sciences, Endodontics, Faculty of Dentistry, The University of Hong Kong, Hong Kong, SAR, China.
| |
Collapse
|
3
|
Ju R, Gao X, Zhang C, Tang W, Tian W, He M. Exogenous MSC based tissue regeneration: a review of immuno-protection strategies from biomaterial scaffolds. J Mater Chem B 2024; 12:8868-8882. [PMID: 39171946 DOI: 10.1039/d4tb00778f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Mesenchymal stem cell (MSC)-based tissue engineering holds great potential for regenerative medicine as a means of replacing damaged or lost tissues to restore their structure and function. However, the efficacy of MSC-based regeneration is frequently limited by the low survival rate and limited survival time of transplanted MSCs. Despite the inherent immune privileges of MSCs, such as low expression of major histocompatibility complex antigens, tolerogenic properties, local immunosuppressive microenvironment creation, and induction of immune tolerance, immune rejection remains a major obstacle to their survival and regenerative potential. Evidence suggests that immune protection strategies can enhance MSC therapeutic efficacy by prolonging their survival and maintaining their biological functions. Among various immune protection strategies, biomaterial-based scaffolds or cell encapsulation systems that mediate the interaction between transplanted MSCs and the host immune system or spatially isolate MSCs from the immune system for a specific time period have shown great promise. In this review, we provide a comprehensive overview of these biomaterial-based immune protection strategies employed for exogenous MSCs, highlighting the crucial role of modulating the immune microenvironment. Each strategy is critically examined, discussing its strengths, limitations, and potential applications in MSC-based tissue engineering. By elucidating the mechanisms behind immune rejection and exploring immune protection strategies, we aim to address the challenges faced by MSC-based tissue engineering and pave the way for enhancing the therapeutic outcomes of MSC therapies. The insights gained from this review will contribute to the development of more effective strategies to protect transplanted MSCs from immune rejection and enable their successful application in regenerative medicine.
Collapse
Affiliation(s)
- Rongbai Ju
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xinhui Gao
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Chi Zhang
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Wei Tang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Weidong Tian
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Min He
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
4
|
Cyr-Depauw C, Cook DP, Mižik I, Lesage F, Vadivel A, Renesme L, Deng Y, Zhong S, Bardin P, Xu L, Möbius MA, Marzahn J, Freund D, Stewart DJ, Vanderhyden BC, Rüdiger M, Thébaud B. Single-Cell RNA Sequencing Reveals Repair Features of Human Umbilical Cord Mesenchymal Stromal Cells. Am J Respir Crit Care Med 2024; 210:814-827. [PMID: 38564376 DOI: 10.1164/rccm.202310-1975oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 04/01/2024] [Indexed: 04/04/2024] Open
Abstract
Rationale: The chronic lung disease bronchopulmonary dysplasia (BPD) is the most severe complication of extreme prematurity. BPD results in impaired lung alveolar and vascular development and long-term respiratory morbidity, for which only supportive therapies exist. Umbilical cord-derived mesenchymal stromal cells (UC-MSCs) improve lung structure and function in experimental BPD. Results of clinical trials with MSCs for many disorders do not yet match the promising preclinical studies. A lack of specific criteria to define functionally distinct MSCs persists. Objectives: To determine and correlate single-cell UC-MSC transcriptomic profiles with therapeutic potential. Methods: UC-MSCs from five term donors and human neonatal dermal fibroblasts (HNDFs; control cells of mesenchymal origin) transcriptomes were investigated using single-cell RNA sequencing (scRNA-seq) analysis. The lung-protective effect of UC-MSCs with a distinct transcriptome and control HNDFs was tested in vivo in hyperoxia-induced neonatal lung injury in rats. Measurements and Main Results: UC-MSCs showed limited transcriptomic heterogeneity but were different from HNDFs. Gene Ontology enrichment analysis revealed distinct (progenitor-like and fibroblast-like) UC-MSC subpopulations. Only treatment with progenitor-like UC-MSCs improved lung function and structure and attenuated pulmonary hypertension in hyperoxia-exposed rat pups. Moreover, scRNA-seq identified major histocompatibility complex class I as a molecular marker of nontherapeutic cells and associated with decreased lung retention. Conclusions: UC-MSCs with a progenitor-like transcriptome, but not with a fibroblast-like transcriptome, provide lung protection in experimental BPD. High expression of major histocompatibility complex class I is associated with reduced therapeutic benefit. scRNA-seq may be useful to identify subsets of MSCs with superior repair capacity for clinical application.
Collapse
Affiliation(s)
- Chanèle Cyr-Depauw
- Sinclair Centre for Regenerative Medicine and
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - David P Cook
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Ivana Mižik
- Sinclair Centre for Regenerative Medicine and
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Flore Lesage
- Sinclair Centre for Regenerative Medicine and
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | | | - Laurent Renesme
- Sinclair Centre for Regenerative Medicine and
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Yupu Deng
- Sinclair Centre for Regenerative Medicine and
| | | | - Pauline Bardin
- Sinclair Centre for Regenerative Medicine and
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Liqun Xu
- Sinclair Centre for Regenerative Medicine and
| | - Marius A Möbius
- Neonatology and Pediatric Critical Care Medicine, Department of Pediatrics, University Hospital Carl Gustav Carus, and
- Research Center for Regenerative Therapies Dresden, Dresden University of Technology, Dresden, Germany
| | - Jenny Marzahn
- Neonatology and Pediatric Critical Care Medicine, Department of Pediatrics, University Hospital Carl Gustav Carus, and
| | - Daniel Freund
- Research Center for Regenerative Therapies Dresden, Dresden University of Technology, Dresden, Germany
| | - Duncan J Stewart
- Sinclair Centre for Regenerative Medicine and
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Barbara C Vanderhyden
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Department of Obstetrics and Gynecology, University of Ottawa/The Ottawa Hospital, Ottawa, Ontario, Canada; and
| | - Mario Rüdiger
- Neonatology and Pediatric Critical Care Medicine, Department of Pediatrics, University Hospital Carl Gustav Carus, and
| | - Bernard Thébaud
- Sinclair Centre for Regenerative Medicine and
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| |
Collapse
|
5
|
Boysen AT, Whitehead B, Revenfeld ALS, Gupta D, Petersen T, Nejsum P. Urine-derived stem cells serve as a robust platform for generating native or engineered extracellular vesicles. Stem Cell Res Ther 2024; 15:288. [PMID: 39256816 PMCID: PMC11389316 DOI: 10.1186/s13287-024-03903-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 08/26/2024] [Indexed: 09/12/2024] Open
Abstract
BACKGROUND Mesenchymal stromal cell (MSC) therapy holds great potential yet efficacy and safety concerns with cell therapy persist. The beneficial effects of MSCs are often attributed to their secretome that includes extracellular vesicles (EVs). EVs carry biologically active molecules, protected by a lipid bilayer. However, several barriers hinder large-scale MSC EV production. A serum-free culturing approach is preferred for producing clinical-grade MSC-derived EVs but this can affect both yield and purity. Consequently, new strategies have been explored, including genetically engineering MSCs to alter EV compositions to enhance potency, increase circulation time or mediate targeting. However, efficient transfection of MSCs is challenging. Typical sources of MSC include adipose tissue and bone marrow, which both require invasive extraction procedures. Here, we investigate the use of urine-derived stem cells (USCs) as a non-invasive and inexhaustible source of MSCs for EV production. METHODS We isolated, expanded, and characterized urine-derived stem cells (USCs) harvested from eight healthy donors at three different time points during the day. We evaluated the number of clones per urination, proliferation capacity and conducted flow cytometry to establish expression of surface markers. EVs were produced in chemically defined media and characterized. PEI/DNA transfection was used to genetically engineer USCs using transposon technology. RESULTS There were no differences between time points for clone number, doubling time or viability. USCs showed immunophenotypic characteristics of MSCs, such as expression of CD73, CD90 and CD105, with no difference at the assessed time points, however, male donors had reduced CD73 + cells. Expanded USCs were incubated without growth factors or serum for 72 h without a loss in viability and EVs were isolated. USCs were transfected with high efficiency and after 10 days of selection, pure engineered cell cultures were established. CONCLUSIONS Isolation and expansion of MSCs from urine is non-invasive, robust, and without apparent sex-related differences. The sampling time point did not affect any measured markers or USC isolation potential. USCs offer an attractive production platform for EVs, both native and engineered.
Collapse
Affiliation(s)
- Anders Toftegaard Boysen
- Department of Clinical Medicine, Aarhus University, Aarhus N, Denmark.
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus N, Denmark.
| | - Bradley Whitehead
- Department of Clinical Medicine, Aarhus University, Aarhus N, Denmark
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus N, Denmark
| | - Anne Louise S Revenfeld
- Center for Gene and Cellular Therapy, Department of Clinical Immunology, Aarhus University Hospital, Aarhus N, Denmark
| | - Dhanu Gupta
- Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
- Department of Paediatrics, University of Oxford, Oxford, OX3 7TY, UK
| | - Thor Petersen
- Department of Regional Health Research, Southern Danish University, Sønderborg, Denmark
| | - Peter Nejsum
- Department of Clinical Medicine, Aarhus University, Aarhus N, Denmark.
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus N, Denmark.
| |
Collapse
|
6
|
Zhang L, Wang Z, Sun X, Rong W, Deng W, Yu J, Xu X, Yu Q. Nasal mucosa-derived mesenchymal stem cells prolonged the survival of septic rats by protecting macrophages from pyroptosis. Cell Immunol 2024; 401-402:104840. [PMID: 38880071 DOI: 10.1016/j.cellimm.2024.104840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/18/2024] [Accepted: 06/03/2024] [Indexed: 06/18/2024]
Abstract
Sepsis is characterized by an exacerbated inflammatory response, driven by the overproduction of cytokines, a phenomenon known as a cytokine storm. This condition is further compounded by the extensive infiltration of M1 macrophages and the pyroptosis of these cells, leading to immune paralysis. To counteract this, we sought to transition M1 macrophages into the M2 phenotype and safeguard them from pyroptosis. For this purpose, we employed ectodermal mesenchymal stem cells (EMSCs) sourced from the nasal mucosa to examine their impact on both macrophages and septic animal models. The co-culture protocol involving LPS-stimulated rat bone marrow macrophages and EMSCs was employed to examine the paracrine influence of EMSCs on macrophages. The intravenous administration of EMSCs was utilized to observe the enhancement in the survival rate of septic rat models and the protection of associated organs. The findings indicated that EMSCs facilitated M2 polarization of macrophages, which were stimulated by LPS, and significantly diminished levels of pro-inflammatory cytokines and NLRP3. Furthermore, EMSCs notably restored the mitochondrial membrane potential (MMP) of macrophages through paracrine action, eliminated excess reactive oxygen species (ROS), and inhibited macrophage pyroptosis. Additionally, the systemic integration of EMSCs substantially reduced injuries to multiple organs and preserved the fundamental functions of the heart, liver, and kidney in CLP rats, thereby extending their survival.
Collapse
Affiliation(s)
| | - Zhe Wang
- School of Pharmacy, Jiangsu University, China
| | - Xuan Sun
- School of Pharmacy, Jiangsu University, China
| | | | - Wenwen Deng
- School of Pharmacy, Jiangsu University, China
| | - Jiangnan Yu
- School of Pharmacy, Jiangsu University, China
| | - Ximing Xu
- School of Pharmacy, Jiangsu University, China
| | - Qingtong Yu
- School of Pharmacy, Jiangsu University, China.
| |
Collapse
|
7
|
Cequier A, Vázquez FJ, Vitoria A, Bernad E, Fuente S, Serrano MB, Zaragoza MP, Romero A, Rodellar C, Barrachina L. The systemic cellular immune response against allogeneic mesenchymal stem cells is influenced by inflammation, differentiation and MHC compatibility: in vivo study in the horse. Front Vet Sci 2024; 11:1391872. [PMID: 38957800 PMCID: PMC11217187 DOI: 10.3389/fvets.2024.1391872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 06/03/2024] [Indexed: 07/04/2024] Open
Abstract
The effectiveness and safety of allogeneic mesenchymal stem/stromal cells (MSCs) can be affected by patient's immune recognition. Thus, MSC immunogenicity and their immunomodulatory properties are crucial aspects for therapy. Immune responses after allogeneic MSC administration have been reported in different species, including equine. Interactions of allogenic MSCs with the recipient's immune system can be influenced by factors like matching or mismatching for the major histocompatibility complex (MHC) between donor-recipient, and by the levels of MHC expression in MSCs. The latter can vary upon MSC inflammatory exposure or differentiation, such as chondrogenic induction, making both priming and differentiation interesting therapeutic strategies. This study investigated the systemic in vivo immune cellular response against allogeneic equine MSCs in these situations. Either MSCs in basal conditions (MSC-naïve), pro-inflammatory primed (MSC-primed) or chondrogenically differentiated (MSC-chondro) were repeatedly administered subcutaneously into autologous, MHC-matched or MHC-mismatched allogeneic equine recipients. At different time-points after each administration, lymphocytes were obtained from recipient horses and exposed in vitro to the same type of MSCs to assess the proliferative response of different T cell subsets (cytotoxic, helper, regulatory), B cells, and interferon gamma (IFNγ) secretion. Higher proliferative response of helper and cytotoxic T lymphocytes and IFNγ secretion was observed in response to all types of MHC-mismatched MSCs over MHC-matched ones. MSC-primed produced the highest immune response, followed by MSC-naïve, and MSC-chondro. However, MSC-primed activated Treg and had a mild effect on B cells, and the response after their second administration was similar to the first one. On the other hand, both MSC-chondro and MSC-naïve barely induced Treg response but promoted B lymphocyte activation, and proportionally induced a higher cell response after the second administration. In conclusion, both the type of MSC conditioning and the MHC compatibility influenced systemic immune recognition of equine MSCs after single and repeated administrations, but the response was different. Selecting MHC-matched donors would be particularly recommended for MSC-primed and repeated MSC-naïve administrations. While MHC-mismatching in MSC-chondro would be less critical, B cell response should not be ignored. Comprehensively investigating the in vivo immune response against equine allogeneic MSCs is crucial for advancing veterinary cell therapies.
Collapse
Affiliation(s)
- Alina Cequier
- Biochemical Genetics Laboratory LAGENBIO, Institute for Health Research Aragón (IIS), AgriFood Institute of Aragón (IA2), University of Zaragoza, Zaragoza, Spain
- Equine Surgery and Medicine Service, Veterinary Hospital, University of Zaragoza, Zaragoza, Spain
| | - Francisco José Vázquez
- Biochemical Genetics Laboratory LAGENBIO, Institute for Health Research Aragón (IIS), AgriFood Institute of Aragón (IA2), University of Zaragoza, Zaragoza, Spain
- Equine Surgery and Medicine Service, Veterinary Hospital, University of Zaragoza, Zaragoza, Spain
| | - Arantza Vitoria
- Biochemical Genetics Laboratory LAGENBIO, Institute for Health Research Aragón (IIS), AgriFood Institute of Aragón (IA2), University of Zaragoza, Zaragoza, Spain
- Equine Surgery and Medicine Service, Veterinary Hospital, University of Zaragoza, Zaragoza, Spain
| | - Elvira Bernad
- Biochemical Genetics Laboratory LAGENBIO, Institute for Health Research Aragón (IIS), AgriFood Institute of Aragón (IA2), University of Zaragoza, Zaragoza, Spain
| | - Sara Fuente
- Biochemical Genetics Laboratory LAGENBIO, Institute for Health Research Aragón (IIS), AgriFood Institute of Aragón (IA2), University of Zaragoza, Zaragoza, Spain
- Equine Surgery and Medicine Service, Veterinary Hospital, University of Zaragoza, Zaragoza, Spain
| | - María Belén Serrano
- Biochemical Genetics Laboratory LAGENBIO, Institute for Health Research Aragón (IIS), AgriFood Institute of Aragón (IA2), University of Zaragoza, Zaragoza, Spain
| | - María Pilar Zaragoza
- Biochemical Genetics Laboratory LAGENBIO, Institute for Health Research Aragón (IIS), AgriFood Institute of Aragón (IA2), University of Zaragoza, Zaragoza, Spain
| | - Antonio Romero
- Biochemical Genetics Laboratory LAGENBIO, Institute for Health Research Aragón (IIS), AgriFood Institute of Aragón (IA2), University of Zaragoza, Zaragoza, Spain
- Equine Surgery and Medicine Service, Veterinary Hospital, University of Zaragoza, Zaragoza, Spain
| | - Clementina Rodellar
- Biochemical Genetics Laboratory LAGENBIO, Institute for Health Research Aragón (IIS), AgriFood Institute of Aragón (IA2), University of Zaragoza, Zaragoza, Spain
| | - Laura Barrachina
- Biochemical Genetics Laboratory LAGENBIO, Institute for Health Research Aragón (IIS), AgriFood Institute of Aragón (IA2), University of Zaragoza, Zaragoza, Spain
- Equine Surgery and Medicine Service, Veterinary Hospital, University of Zaragoza, Zaragoza, Spain
| |
Collapse
|
8
|
Massidda MW, Demkov A, Sices A, Lee M, Lee J, Paull TT, Kim J, Baker AB. Mechanical Rejuvenation of Mesenchymal Stem Cells from Aged Patients. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.06.597781. [PMID: 38895474 PMCID: PMC11185588 DOI: 10.1101/2024.06.06.597781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Mesenchymal stem cells (MSC) are an appealing therapeutic cell type for many diseases. However, patients with poor health or advanced age often have MSCs with poor regenerative properties. A major limiter of MSC therapies is cellular senescence, which is marked by limited proliferation capability, diminished multipotency, and reduced regenerative properties. In this work, we explored the ability of applied mechanical forces to reduce cellular senescence in MSCs. Our studies revealed that mechanical conditioning caused a lasting enhancement in proliferation, overall cell culture expansion potential, multipotency, and a reduction of senescence in MSCs from aged donors. Mechanistic studies suggested that these functional enhancements were mediated by oxidative stress and DNA damage repair signaling with mechanical load altering the expression of proteins of the sirtuin pathway, the DNA damage repair protein ATM, and antioxidant proteins. In addition, our results suggest a biophysical mechanism in which mechanical stretch leads to improved recognition of damaged DNA in the nucleus. Analysis of the cells through RNA-seq and ATAC-seq, demonstrated that mechanical loading alters the cell's genetic landscape to cause broad shifts in transcriptomic patterns that related to senescence. Overall, our results demonstrate that mechanical conditioning can rejuvenate mesenchymal stem cells derived from aged patients and improve their potential as a therapeutic cell type. GRAPHICAL ABSTRACT
Collapse
|
9
|
He J, Shan S, Jiang T, Zhou S, Qin J, Li Q, Yu Z, Cao D, Fang B. Mechanical stretch preconditioned adipose-derived stem cells elicit polarization of anti-inflammatory M2-like macrophages and improve chronic wound healing. FASEB J 2024; 38:e23626. [PMID: 38739537 DOI: 10.1096/fj.202300586r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 03/27/2024] [Accepted: 04/10/2024] [Indexed: 05/16/2024]
Abstract
Transplantation of adipose-derived stem cells (ASCs) is a promising option in the field of chronic wounds treatment. However, the effectiveness of ASCs therapies has been hampered by highly inflammatory environment in chronic wound areas. These problems could be partially circumvented using efficient approaches that boost the survival and anti-inflammatory capacity of transplanted ASCs. Here, by application of mechanical stretch (MS), we show that ASCs exhibits increased survival and immunoregulatory properties in vitro. MS triggers the secretion of macrophage colony stimulating factor (M-CSF) from ASCs, a chemokine that is linked to anti-inflammatory M2-like macrophages polarization. When the MS-ASCs were transplanted to chronic wounds, the wound area yields significantly faster closure rate and lower inflammatory mediators, largely due to macrophages polarization driven by transplanted MS-ASCs. Thus, our work shows that mechanical stretch can be harnessed to enhance ASCs transplantation efficiency in chronic wounds treatment.
Collapse
Affiliation(s)
- Jiahao He
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shengzhou Shan
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Taoran Jiang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Sizheng Zhou
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiaqi Qin
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qingfeng Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zheyuan Yu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dejun Cao
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bin Fang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
10
|
Chang SH, Park CG. Comparing the Benefits and Drawbacks of Stem Cell Therapy Based on the Cell Origin or Manipulation Process: Addressing Immunogenicity. Immune Netw 2023; 23:e44. [PMID: 38188600 PMCID: PMC10767552 DOI: 10.4110/in.2023.23.e44] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 11/12/2023] [Indexed: 01/09/2024] Open
Abstract
Mesenchymal stem cells (MSCs) are effective in treating autoimmune diseases and managing various conditions, such as engraftment of allogeneic islets. Additionally, autologous and HLA-matched allogeneic MSCs can aid in the engraftment of human allogeneic kidneys with or without low doses of tacrolimus, respectively. However, HLA alloantigens are problematic because cell therapy uses more HLA-mismatched allogeneic cells than autologous for convenience and standardization. In particular, HLA-mismatched MSCs showed increased Ag-specific T/B cells and reduced viability faster than HLA-matched MSCs. In CRISPR/Cas9-based cell therapy, Cas9 induce T cell activation in the recipient's immune system. Interestingly, despite their immunogenicity being limited to the cells with foreign Ags, the accumulation of HLA alloantigen-sensitized T/B cells may lead to allograft rejection, suggesting that alloantigens may have a greater scope of adverse effects than foreign Ags. To avoid alloantigen recognition, the β2-microglobulin knockout (B2MKO) system, eliminating class-I MHC, was able to avoid rejection by alloreactive CD8 T cells compared to controls. Moreover, universal donor cells in which both B2M and Class II MHC transactivator (CIITA) were knocked out was more effective in avoiding immune rejection than single KO. However, B2MKO and CIITA KO system remain to be controlled and validated for adverse effects such as the development of tumorigenicity due to deficient Ag recognition by CD8 T and CD4 T cells, respectively. Overall, better HLA-matching or depletion of HLA alloantigens prior to cell therapy can reduce repetitive transplantation through the long-term survival of allogeneic cell therapy, which may be especially important for patients seeking allogeneic transplantation.
Collapse
Affiliation(s)
- Sung-Ho Chang
- Department of Immunology and Molecular Microbiology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul 03080, Korea
| | - Chung Gyu Park
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea
- Transplantation Research Institute, Medical Research center, Seoul National University College of Medicine, Seoul 03080, Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, Korea
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul 03080, Korea
| |
Collapse
|
11
|
Yang G, Fan X, Liu Y, Jie P, Mazhar M, Liu Y, Dechsupa N, Wang L. Immunomodulatory Mechanisms and Therapeutic Potential of Mesenchymal Stem Cells. Stem Cell Rev Rep 2023; 19:1214-1231. [PMID: 37058201 PMCID: PMC10103048 DOI: 10.1007/s12015-023-10539-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/29/2023] [Indexed: 04/15/2023]
Abstract
Mesenchymal stem cells (MSCs) are regarded as highly promising cells for allogeneic cell therapy, owing to their multipotent nature and ability to display potent and varied functions in different diseases. The functions of MSCs, including native immunomodulation, high self-renewal characteristic, and secretory and trophic properties, can be employed to improve the immune-modulatory functions in diseases. MSCs impact most immune cells by directly contacting and/or secreting positive microenvironmental factors to influence them. Previous studies have reported that the immunomodulatory role of MSCs is basically dependent on their secretion ability from MSCs. This review discusses the immunomodulatory capabilities of MSCs and the promising strategies to successfully improve the potential utilization of MSCs in clinical research.
Collapse
Affiliation(s)
- Guoqiang Yang
- Research Center for Integrated Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
- Molecular Imaging and Therapy Research Unit, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
- Acupuncture and Rehabilitation Department, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Xuehui Fan
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention of Cardiovascular Diseases, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
- First Department of Medicine, Medical Faculty Mannheim, University Medical Centre Mannheim (UMM), University of Heidelberg, Mannheim, Germany
| | - Yingchun Liu
- Department of Magnetic Resonance Imaging, the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Pingping Jie
- Department of Magnetic Resonance Imaging, the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Maryam Mazhar
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, China
| | - Yong Liu
- Department of Magnetic Resonance Imaging, the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China.
| | - Nathupakorn Dechsupa
- Molecular Imaging and Therapy Research Unit, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand.
| | - Li Wang
- Research Center for Integrated Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China.
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, China.
| |
Collapse
|
12
|
Valsecchi C, Croce S, Lenta E, Acquafredda G, Comoli P, Avanzini MA. TITLE: New therapeutic approaches in pediatric diseases: Mesenchymal stromal cell and mesenchymal stromal cell-derived extracellular vesicles as new drugs. Pharmacol Res 2023; 192:106796. [PMID: 37207738 DOI: 10.1016/j.phrs.2023.106796] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/12/2023] [Accepted: 05/16/2023] [Indexed: 05/21/2023]
Abstract
Mesenchymal Stromal Cell (MSC) clinical applications have been widely reported and their therapeutic potential has been documented in several diseases. MSCs can be isolated from several human tissues and easily expanded in vitro, they are able to differentiate in a variety of cell lineages, and they are known to interact with most immunological cells, showing immunosuppressive and tissue repair properties. Their therapeutic efficacy is closely associated with the release of bioactive molecules, namely Extracellular Vesicles (EVs), effective as their parental cells. EVs isolated from MSCs act by fusing with target cell membrane and releasing their content, showing a great potential for the treatment of injured tissues and organs, and for the modulation of the host immune system. EV-based therapies provide, as major advantages, the possibility to cross the epithelium and blood barrier and their activity is not influenced by the surrounding environment. In the present review, we deal with pre-clinical reports and clinical trials to provide data in support of MSC and EV clinical efficacy with particular focus on neonatal and pediatric diseases. Considering pre-clinical and clinical data so far available, it is likely that cell-based and cell-free therapies could become an important therapeutic approach for the treatment of several pediatric diseases.
Collapse
Affiliation(s)
- Chiara Valsecchi
- Pediatric Hematology Oncology Unit and Cell Factory, Fondazione IRCCS Policlinico S. Matteo, 27100 Pavia, Italy.
| | - Stefania Croce
- Cell Factory, Fondazione IRCCS Policlinico S. Matteo, 27100 Pavia, Italy.
| | - Elisa Lenta
- Cell Factory, Fondazione IRCCS Policlinico S. Matteo, 27100 Pavia, Italy.
| | - Gloria Acquafredda
- Pediatric Hematology Oncology Unit and Cell Factory, Fondazione IRCCS Policlinico S. Matteo, 27100 Pavia, Italy.
| | - Patrizia Comoli
- Pediatric Hematology Oncology Unit and Cell Factory, Fondazione IRCCS Policlinico S. Matteo, 27100 Pavia, Italy.
| | - Maria Antonietta Avanzini
- Pediatric Hematology Oncology Unit and Cell Factory, Fondazione IRCCS Policlinico S. Matteo, 27100 Pavia, Italy.
| |
Collapse
|
13
|
Trevisan B, Rodriguez M, Medder H, Lankford S, Combs R, Owen J, Atala A, Porada CD, Almeida-Porada G. Autologous bone marrow-derived MSCs engineered to express oFVIII-FLAG engraft in adult sheep and produce an effective increase in plasma FVIII levels. Front Immunol 2022; 13:1070476. [PMID: 36532079 PMCID: PMC9755880 DOI: 10.3389/fimmu.2022.1070476] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 11/21/2022] [Indexed: 12/04/2022] Open
Abstract
Introduction Hemophilia A (HA) is the most common X-linked bleeding disorder, occurring in 1 in 5,000 live male births and affecting >1 million individuals worldwide. Although advances in protein-based HA therapeutics have improved health outcomes, current standard-of-care requires infusion 2-3 times per week for life, and 30% of patients develop inhibitors, significantly increasing morbidity and mortality. There are thus unmet medical needs requiring novel approaches to treat HA. Methods We tested, in a highly translational large animal (sheep) model, whether the unique immunological and biological properties of autologous bone marrow (BM)-derived mesenchymal stromal cells (MSCs) could enable them to serve as cellular delivery vehicles to provide long-term expression of FVIII, avoiding the need for frequent infusions. Results We show that autologous BM-MSCs can be isolated, transduced with a lentivector to produce high levels of ovine (o)FVIII, extensively expanded, and transplanted into adult animals safely. The transplanted cells engraft in multiple organs, and they stably produce and secrete sufficient quantities of FVIII to yield elevated plasma FVIII levels for at least 15 weeks. Discussion These studies thus highlight the promise of cellular-based gene delivery approaches for treating HA.
Collapse
Affiliation(s)
- Brady Trevisan
- Wake Forest Institute for Regenerative Medicine, Fetal Research and Therapy Program, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Martin Rodriguez
- Wake Forest Institute for Regenerative Medicine, Fetal Research and Therapy Program, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Hailey Medder
- Wake Forest Institute for Regenerative Medicine, Fetal Research and Therapy Program, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Shannon Lankford
- Wake Forest Institute for Regenerative Medicine, Fetal Research and Therapy Program, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Rebecca Combs
- Special Hematology Laboratory, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - John Owen
- Special Hematology Laboratory, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Fetal Research and Therapy Program, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Christopher D. Porada
- Wake Forest Institute for Regenerative Medicine, Fetal Research and Therapy Program, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Graça Almeida-Porada
- Wake Forest Institute for Regenerative Medicine, Fetal Research and Therapy Program, Wake Forest School of Medicine, Winston-Salem, NC, United States,*Correspondence: Graça Almeida-Porada,
| |
Collapse
|
14
|
Cequier A, Vázquez FJ, Romero A, Vitoria A, Bernad E, García-Martínez M, Gascón I, Barrachina L, Rodellar C. The immunomodulation-immunogenicity balance of equine Mesenchymal Stem Cells (MSCs) is differentially affected by the immune cell response depending on inflammatory licensing and major histocompatibility complex (MHC) compatibility. Front Vet Sci 2022; 9:957153. [PMID: 36337202 PMCID: PMC9632425 DOI: 10.3389/fvets.2022.957153] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 09/22/2022] [Indexed: 07/25/2023] Open
Abstract
The immunomodulatory properties of equine mesenchymal stem cells (MSCs) are important for their therapeutic potential and for their facilitating role in their escape from immune recognition, which may also be influenced by donor-recipient major histocompatibility complex (MHC) matching/mismatching and MHC expression level. Factors such as inflammation can modify the balance between regulatory and immunogenic profiles of equine MSCs, but little is known about how the exposure to the immune system can affect these properties in equine MSCs. In this study, we analyzed the gene expression and secretion of molecules related to the immunomodulation and immunogenicity of equine MSCs, either non-manipulated (MSC-naive) or stimulated by pro-inflammatory cytokines (MSC-primed), before and after their exposure to autologous or allogeneic MHC-matched/-mismatched lymphocytes, either activated or resting. Cytokine priming induced the immunomodulatory profile of MSCs at the baseline (MSCs cultured alone), and the exposure to activated lymphocytes further increased the expression of interleukin 6 (IL6), cyclooxygenase 2, and inducible nitric oxide synthase, and IL6 secretion. Activated lymphocytes were also able to upregulate the regulatory profile of MSC-naive to levels comparable to cytokine priming. On the contrary, resting lymphocytes did not upregulate the immunomodulatory profile of equine MSCs, but interestingly, MSC-primed exposed to MHC-mismatched lymphocytes showed the highest expression and secretion of these mediators, which may be potentially linked to the activation of lymphocytes upon recognition of foreign MHC molecules. Cytokine priming alone did not upregulate the immunogenic genes, but MSC-primed exposed to activated or resting lymphocytes increased their MHC-I and MHC-II expression, regardless of the MHC-compatibility. The upregulation of immunogenic markers including CD40 in the MHC-mismatched co-culture might have activated lymphocytes, which, at the same time, could have promoted the immune regulatory profile aforementioned. In conclusion, activated lymphocytes are able to induce the equine MSC regulatory profile, and their effects seem to be additive to the priming action. Importantly, our results suggest that the lymphocyte response against MHC-mismatched MSC-primed would promote further activation of their immunomodulatory ability, which eventually might help them evade this reaction. Further studies are needed to clarify how these findings might have clinical implications in vivo, which will help developing safer and more effective therapies.
Collapse
Affiliation(s)
- Alina Cequier
- Laboratorio de Genética Bioquímica LAGENBIO, Instituto de Investigación Sanitaria de Aragón (IIS), Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza-CITA), Zaragoza, Spain
- Servicio de Cirugía y Medicina Equina, Hospital Veterinario, Universidad de Zaragoza, Zaragoza, Spain
| | - Francisco José Vázquez
- Laboratorio de Genética Bioquímica LAGENBIO, Instituto de Investigación Sanitaria de Aragón (IIS), Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza-CITA), Zaragoza, Spain
- Servicio de Cirugía y Medicina Equina, Hospital Veterinario, Universidad de Zaragoza, Zaragoza, Spain
| | - Antonio Romero
- Laboratorio de Genética Bioquímica LAGENBIO, Instituto de Investigación Sanitaria de Aragón (IIS), Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza-CITA), Zaragoza, Spain
- Servicio de Cirugía y Medicina Equina, Hospital Veterinario, Universidad de Zaragoza, Zaragoza, Spain
| | - Arantza Vitoria
- Laboratorio de Genética Bioquímica LAGENBIO, Instituto de Investigación Sanitaria de Aragón (IIS), Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza-CITA), Zaragoza, Spain
- Servicio de Cirugía y Medicina Equina, Hospital Veterinario, Universidad de Zaragoza, Zaragoza, Spain
| | - Elvira Bernad
- Laboratorio de Genética Bioquímica LAGENBIO, Instituto de Investigación Sanitaria de Aragón (IIS), Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza-CITA), Zaragoza, Spain
| | - Mirta García-Martínez
- Laboratorio de Genética Bioquímica LAGENBIO, Instituto de Investigación Sanitaria de Aragón (IIS), Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza-CITA), Zaragoza, Spain
| | - Isabel Gascón
- Laboratorio de Genética Bioquímica LAGENBIO, Instituto de Investigación Sanitaria de Aragón (IIS), Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza-CITA), Zaragoza, Spain
| | - Laura Barrachina
- Laboratorio de Genética Bioquímica LAGENBIO, Instituto de Investigación Sanitaria de Aragón (IIS), Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza-CITA), Zaragoza, Spain
- Servicio de Cirugía y Medicina Equina, Hospital Veterinario, Universidad de Zaragoza, Zaragoza, Spain
| | - Clementina Rodellar
- Laboratorio de Genética Bioquímica LAGENBIO, Instituto de Investigación Sanitaria de Aragón (IIS), Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza-CITA), Zaragoza, Spain
| |
Collapse
|
15
|
Brianna, Ling APK, Wong YP. Applying stem cell therapy in intractable diseases: a narrative review of decades of progress and challenges. Stem Cell Investig 2022; 9:4. [PMID: 36238449 PMCID: PMC9552054 DOI: 10.21037/sci-2022-021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 09/09/2022] [Indexed: 08/10/2023]
Abstract
Background and Objective Stem cell therapy (SCT) is one of the vastly researched branches of regenerative medicine as a therapeutic tool to treat incurable diseases. With the use of human stem cells such as embryonic stem cells (ESCs), adult stem cells (ASCs) and induced pluripotent stem cells (iPSCs), stem cell therapy aims to regenerate or repair damaged tissues and congenital defects. As stem cells are able to undergo infinite self-renewal, differentiate into various types of cells and secrete protective paracrine factors, many researchers have investigated the potential of SCT in regenerative medicine. Therefore, this review aims to provide a comprehensive review on the recent application of SCT in various intractable diseases, namely, haematological diseases, neurological diseases, diabetes mellitus, retinal degenerative disorders and COVID-19 infections along with the challenges faced in the clinical translation of SCT. Methods An extensive search was conducted on Google scholar, PubMed and Clinicaltrials.gov using related keywords. Latest articles on stem cell therapy application in selected diseases along with their challenges in clinical applications were selected. Key content and findings In vitro and in vivo studies involving SCT are shown to be safe and efficacious in treating various diseases covered in this review. There are also a number of small-scale clinical trials that validated the positive therapeutic outcomes of SCT. Nevertheless, the effectiveness of SCT are highly variable as some SCT works best in patients with early-stage diseases while in other diseases, SCT is more likely to work in patients in late stages of illnesses. Among the challenges identified in SCT translation are uncertainty in the underlying stem cell mechanism, ethical issues, genetic instability and immune rejection. Conclusions SCT will be a revolutionary treatment in the future that will provide hope to patients with intractable diseases. Therefore, studies ought to be done to ascertain the long-term effects of SCT while addressing the challenges faced in validating SCT for clinical use. Moreover, as there are many studies investigating the safety and efficacy of SCT, future studies should look into elucidating the regenerative and reparative capabilities of stem cells which largely remains unknown.
Collapse
Affiliation(s)
- Brianna
- Applied Biomedical Sciences and Biotechnology, School of Health Sciences, International Medical University, Kuala Lumpur, Malaysia
| | - Anna Pick Kiong Ling
- Applied Biomedical Sciences and Biotechnology, School of Health Sciences, International Medical University, Kuala Lumpur, Malaysia
| | - Ying Pei Wong
- Applied Biomedical Sciences and Biotechnology, School of Health Sciences, International Medical University, Kuala Lumpur, Malaysia
| |
Collapse
|
16
|
Zhang X, Ren Z, Jiang Z. EndMT-derived mesenchymal stem cells: a new therapeutic target to atherosclerosis treatment. Mol Cell Biochem 2022; 478:755-765. [PMID: 36083511 DOI: 10.1007/s11010-022-04544-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 08/12/2022] [Indexed: 11/28/2022]
Abstract
Cardiovascular diseases, such as coronary artery disease and stroke, are the main threats to human health worldwide. Atherosclerosis, a chronic inflammatory disorder, plays a role as an initiator of all of the above-mentioned diseases. Cell therapy for diseases has attracted widespread attention. Mesenchymal stem cells (MSCs) are a type of stem cell that still exist in adults and have the characteristics of self-renewal ability, pluripotent differentiation potential, immunomodulation, tissue regeneration, anti-inflammation and low immunogenicity. In light of the properties of MSCs, some researchers have begun to target MSCs to create a possible way to alleviate atherosclerosis. Most of these studies are focused on MSC transplantation, injecting MSCs to modulate macrophages, the key inflammatory cell in atherosclerosis plaque. According to recent studies, researchers found that endothelial-to-mesenchymal transition (EndMT) has something to do with atherosclerosis development. A new cell type MSC might also appear during the EndMT process. In this article, we summarize the characteristics of MSCs, the latest progress of MSC research and its application prospects, and in view of the process of EndMT occurring in atherosclerosis, we propose some new ideas for the treatment of atherosclerosis by targeting MSCs.
Collapse
Affiliation(s)
- Xiaofan Zhang
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Zhong Ren
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Zhisheng Jiang
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, Hengyang Medical School, University of South China, Hengyang, 421001, China.
| |
Collapse
|
17
|
Demarquay C, Moussa L, Réthoré G, Milliat F, Weiss P, Mathieu N. Embedding MSCs in Si-HPMC hydrogel decreased MSC-directed host immune response and increased the regenerative potential of macrophages. Regen Biomater 2022; 9:rbac022. [PMID: 35784096 PMCID: PMC9245650 DOI: 10.1093/rb/rbac022] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/22/2022] [Accepted: 04/10/2022] [Indexed: 11/14/2022] Open
Abstract
Embedding mesenchymal stromal cells (MSCs) in biomaterial is a subject of increasing interest in the field of Regenerative Medicine. Speeding up the clinical use of MSCs is dependent on the use of non-syngeneic models in accordance with Good Manufacturing Practices (GMP) requirements and on costs. To this end, in this study, we analyzed the in vivo host immune response following local injection of silanized hydroxypropyl methylcellulose (Si-HPMC)-embedded human MSCs in a rat model developing colorectal damage induced by ionizing radiation. Plasma and lymphocytes from mesenteric lymph nodes were harvested in addition to colonic tissue. We set up tests, using flow cytometry and a live imaging system, to highlight the response to specific antibodies and measure the cytotoxicity of lymphocytes against injected MSCs. We demonstrated that Si-HPMC protects MSCs from specific antibodies production and from apoptosis by lymphocytes. We also observed that Si-HPMC does not modify innate immune response infiltrate in vivo, and that in vitro co-culture of Si-HPMC-embedded MSCs impacts macrophage inflammatory response depending on the microenvironment but, more importantly, increases the macrophage regenerative response through Wnt-family and VEGF gene expression. This study furthers our understanding of the mechanisms involved, with a view to improving the therapeutic benefits of biomaterial-assisted cell therapy by modulating the host immune response. The decrease in specific immune response against injected MSCs protected by Si-HPMC also opens up new possibilities for allogeneic clinical use.
Collapse
Affiliation(s)
- Christelle Demarquay
- Human Health Department, IRSN, French Institute for Radiological Protection and Nuclear Safety, SERAMED, LRMed, Fontenay-aux-Roses 92262, France
| | - Lara Moussa
- Human Health Department, IRSN, French Institute for Radiological Protection and Nuclear Safety, SERAMED, LRMed, Fontenay-aux-Roses 92262, France
| | - Gildas Réthoré
- Faculté de Chirurgie Dentaire, Regenerative Medicine and Skeleton (RMeS) Laboratory, Université de Nantes, Nantes 44042, France
| | - Fabien Milliat
- Human Health Department, IRSN, French Institute for Radiological Protection and Nuclear Safety, SERAMED, LRMed, Fontenay-aux-Roses 92262, France
| | - Pierre Weiss
- Faculté de Chirurgie Dentaire, Regenerative Medicine and Skeleton (RMeS) Laboratory, Université de Nantes, Nantes 44042, France
| | | |
Collapse
|
18
|
Equine Mesenchymal Stem Cells Influence the Proliferative Response of Lymphocytes: Effect of Inflammation, Differentiation and MHC-Compatibility. Animals (Basel) 2022; 12:ani12080984. [PMID: 35454231 PMCID: PMC9031781 DOI: 10.3390/ani12080984] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/21/2022] [Accepted: 04/08/2022] [Indexed: 01/11/2023] Open
Abstract
Simple Summary Mesenchymal stem cells are investigated for therapy because of their ability to regulate the immune response to an injury. Cell therapy is increasingly important in veterinary patients such as horses, which are also valuable as a model. Therefore, what is learned in these animals can benefit both them and people. However, the patient’s immune system could recognize and destroy mesenchymal stem cells, impairing effectiveness and potentially leading to adverse effects. In this study, we analysed how equine mesenchymal stem cells interact with immune cells in different scenarios. We tested the effect of inflammation and differentiation of these cells, and how they acted depending on donor–patient compatibility. As we expected, inflammation activated the regulatory ability of equine mesenchymal stem cells, but also increased the risk of immune recognition. We anticipated that, after differentiation, these cells would lose their regulatory ability and would be more easily targeted by the immune system. However, they maintained similar features after differentiating into cartilage cells. The balance between the ability of mesenchymal stem cells to stimulate and to regulate an immune response is of the utmost importance to develop safe and effective cell therapies for animals and people. Abstract Immunomodulation and immunogenicity are pivotal aspects for the therapeutic use of mesenchymal stem cells (MSCs). Since the horse is highly valuable as both a patient and translational model, further knowledge on equine MSC immune properties is required. This study analysed how inflammation, chondrogenic differentiation and compatibility for the major histocompatibility complex (MHC) influence the MSC immunomodulatory–immunogenicity balance. Equine MSCs in basal conditions, pro-inflammatory primed (MSC-primed) or chondrogenically differentiated (MSC-chondro) were co-cultured with either autologous or allogeneic MHC-matched/mismatched lymphocytes in immune-suppressive assays (immunomodulation) and in modified one-way mixed leukocyte reactions (immunogenicity). After co-culture, frequency and proliferation of T cell subsets and B cells were assessed by flow cytometry and interferon-ɣ (IFNɣ) secretion by ELISA. MSC-primed showed higher regulatory potential by decreasing proliferation of cytotoxic and helper T cells and B cells. However, MHC-mismatched MSC-primed can also activate lymphocytes (proliferative response and IFNɣ secretion), likely due to increased MHC-expression. MSC-chondro maintained their regulatory ability and did not increase their immunogenicity, but showed less capacity than MSC-primed to induce regulatory T cells and further stimulated B cells. Subsequent in vivo studies are needed to elucidate the complex interactions between MSCs and the recipient immune system, which is critical to develop safe and effective therapies.
Collapse
|
19
|
Rasińska J, Klein C, Stahn L, Maidhof F, Pfeffer A, Schreyer S, Gossen M, Kurtz A, Steiner B, Hemmati‐Sadeghi S. Transposon‐mediated glial cell line‐derived neurotrophic factor overexpression in human adipose tissue‐derived mesenchymal stromal cells: A potential approach for neuroregenerative medicine? J Tissue Eng Regen Med 2022; 16:515-529. [DOI: 10.1002/term.3296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 02/17/2022] [Accepted: 02/26/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Justyna Rasińska
- Department of Neurology Charité – Universitätsmedizin Berlin corporate member of Freie Universität Berlin and Humboldt‐Universität zu Berlin Berlin Germany
| | - Charlotte Klein
- Department of Neurology Charité – Universitätsmedizin Berlin corporate member of Freie Universität Berlin and Humboldt‐Universität zu Berlin Berlin Germany
| | - Laura Stahn
- Department of Neurology Charité – Universitätsmedizin Berlin corporate member of Freie Universität Berlin and Humboldt‐Universität zu Berlin Berlin Germany
| | - Felix Maidhof
- Department of Neurology Charité – Universitätsmedizin Berlin corporate member of Freie Universität Berlin and Humboldt‐Universität zu Berlin Berlin Germany
| | - Anna Pfeffer
- Department of Neurology Charité – Universitätsmedizin Berlin corporate member of Freie Universität Berlin and Humboldt‐Universität zu Berlin Berlin Germany
| | - Stefanie Schreyer
- Department of Neurology Charité – Universitätsmedizin Berlin corporate member of Freie Universität Berlin and Humboldt‐Universität zu Berlin Berlin Germany
| | - Manfred Gossen
- Berlin‐Brandenburg Center for Regenerative Therapies (BCRT) Charité Virchow Campus Berlin Germany
- Institute of Active Polymers Helmholtz‐Zentrum Geesthacht Teltow Germany
| | - Andreas Kurtz
- Berlin‐Brandenburg Center for Regenerative Therapies (BCRT) Charité Virchow Campus Berlin Germany
| | - Barbara Steiner
- Department of Neurology Charité – Universitätsmedizin Berlin corporate member of Freie Universität Berlin and Humboldt‐Universität zu Berlin Berlin Germany
| | - Shabnam Hemmati‐Sadeghi
- Department of Neurology Charité – Universitätsmedizin Berlin corporate member of Freie Universität Berlin and Humboldt‐Universität zu Berlin Berlin Germany
| |
Collapse
|
20
|
Krampera M, Le Blanc K. Mesenchymal stromal cells: Putative microenvironmental modulators become cell therapy. Cell Stem Cell 2021; 28:1708-1725. [PMID: 34624232 DOI: 10.1016/j.stem.2021.09.006] [Citation(s) in RCA: 142] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
An exceptional safety profile has been shown in a large number of cell therapy clinical trials that use mesenchymal stromal cells (MSCs). However, reliable potency assays are still lacking to predict MSC immunosuppressive efficacy in the clinical setting. Nevertheless, MSCs are approved in Japan and Europe for the treatment of graft-versus-host and Crohn's fistular diseases, but not in the United States for any clinical indication. We discuss potential mechanisms of action for the therapeutic effects of MSC transplantation, experimental models that dissect tissue modulating function of MSCs, and approaches for identifying MSC effects in vivo by integrating biomarkers of disease and MSC activity.
Collapse
Affiliation(s)
- Mauro Krampera
- Section of Hematology and Bone Marrow Transplant Unit, Department of Medicine, University of Verona, Verona, Italy.
| | - Katarina Le Blanc
- Division of Clinical Immunology and Transfusion Medicine, Karolinska Institutet, Stockholm, Sweden; Center of Allogeneic Stem Cell Transplantation and Cellular Therapy (CAST), Karolinska University Hospital, Huddinge, Stockholm, Sweden.
| |
Collapse
|
21
|
Kim HJ, Cho KR, Jang H, Lee NK, Jung YH, Kim JP, Lee JI, Chang JW, Park S, Kim ST, Moon SW, Seo SW, Choi SJ, Na DL. Intracerebroventricular injection of human umbilical cord blood mesenchymal stem cells in patients with Alzheimer's disease dementia: a phase I clinical trial. ALZHEIMERS RESEARCH & THERAPY 2021; 13:154. [PMID: 34521461 PMCID: PMC8439008 DOI: 10.1186/s13195-021-00897-2] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 09/02/2021] [Indexed: 12/22/2022]
Abstract
Backgrounds Alzheimer’s disease is the most common cause of dementia, and currently, there is no disease-modifying treatment. Favorable functional outcomes and reduction of amyloid levels were observed following transplantation of mesenchymal stem cells (MSCs) in animal studies. Objectives We conducted a phase I clinical trial in nine patients with mild-to-moderate Alzheimer’s disease dementia to evaluate the safety and dose-limiting toxicity of three repeated intracerebroventricular injections of human umbilical cord blood–derived MSCs (hUCB-MSCs). Methods We recruited nine mild-to-moderate Alzheimer’s disease dementia patients from Samsung Medical Center, Seoul, Republic of Korea. Four weeks prior to MSC administration, the Ommaya reservoir was implanted into the right lateral ventricle of the patients. Three patients received a low dose (1.0 × 107 cells/2 mL), and six patients received a high dose (3.0 × 107 cells/2 mL) of hUCB-MSCs. Three repeated injections of MSCs were performed (4-week intervals) in all nine patients. These patients were followed up to 12 weeks after the first hUCB-MSC injection and an additional 36 months in the extended observation study. Results After hUCB-MSC injection, the most common adverse event was fever (n = 9) followed by headache (n = 7), nausea (n = 5), and vomiting (n = 4), which all subsided within 36 h. There were three serious adverse events in two participants that were considered to have arisen from the investigational product. Fever in a low dose participant and nausea with vomiting in another low dose participant each required extended hospitalization by a day. There were no dose-limiting toxicities. Five participants completed the 36-month extended observation study, and no further serious adverse events were observed. Conclusions Three repeated administrations of hUCB-MSCs into the lateral ventricle via an Ommaya reservoir were feasible, relatively and sufficiently safe, and well-tolerated. Currently, we are undergoing an extended follow-up study for those who participated in a phase IIa trial where upon completion, we hope to gain a deeper understanding of the clinical efficacy of MSC AD therapy. Trial registration ClinicalTrials.gov NCT02054208. Registered on 4 February 2014. ClinicalTrials.gov NCT03172117. Registered on 1 June 2017 Supplementary Information The online version contains supplementary material available at 10.1186/s13195-021-00897-2.
Collapse
Affiliation(s)
- Hee Jin Kim
- Departments of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 80 Ilwon-ro, Gangnam-gu, Seoul, 135-710, Republic of Korea.,Alzheimer's Disease Convergence Research Center, Samsung Medical Center, Seoul, Republic of Korea.,Neuroscience Center, Samsung Medical Center, Seoul, Republic of Korea.,Stem Cell & Regenerative Medicine Institute, Samsung Medical Center, Seoul, Republic of Korea.,Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Republic of Korea
| | - Kyung Rae Cho
- Department of Neurosurgery, Konkuk University School of Medicine, Seoul, Republic of Korea
| | - Hyemin Jang
- Departments of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 80 Ilwon-ro, Gangnam-gu, Seoul, 135-710, Republic of Korea.,Alzheimer's Disease Convergence Research Center, Samsung Medical Center, Seoul, Republic of Korea.,Neuroscience Center, Samsung Medical Center, Seoul, Republic of Korea.,Stem Cell & Regenerative Medicine Institute, Samsung Medical Center, Seoul, Republic of Korea
| | - Na Kyung Lee
- Alzheimer's Disease Convergence Research Center, Samsung Medical Center, Seoul, Republic of Korea.,Stem Cell & Regenerative Medicine Institute, Samsung Medical Center, Seoul, Republic of Korea.,Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Young Hee Jung
- Department of Neurology, Myongji Hospital, Hanyang University, Goyang, Republic of Korea
| | - Jun Pyo Kim
- Center for Neuroimaging, Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jung Il Lee
- Neuroscience Center, Samsung Medical Center, Seoul, Republic of Korea.,Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Jong Wook Chang
- Stem Cell & Regenerative Medicine Institute, Samsung Medical Center, Seoul, Republic of Korea.,Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Republic of Korea
| | - Seongbeom Park
- Departments of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 80 Ilwon-ro, Gangnam-gu, Seoul, 135-710, Republic of Korea.,Alzheimer's Disease Convergence Research Center, Samsung Medical Center, Seoul, Republic of Korea.,Neuroscience Center, Samsung Medical Center, Seoul, Republic of Korea
| | - Sung Tae Kim
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Seung Whan Moon
- Department of Nuclear Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Sang Won Seo
- Departments of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 80 Ilwon-ro, Gangnam-gu, Seoul, 135-710, Republic of Korea.,Alzheimer's Disease Convergence Research Center, Samsung Medical Center, Seoul, Republic of Korea.,Neuroscience Center, Samsung Medical Center, Seoul, Republic of Korea
| | - Soo Jin Choi
- Biomedical Research Institute, R&D Center, MEDIPOST Co., Ltd., Seongnam, Republic of Korea
| | - Duk L Na
- Departments of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 80 Ilwon-ro, Gangnam-gu, Seoul, 135-710, Republic of Korea. .,Alzheimer's Disease Convergence Research Center, Samsung Medical Center, Seoul, Republic of Korea. .,Neuroscience Center, Samsung Medical Center, Seoul, Republic of Korea. .,Stem Cell & Regenerative Medicine Institute, Samsung Medical Center, Seoul, Republic of Korea. .,Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Republic of Korea.
| |
Collapse
|
22
|
Dam PTM, Hoang VT, Bui HTH, Hang LM, Hoang DM, Nguyen HP, Lien HT, Tran HTT, Nguyen XH, Nguyen Thanh L. Human Adipose-Derived Mesenchymal Stromal Cells Exhibit High HLA-DR Levels and Altered Cellular Characteristics under a Xeno-free and Serum-free Condition. Stem Cell Rev Rep 2021; 17:2291-2303. [PMID: 34510358 PMCID: PMC8599375 DOI: 10.1007/s12015-021-10242-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/11/2021] [Indexed: 01/22/2023]
Abstract
Background We have observed an increased expression of negative markers in some clinical-grade, xeno- and serum-free cultured adipose-derived mesenchymal stem/stromal cell (ADMSC) samples. It gave rise to concern that xeno- and serum-free conditions might have unexpected effects on human ADMSCs. This study aims to test this hypothesis for two xeno- and serum-free media, PowerStem MSC1 media (PS) and StemMACS MSC Expansion Media (SM), that support the in vitro expansion of ADMSCs. Methods We investigated the expression of negative markers in 42 clinical-grade ADMSC samples expanded in PS. Next, we cultured ADMSCs from seven donors in PS and SM and examined their growth and colony-forming ability, surface marker expression, differentiation, cell cycle and senescence, as well as genetic stability of two passages representing an early and late passage for therapeutic MSCs. Results 15 of 42 clinical-grade PS-expanded ADMSC samples showed an increased expression of negative markers ranging from 2.73% to 34.24%, which positively correlated with the age of donors. This rise of negative markers was related to an upregulation of Human Leukocyte Antigen – DR (HLA-DR). In addition, the PS-cultured cells presented decreased growth ability, lower frequencies of cells in S/G2/M phases, and increased ß-galactosidase activity in passage 7 suggesting their senescent feature compared to those grown in SM. Although MSCs of both PS and SM cultures were capable of multilineage differentiation, the PS-cultured cells demonstrated chromosomal abnormalities in passage 7 compared to the normal karyotype of their SM counterparts. Conclusions These findings suggest that the SM media is more suitable for the expansion of therapeutic ADMSCs than PS. The study also hints a change of ADMSC features at more advanced passages and with increased donor’s age. Thus, it emphasizes the necessity to cover these aspects in the quality control of therapeutic MSC products. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1007/s12015-021-10242-7.
Collapse
Affiliation(s)
- Phuong T M Dam
- Vinmec Institute of Applied Science and Regenerative Medicine, Vinmec Health Care System, Hanoi, Vietnam
| | - Van T Hoang
- Vinmec Research Institute of Stem Cell and Gene Technology (VRISG), Vinmec Health Care System, Hanoi, Vietnam
| | - Hue Thi Hong Bui
- Vinmec Institute of Applied Science and Regenerative Medicine, Vinmec Health Care System, Hanoi, Vietnam
| | - Le Minh Hang
- Vinmec Institute of Applied Science and Regenerative Medicine, Vinmec Health Care System, Hanoi, Vietnam
| | - Duc M Hoang
- Vinmec Research Institute of Stem Cell and Gene Technology (VRISG), Vinmec Health Care System, Hanoi, Vietnam
| | - Hoang Phuong Nguyen
- Vinmec Research Institute of Stem Cell and Gene Technology (VRISG), Vinmec Health Care System, Hanoi, Vietnam
| | - Ha Thi Lien
- Vinmec Institute of Applied Science and Regenerative Medicine, Vinmec Health Care System, Hanoi, Vietnam
| | - Huong Thi Thanh Tran
- Vinmec Institute of Applied Science and Regenerative Medicine, Vinmec Health Care System, Hanoi, Vietnam
| | - Xuan-Hung Nguyen
- Vinmec Institute of Applied Science and Regenerative Medicine, Vinmec Health Care System, Hanoi, Vietnam
| | - Liem Nguyen Thanh
- Vinmec Research Institute of Stem Cell and Gene Technology (VRISG), Vinmec Health Care System, Hanoi, Vietnam.
| |
Collapse
|
23
|
López-Díaz de Cerio A, Perez-Estenaga I, Inoges S, Abizanda G, Gavira JJ, Larequi E, Andreu E, Rodriguez S, Gil AG, Crisostomo V, Sanchez-Margallo FM, Bermejo J, Jauregui B, Quintana L, Fernández-Avilés F, Pelacho B, Prósper F. Preclinical Evaluation of the Safety and Immunological Action of Allogeneic ADSC-Collagen Scaffolds in the Treatment of Chronic Ischemic Cardiomyopathy. Pharmaceutics 2021; 13:pharmaceutics13081269. [PMID: 34452230 PMCID: PMC8399291 DOI: 10.3390/pharmaceutics13081269] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/31/2021] [Accepted: 08/11/2021] [Indexed: 12/11/2022] Open
Abstract
The use of allogeneic adipose-derived mesenchymal stromal cells (alloADSCs) represents an attractive approach for treating myocardial infarction (MI). Furthermore, adding a natural support improves alloADSCs engraftment and survival in heart tissues, leading to a greater therapeutic effect. We aimed to examine the safety and immunological reaction induced by epicardial implantation of a clinical-grade collagen scaffold (CS) seeded with alloADSCs for its future application in humans. Thus, cellularized scaffolds were myocardially or subcutaneously implanted in immunosuppressed rodent models. The toxicological parameters were not significantly altered, and tumor formation was not found over the short or long term. Furthermore, biodistribution analyses in the infarcted immunocompetent rats displayed cell engraftment in the myocardium but no migration to other organs. The immunogenicity of alloADSC-CS was also evaluated in a preclinical porcine model of chronic MI; no significant humoral or cellular alloreactive responses were found. Moreover, CS cellularized with human ADSCs cocultured with human allogeneic immune cells produced no alloreactive response. Interestingly, alloADSC-CS significantly inhibited lymphocyte responses, confirming its immunomodulatory action. Thus, alloADSC-CS is likely safe and does not elicit any alloreactive immunological response in the host. Moreover, it exerts an immunomodulatory action, which supports its translation to a clinical setting.
Collapse
Affiliation(s)
- Ascensión López-Díaz de Cerio
- Department of Cell Therapy and Hematology, Clínica Universidad de Navarra, 31008 Pamplona, Spain; (A.L.-D.d.C.); (S.I.); (E.A.)
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain; (G.A.); (J.J.G.)
| | - Iñigo Perez-Estenaga
- Center for Applied Medical Research (CIMA), Regenerative Medicine Department, 31008 Pamplona, Spain; (I.P.-E.); (E.L.); (S.R.)
| | - Susana Inoges
- Department of Cell Therapy and Hematology, Clínica Universidad de Navarra, 31008 Pamplona, Spain; (A.L.-D.d.C.); (S.I.); (E.A.)
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain; (G.A.); (J.J.G.)
| | - Gloria Abizanda
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain; (G.A.); (J.J.G.)
- Center for Applied Medical Research (CIMA), Regenerative Medicine Department, 31008 Pamplona, Spain; (I.P.-E.); (E.L.); (S.R.)
| | - Juan José Gavira
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain; (G.A.); (J.J.G.)
- Department of Cardiology, Clínica Universidad de Navarra, 31008 Pamplona, Spain
| | - Eduardo Larequi
- Center for Applied Medical Research (CIMA), Regenerative Medicine Department, 31008 Pamplona, Spain; (I.P.-E.); (E.L.); (S.R.)
| | - Enrique Andreu
- Department of Cell Therapy and Hematology, Clínica Universidad de Navarra, 31008 Pamplona, Spain; (A.L.-D.d.C.); (S.I.); (E.A.)
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain; (G.A.); (J.J.G.)
| | - Saray Rodriguez
- Center for Applied Medical Research (CIMA), Regenerative Medicine Department, 31008 Pamplona, Spain; (I.P.-E.); (E.L.); (S.R.)
| | - Ana Gloria Gil
- Department of Pharmacology and Toxicology, University of Navarra, 31009 Pamplona, Spain;
| | - Verónica Crisostomo
- Jesús Usón Minimally Invasive Surgery Centre (CCMIJU), Ctra. N-521, Km. 41.8, 10071 Cáceres, Spain; (V.C.); (F.M.S.-M.)
- CIBERCV, Instituto de Salud Carlos III, 28026 Madrid, Spain; (J.B.); (F.F.-A.)
| | - Francisco Miguel Sanchez-Margallo
- Jesús Usón Minimally Invasive Surgery Centre (CCMIJU), Ctra. N-521, Km. 41.8, 10071 Cáceres, Spain; (V.C.); (F.M.S.-M.)
- CIBERCV, Instituto de Salud Carlos III, 28026 Madrid, Spain; (J.B.); (F.F.-A.)
| | - Javier Bermejo
- CIBERCV, Instituto de Salud Carlos III, 28026 Madrid, Spain; (J.B.); (F.F.-A.)
- Department of Cardiology, Hospital Gregorio Marañón and Instituto de Investigación Sanitaria Gregorio Marañón, 28007 Madrid, Spain
- Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | | | | | - Francisco Fernández-Avilés
- CIBERCV, Instituto de Salud Carlos III, 28026 Madrid, Spain; (J.B.); (F.F.-A.)
- Department of Cardiology, Hospital Gregorio Marañón and Instituto de Investigación Sanitaria Gregorio Marañón, 28007 Madrid, Spain
- Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Beatriz Pelacho
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain; (G.A.); (J.J.G.)
- Center for Applied Medical Research (CIMA), Regenerative Medicine Department, 31008 Pamplona, Spain; (I.P.-E.); (E.L.); (S.R.)
- Correspondence: (B.P.); (F.P.); Tel.: +34-948194700 (B.P.); +34-948255400 (F.P.)
| | - Felipe Prósper
- Department of Cell Therapy and Hematology, Clínica Universidad de Navarra, 31008 Pamplona, Spain; (A.L.-D.d.C.); (S.I.); (E.A.)
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain; (G.A.); (J.J.G.)
- Center for Applied Medical Research (CIMA), Regenerative Medicine Department, 31008 Pamplona, Spain; (I.P.-E.); (E.L.); (S.R.)
- Correspondence: (B.P.); (F.P.); Tel.: +34-948194700 (B.P.); +34-948255400 (F.P.)
| |
Collapse
|
24
|
Transplantation of mesenchymal stem cells causes long-term alleviation of schizophrenia-like behaviour coupled with increased neurogenesis. Mol Psychiatry 2021; 26:4448-4463. [PMID: 31827249 DOI: 10.1038/s41380-019-0623-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 11/17/2019] [Accepted: 11/25/2019] [Indexed: 12/25/2022]
Abstract
Schizophrenia is a neurodevelopmental disease with a mixed genetic and environmental aetiology. Impaired adult hippocampal neurogenesis was suggested both as a pathophysiological mechanism and as a target for therapy. In the present study, we utilized intracerebroventricular transplantation of bone marrow-derived mesenchymal stem cells (MSC) as a means to enhance hippocampal neurogenesis in the ketamine-induced neurodevelopmental murine model for schizophrenia. Syngeneic MSC have successfully engrafted and survived for up to 3 months following transplantation. Improvement in social novelty preference and prepulse inhibition was noted after transplantation. In parallel to behavioural improvement, increased hippocampal neurogenesis as reflected in the numbers of doublecortin expressing neurons in the dentate gyrus and gene expression was noted both 2 weeks following transplantation as well as 3 months later compared with nontreated animals. An independent aging effect was observed for both behaviour and neurogenesis, which was attenuated by MSC treatment. As opposed to MSC treatment, short-term treatment with clozapine was efficient only during treatment and diminished 3 months later. Interestingly, while shortly after transplantation (2 weeks) behavioural improvement was correlated mainly to FGF2 gene expression, 3 months later it was mainly correlated to the expression of the notch ligand DLL1. This suggests that long-term effect during ageing may depend on neural stem cell self-renewal. We conclude that a single intracerebroventricular injection of bone marrow-derived MSC can suffice for long-term reversal of changes in adult hippocampal neurogenesis and improve schizophrenia-like behavioural phenotype inflicted by developmental exposure to ketamine in mice.
Collapse
|
25
|
Ahmed E, Saleh T, Xu M. Recellularization of Native Tissue Derived Acellular Scaffolds with Mesenchymal Stem Cells. Cells 2021; 10:cells10071787. [PMID: 34359955 PMCID: PMC8304639 DOI: 10.3390/cells10071787] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/03/2021] [Accepted: 07/12/2021] [Indexed: 12/22/2022] Open
Abstract
The functionalization of decellularized scaffolds is still challenging because of the recellularization-related limitations, including the finding of the most optimal kind of cell(s) and the best way to control their distribution within the scaffolds to generate native mimicking tissues. That is why researchers have been encouraged to study stem cells, in particular, mesenchymal stem cells (MSCs), as alternative cells to repopulate and functionalize the scaffolds properly. MSCs could be obtained from various sources and have therapeutic effects on a wide range of inflammatory/degenerative diseases. Therefore, in this mini-review, we will discuss the benefits using of MSCs for recellularization, the factors affecting their efficiency, and the drawbacks that may need to be overcome to generate bioengineered transplantable organs.
Collapse
Affiliation(s)
- Ebtehal Ahmed
- Department of Pathology, Faculty of Veterinary Medicine, Assiut University, Assiut 71515, Egypt;
| | - Tarek Saleh
- Department of Animal Surgery, Faculty of Veterinary Medicine, Assiut University, Assiut 71515, Egypt;
| | - Meifeng Xu
- Department of Pathology and Laboratory Medicine, University of Cincinnati Medical Center, Cincinnati, OH 45267, USA
- Correspondence: or ; Tel.: +1-513-558-4725; Fax: +1-513-558-2141
| |
Collapse
|
26
|
Alloreactive Immune Response Associated to Human Mesenchymal Stromal Cells Treatment: A Systematic Review. J Clin Med 2021; 10:jcm10132991. [PMID: 34279481 PMCID: PMC8269175 DOI: 10.3390/jcm10132991] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/01/2021] [Accepted: 07/01/2021] [Indexed: 02/06/2023] Open
Abstract
The well-known immunomodulatory and regenerative properties of mesenchymal stromal cells (MSCs) are the reason why they are being used for the treatment of many diseases. Because they are considered hypoimmunogenic, MSCs treatments are performed without considering histocompatibility barriers and without anticipating possible immune rejections. However, recent preclinical studies describe the generation of alloantibodies and the immune rejection of MSCs. This has led to an increasing number of clinical trials evaluating the immunological profile of patients after treatment with MSCs. The objective of this systematic review was to evaluate the generation of donor specific antibodies (DSA) after allogeneic MSC (allo-MSC) therapy and the impact on safety or tolerability. Data from 555 patients were included in the systematic review, 356 were treated with allo-MSC and the rest were treated with placebo or control drugs. A mean of 11.51% of allo-MSC-treated patients developed DSA. Specifically, 14.95% of these patients developed DSA and 6.33% of them developed cPRA. Neither the production of DSA after treatment nor the presence of DSA at baseline (presensitization) were correlated with safety and/or tolerability of the treatment. The number of doses administrated and human leucocyte antigen (HLA) mismatches between donor and recipient did not affect the production of DSA. The safety of allo-MSC therapy has been proved in all the studies and the generation of alloantibodies might not have clinical relevance. However, there are very few studies in the area. More studies with adequate designs are needed to confirm these results.
Collapse
|
27
|
Hwang JW, Myeong SH, Lee NH, Kim H, Son HJ, Chang JW, Lee NK, Na DL. Immunosuppressant Drugs Mitigate Immune Responses Generated by Human Mesenchymal Stem Cells Transplanted into the Mouse Parenchyma. Cell Transplant 2021; 30:9636897211019025. [PMID: 34044601 PMCID: PMC8168027 DOI: 10.1177/09636897211019025] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
It has been widely accepted that mesenchymal stem cells (MSCs) can evade the immune surveillance of the recipient. However, emerging research cast doubt on whether MSCs are intrinsically immune-privileged. Previously, we observed that the transplantation of human MSCs (hMSCs) into the mouse parenchyma attracted a high infiltration of leukocytes into the injection tract. Thus, in order to reduce the immune responses generated by hMSCs, the aim of this study was to assess which immunosuppressant condition (dexamethasone only, tacrolimus only, or dexamethasone and tacrolimus together) would not only reduce the overall immune response but also enhance the persistence of MSCs engrafted into the caudate putamen of wild-type C57BL/6 mice. According to immunohistochemical analysis, compared to the hMSC only group, the administration of immunosuppressants (for all three conditions) reduced the infiltration of CD45-positive leukocytes and neutrophils at the site of injection. The highest hMSC persistence was detected from the group that received combinatorial administrations of dexamethasone and tacrolimus. Moreover, compared to the immunocompetent WT mouse, higher MSC engraftment was observed from the immunodeficient BALB/c mice. The results of this study support the use of immunosuppressants to tackle MSC-mediated immune responses and to possibly prolong the engraftment of transplanted MSCs.
Collapse
Affiliation(s)
- Jung Won Hwang
- Department of Health Sciences and Technology, SAIHST, 35019Sungkyunkwan University, Gangnam-gu, Seoul, Republic of Korea.,Stem Cell & Regenerative Medicine Institute, 36626Samsung Medical Center, Seoul, Republic of Korea.,Department of Neurology, Samsung Medical Center, 35019Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Su Hyeon Myeong
- Department of Health Sciences and Technology, SAIHST, 35019Sungkyunkwan University, Gangnam-gu, Seoul, Republic of Korea.,Stem Cell & Regenerative Medicine Institute, 36626Samsung Medical Center, Seoul, Republic of Korea.,Department of Neurology, Samsung Medical Center, 35019Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Na-Hee Lee
- Department of Health Sciences and Technology, SAIHST, 35019Sungkyunkwan University, Gangnam-gu, Seoul, Republic of Korea.,Stem Cell & Regenerative Medicine Institute, 36626Samsung Medical Center, Seoul, Republic of Korea.,Department of Neurology, Samsung Medical Center, 35019Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.,Alzheimer's Disease Convergence Research Center, 36626Samsung Medical Center, Seoul, Republic of Korea
| | - Hyeongseop Kim
- Stem Cell & Regenerative Medicine Institute, 36626Samsung Medical Center, Seoul, Republic of Korea.,Stem Cell Institute, ENCell Co. Ltd., Seoul, Republic of Korea
| | - Hyo Jin Son
- Stem Cell & Regenerative Medicine Institute, 36626Samsung Medical Center, Seoul, Republic of Korea.,Department of Neurology, Samsung Medical Center, 35019Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.,Alzheimer's Disease Convergence Research Center, 36626Samsung Medical Center, Seoul, Republic of Korea.,School of Medicine, 35019Sungkyunkwan University, Seoul, Republic of Korea
| | - Jong Wook Chang
- Stem Cell & Regenerative Medicine Institute, 36626Samsung Medical Center, Seoul, Republic of Korea.,Stem Cell Institute, ENCell Co. Ltd., Seoul, Republic of Korea
| | - Na Kyung Lee
- Stem Cell & Regenerative Medicine Institute, 36626Samsung Medical Center, Seoul, Republic of Korea.,Alzheimer's Disease Convergence Research Center, 36626Samsung Medical Center, Seoul, Republic of Korea.,School of Medicine, 35019Sungkyunkwan University, Seoul, Republic of Korea
| | - Duk L Na
- Department of Health Sciences and Technology, SAIHST, 35019Sungkyunkwan University, Gangnam-gu, Seoul, Republic of Korea.,Stem Cell & Regenerative Medicine Institute, 36626Samsung Medical Center, Seoul, Republic of Korea.,Department of Neurology, Samsung Medical Center, 35019Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.,Alzheimer's Disease Convergence Research Center, 36626Samsung Medical Center, Seoul, Republic of Korea.,School of Medicine, 35019Sungkyunkwan University, Seoul, Republic of Korea
| |
Collapse
|
28
|
Mesenchymal Stem Cell Transplantation for Ischemic Diseases: Mechanisms and Challenges. Tissue Eng Regen Med 2021; 18:587-611. [PMID: 33884577 DOI: 10.1007/s13770-021-00334-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 02/07/2021] [Accepted: 02/16/2021] [Indexed: 12/20/2022] Open
Abstract
Ischemic diseases are conditions associated with the restriction or blockage of blood supply to specific tissues. These conditions can cause moderate to severe complications in patients, and can lead to permanent disabilities. Since they are blood vessel-related diseases, ischemic diseases are usually treated with endothelial cells or endothelial progenitor cells that can regenerate new blood vessels. However, in recent years, mesenchymal stem cells (MSCs) have shown potent bioeffects on angiogenesis, thus playing a role in blood regeneration. Indeed, MSCs can trigger angiogenesis at ischemic sites by several mechanisms related to their trans-differentiation potential. These mechanisms include inhibition of apoptosis, stimulation of angiogenesis via angiogenic growth factors, and regulation of immune responses, as well as regulation of scarring to suppress blood vessel regeneration when needed. However, preclinical and clinical trials of MSC transplantation in ischemic diseases have shown some limitations in terms of treatment efficacy. Such studies have emphasized the current challenges of MSC-based therapies. Treatment efficacy could be enhanced if the limitations were better understood and potentially resolved. This review will summarize some of the strategies by which MSCs have been utilized for ischemic disease treatment, and will highlight some challenges of those applications as well as suggesting some strategies to improve treatment efficacy.
Collapse
|
29
|
Tang WY, Liu JH, Peng CJ, Liao Y, Luo JS, Sun X, Tang YL, Luo XQ. Functional Characteristics and Application of Mesenchymal Stem Cells in Systemic Lupus Erythematosus. Arch Immunol Ther Exp (Warsz) 2021; 69:7. [PMID: 33713197 DOI: 10.1007/s00005-021-00603-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 02/04/2021] [Indexed: 02/07/2023]
Abstract
Systemic lupus erythematosus (SLE) is a rare, heterogeneous autoimmune and autoinflammatory disease that affects both sexes and all races, although this disease exhibits its highest incidence/prevalence among the black population and shows a predilection for women of reproductive age. Although SLE has no cure, treatment can help decrease its signs and symptoms. Thus, we should focus primarily on personalized treatment. Mesenchymal stem/stromal cells (MSCs), which are multipotent cells capable of differentiating into osteoblasts, chondrocytes, adipocytes, and myoblasts, among other cell types, are potential candidates for use in a promising strategy to treat severe and refractory SLE. MSCs have an immunomodulatory function that can suppress the proliferation and activities of many immune cells, such as T lymphocytes, B lymphocytes, natural killer cells, macrophages and dendritic cells. Substantial progress has recently been made in MSC therapy, and experimental and clinical data suggest that such a therapy is a promising strategy for the treatment of severe and refractory SLE. In this review, we highlight the effects of MSCs on different immune cell types, describe the mechanisms underlying MSC-mediated immunoregulation, and discuss the treatment of SLE with MSCs from different sources in various animal models and clinical applications.
Collapse
Affiliation(s)
- Wen-Yan Tang
- Department of Pediatrics, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China
| | - Jia-Hua Liu
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China.,Key Laboratory of Tropical Disease Control (SYSU), Ministry of Education, Guangzhou, 510080, Guangdong, China
| | - Chun-Jin Peng
- Department of Pediatrics, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China
| | - Yao Liao
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China.,Key Laboratory of Tropical Disease Control (SYSU), Ministry of Education, Guangzhou, 510080, Guangdong, China
| | - Jie-Si Luo
- Department of Pediatrics, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China
| | - Xi Sun
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China. .,Key Laboratory of Tropical Disease Control (SYSU), Ministry of Education, Guangzhou, 510080, Guangdong, China.
| | - Yan-Lai Tang
- Department of Pediatrics, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China.
| | - Xue-Qun Luo
- Department of Pediatrics, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China.
| |
Collapse
|
30
|
Liu Y, Li F, Cai Z, Wang D, Hou R, Zhang H, Zhang M, Yie S, Wu K, Zeng C, An J. Isolation and characterization of mesenchymal stem cells from umbilical cord of giant panda. Tissue Cell 2021; 71:101518. [PMID: 33676235 DOI: 10.1016/j.tice.2021.101518] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 02/05/2021] [Accepted: 02/22/2021] [Indexed: 10/22/2022]
Abstract
Umbilical cord-derived mesenchymal stem cells (UC-MSCs) constitute a class of cells with significant self-renewal and multilineage differentiation properties and have great potential for therapeutic applications and the genetic conservation of endangered animals. In this study, we successfully isolated and cultured UC-MSCs from the blood vessels of giant panda umbilical cord (UC). The cells were arranged in a vortex or cluster pattern and exhibited a normal karyotype, showing the morphological characteristics of fibroblasts. In addition, we found that basic fibroblast growth factor (bFGF) and epidermal growth factor (EGF) promoted cell proliferation, whereas stem cell factor (SCF) did not promote cell proliferation. Cultured UC-MSCs were negative for CD34 (hematopoietic stem cell marker) and CD31 (endothelial cell marker), but positive for MSC markers (CD44, CD49f, CD105, and CD73) and stem cell markers (KLF4, SOX2, and THY1). Similar to other MSCs, giant panda UC-MSCs have multiple differentiation ability and can differentiate into adipocytes, osteoblasts and chondrocytes. Giant panda UC-MSCs are new resources for basic research as cell models following their differentiation into different cell types and for future clinical treatments of giant panda diseases.
Collapse
Affiliation(s)
- Yuliang Liu
- College of Animal Sciences and Technology, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Wenjiang, 611130, China; Chengdu Research Base of Giant Panda Breeding, Chengdu, Sichuan Province, 610000, China; Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu, Sichuan Province, 610000, China
| | - Feiping Li
- Chengdu Research Base of Giant Panda Breeding, Chengdu, Sichuan Province, 610000, China; Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu, Sichuan Province, 610000, China
| | - Zhigang Cai
- Chengdu Research Base of Giant Panda Breeding, Chengdu, Sichuan Province, 610000, China; Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu, Sichuan Province, 610000, China
| | - Donghui Wang
- Chengdu Research Base of Giant Panda Breeding, Chengdu, Sichuan Province, 610000, China; Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu, Sichuan Province, 610000, China
| | - Rong Hou
- Chengdu Research Base of Giant Panda Breeding, Chengdu, Sichuan Province, 610000, China; Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu, Sichuan Province, 610000, China
| | - Hao Zhang
- Chengdu Research Base of Giant Panda Breeding, Chengdu, Sichuan Province, 610000, China
| | - Ming Zhang
- College of Animal Sciences and Technology, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Wenjiang, 611130, China
| | - Shangmian Yie
- Chengdu Research Base of Giant Panda Breeding, Chengdu, Sichuan Province, 610000, China; Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu, Sichuan Province, 610000, China
| | - Kongju Wu
- Chengdu Research Base of Giant Panda Breeding, Chengdu, Sichuan Province, 610000, China; Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu, Sichuan Province, 610000, China
| | - Changjun Zeng
- College of Animal Sciences and Technology, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Wenjiang, 611130, China.
| | - Junhui An
- Chengdu Research Base of Giant Panda Breeding, Chengdu, Sichuan Province, 610000, China; Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu, Sichuan Province, 610000, China.
| |
Collapse
|
31
|
Berglund AK, Long JM, Robertson JB, Schnabel LV. TGF-β2 Reduces the Cell-Mediated Immunogenicity of Equine MHC-Mismatched Bone Marrow-Derived Mesenchymal Stem Cells Without Altering Immunomodulatory Properties. Front Cell Dev Biol 2021; 9:628382. [PMID: 33614658 PMCID: PMC7889809 DOI: 10.3389/fcell.2021.628382] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 01/11/2021] [Indexed: 12/17/2022] Open
Abstract
Allogeneic mesenchymal stem cells (MSCs) are a promising cell therapy for treating numerous diseases, but major histocompatibility complex (MHC)-mismatched MSCs can be rejected by the recipient’s immune system. Pre-treating MSCs with transforming growth factor-β2 (TGF-β2) to downregulate surface expression of MHC molecules may enhance the ability of allogeneic MSCs to evade immune responses. We used lymphocyte proliferation assays and ELISAs to analyze the immunomodulatory potential of TGF-β2-treated equine bone marrow-derived MSCs. T cell activation and cytotoxicity assays were then used to measure the in vitro cell-mediated immunogenicity. Similar to untreated MSCs, TGF-β2-treated MSCs inhibited T cell proliferation and did not stimulate MHC-mismatched T cells to proliferate. Additionally, similar quantities of prostaglandin E2 and TGF-β1 were detected in assays with untreated and TGF-β2-treated MSCs supporting that TGF-β2-treated MSCs retain their strong immunomodulatory properties in vitro. Compared to untreated MSCs, TGF-β2-treated MSCs induced less T cell activation and had reduced cell-mediated cytotoxicity in vitro. These results indicate that treating MSCs with TGF-β2 is a promising strategy to reduce the cell-mediated immunogenicity of MHC-mismatched MSCs and facilitate allogeneic MSC therapy.
Collapse
Affiliation(s)
- Alix K Berglund
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States.,Comparative Medicine Institute, North Carolina State University, Raleigh, NC, United States
| | - Julie M Long
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| | - James B Robertson
- Office of Research, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| | - Lauren V Schnabel
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States.,Comparative Medicine Institute, North Carolina State University, Raleigh, NC, United States
| |
Collapse
|
32
|
Sareen N, Srivastava A, Dhingra S. Role of prostaglandin E2 in allogeneic mesenchymal stem cell therapy for cardiac repair. Can J Physiol Pharmacol 2021; 99:140-150. [PMID: 33559528 DOI: 10.1139/cjpp-2020-0413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ischemic heart disease is among the primary causes of cardiovascular-related deaths worldwide. Conventional treatments including surgical interventions and medical therapies aid in preventing further damage to heart muscle but are unable to provide a permanent solution. In recent years, stem cell therapy has emerged as an attractive alternative to restore damaged myocardium after myocardial injury. Allogeneic (donor-derived) mesenchymal stem cells (MSCs) have shown great promise in preclinical and clinical studies, making them the most widely accepted candidates for cardiac cell therapy. MSCs promote cardiac repair by modulating host immune system and secreting various soluble factors, of which prostaglandin E2 (PGE2) is an important one. PGE2 plays a significant role in regulating cardiac remodeling following myocardial injury. In this review, we provide an overview of allogeneic MSCs as candidates for myocardial regeneration with a focus on the role of the PGE2/cyclooxygenase-2 (COX2) pathway in mediating these effects.
Collapse
Affiliation(s)
- Niketa Sareen
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Abhay Srivastava
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Sanjiv Dhingra
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
33
|
Faruk EM, Alasmari WA, Fouad H, Nafea OE, Hasan RAA. Extracellular vesicles derived from bone marrow mesenchymal stem cells repair functional and structural rat adrenal gland damage induced by fluoride. Life Sci 2021; 270:119122. [PMID: 33508294 DOI: 10.1016/j.lfs.2021.119122] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/10/2021] [Accepted: 01/18/2021] [Indexed: 02/07/2023]
Abstract
The adrenal glands have striking morpho-biochemical features that render them vulnerable to the effects of toxins. AIMS This study was conducted to explore the therapeutic utility of extracellular vesicles derived from bone marrow mesenchymal stem cells (BMSC-EVs) against fluoride-induced adrenal toxicity. MATERIALS AND METHODS The work included isolation and further identification of BMSC-EVs by transmission electron microscopy and flow cytometric analysis. Adrenal toxicity in rats was induced by oral administration of 300 ppm of sodium fluoride (NaF) in drinking water for 60 days followed by a single dose injection of BMSC-EVs. The effects of BMSC-EVs against NaF was evaluated by adrenal oxidant/antioxidant biomarkers, hormonal assay of plasma adrenocorticotrophic hormone (ACTH) and corticosterone (CORT) and mRNA gene expression quantitation for adrenal cortical steroidogenic pathway-encoding genes. Histopathological examination of the adrenal tissue was performed. KEY FINDINGS BMSC-EVs were effectively isolated and characterized. NaF exposure decreased adrenal superoxide dismutase and catalase activities, increased adrenal malondialdehyde levels, elevated plasma ACTH, diminished CORT concentrations and downregulated the adrenal cortical steroidogenic pathway-encoding genes. In addition, NaF-induced marked adrenal histopathological lesions. SIGNIFICANCE BMSC-EVs treatment repaired damaged adrenal tissue and recovered its function greatly following NaF consumption. BMSC-EVs reversed the toxic effects of NaF and reprogramed injured adrenal cells by activating regenerative processes.
Collapse
Affiliation(s)
- Eman Mohamed Faruk
- Department of Histology and Cell Biology, Faculty of Medicine, Benha University, Benha, Egypt
| | | | - Hanan Fouad
- Medical Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Ola Elsayed Nafea
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Zagazig University, Zagazig, Egypt; Department of Clinical Pharmacy, College of Pharmacy, Taif University, Taif, Saudi Arabia.
| | - Rehab Abd Allah Hasan
- Department of Histology and Cell Biology, Faculty of Medicine for Girls (AFMG), Al-Azhar University, Cairo, Egypt
| |
Collapse
|
34
|
Rowland AL, Miller D, Berglund A, Schnabel LV, Levine GJ, Antczak DF, Watts AE. Cross-matching of allogeneic mesenchymal stromal cells eliminates recipient immune targeting. Stem Cells Transl Med 2020; 10:694-710. [PMID: 33369287 PMCID: PMC8046071 DOI: 10.1002/sctm.20-0435] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/13/2020] [Accepted: 11/19/2020] [Indexed: 12/12/2022] Open
Abstract
Allogeneic mesenchymal stromal cells (MSCs) have been used clinically for decades, without cross-matching, on the assumption that they are immune-privileged. In the equine model, we demonstrate innate and adaptive immune responses after repeated intra-articular injection with major histocompatibility complex (MHC) mismatched allogeneic MSCs, but not MHC matched allogeneic or autologous MSCs. We document increased peri-articular edema and synovial effusion, increased synovial cytokine and chemokine concentrations, and development of donor-specific antibodies in mismatched recipients compared with recipients receiving matched allogeneic or autologous MSCs. Importantly, in matched allogeneic and autologous recipients, but not mismatched allogeneic recipients, there was increased stromal derived factor-1 along with increased MSC concentrations in synovial fluid. Until immune recognition of MSCs can be avoided, repeated clinical use of MSCs should be limited to autologous or cross-matched allogeneic MSCs. When non-cross-matched allogeneic MSCs are used in single MSC dose applications, presensitization against donor MHC should be assessed.
Collapse
Affiliation(s)
- Aileen L Rowland
- Department of Large Animal Clinical Sciences, Texas A&M University, College Station, Texas, USA
| | - Donald Miller
- Baker Institute for Animal Health, Cornell University, Ithaca, New York, USA
| | - Alix Berglund
- Department of Clinical Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - Lauren V Schnabel
- Department of Clinical Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - Gwendolyn J Levine
- Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas, USA
| | - Douglas F Antczak
- Baker Institute for Animal Health, Cornell University, Ithaca, New York, USA
| | - Ashlee E Watts
- Department of Large Animal Clinical Sciences, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
35
|
Sareen N, Abu-El-Rub E, Ammar HI, Yan W, Sequiera GL, ShamsEldeen AM, Moudgil M, Dhingra R, Shokry HS, Rashed LA, Kirshenbaum LA, Dhingra S. Hypoxia-induced downregulation of cyclooxygenase 2 leads to the loss of immunoprivilege of allogeneic mesenchymal stem cells. FASEB J 2020; 34:15236-15251. [PMID: 32959405 DOI: 10.1096/fj.202001478r] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/31/2020] [Accepted: 09/03/2020] [Indexed: 12/16/2022]
Abstract
Allogeneic mesenchymal stem cells (MSCs) from young and healthy donors are reported to hold the potential to treat several immunological and degenerative disorders. However, recent data from animal studies and clinical trials demonstrate that immunogenicity and poor survival of transplanted MSCs impaired the efficacy of cells for regenerative applications. It is reported that initially immunoprivileged under in vitro conditions, MSCs are targeted by the host immune system after transplantation in the ischemic tissues in vivo. We performed in vitro (in MSCs) and in vivo (in the rat model of myocardial infarction [MI]) studies to elucidate the mechanisms responsible for the change in the immunophenotype of MSCs from immunoprivileged to immunogenic under ischemic conditions. We have recently reported that a soluble factor prostaglandin E2 (PGE2) preserves the immunoprivilege of allogeneic MSCs. In the current study, we found that PGE2 levels, which were elevated during normoxia, decreased in MSCs following exposure to hypoxia. Further, we found that proteasome-mediated degradation of cyclooxygenase-2 (COX2, rate-limiting enzyme in PGE2 biosynthesis) in hypoxic MSCs is responsible for PGE2 decrease and loss of immunoprivilege of MSCs. While investigating the mechanisms of COX2 degradation in hypoxic MSCs, we found that in normoxic MSCs, COP9 signalosome subunit 5 (CSN5) binds to COX2 and prevents its degradation by the proteasome. However, exposure to hypoxia leads to a decrease in CSN5 levels and its binding to COX2, rendering COX2 protein susceptible to proteasome-mediated degradation. This subsequently causes PGE2 downregulation and loss of immunoprivilege of MSCs. Maintaining COX2 levels in MSCs preserves immunoprivilege in vitro and improves the survival of transplanted MSCs in a rat model of MI. These data provide novel mechanistic evidence that PGE2 is downregulated in hypoxic MSCs which is responsible for the post-transplantation rejection of allogeneic MSCs. Therefore, our data suggest that the new strategies that target CSN5-COX2 signaling may improve survival and utility of transplanted allogeneic MSCs in the ischemic heart.
Collapse
Affiliation(s)
- Niketa Sareen
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada.,Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB, Canada
| | - Ejlal Abu-El-Rub
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada.,Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB, Canada
| | - Hania I Ammar
- Department of Physiology and Biochemistry, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Weiang Yan
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada.,Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB, Canada
| | - Glen Lester Sequiera
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada.,Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB, Canada
| | - Asmaa M ShamsEldeen
- Department of Physiology and Biochemistry, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Meenal Moudgil
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada.,Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB, Canada
| | - Rimpy Dhingra
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada.,Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB, Canada
| | - Heba S Shokry
- Department of Physiology and Biochemistry, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Laila A Rashed
- Department of Physiology and Biochemistry, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Lorrie A Kirshenbaum
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada.,Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB, Canada
| | - Sanjiv Dhingra
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada.,Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
36
|
Song N, Scholtemeijer M, Shah K. Mesenchymal Stem Cell Immunomodulation: Mechanisms and Therapeutic Potential. Trends Pharmacol Sci 2020; 41:653-664. [PMID: 32709406 PMCID: PMC7751844 DOI: 10.1016/j.tips.2020.06.009] [Citation(s) in RCA: 501] [Impact Index Per Article: 100.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 06/26/2020] [Accepted: 06/26/2020] [Indexed: 02/08/2023]
Abstract
Mesenchymal stem/stromal cells (MSCs) are multipotent cells that are emerging as the most promising means of allogeneic cell therapy. MSCs have inherent immunomodulatory characteristics, trophic activity, high invitro self-renewal ability, and can be readily engineered to enhance their immunomodulatory functions. MSCs affect the functions of most immune effector cells via direct contact with immune cells and local microenvironmental factors. Previous studies have confirmed that the immunomodulatory effects of MSCs are mainly communicated via MSC-secreted cytokines; however, apoptotic and metabolically inactivated MSCs have more recently been shown to possess immunomodulatory potential, in which regulatory T cells and monocytes play a key role. We review the immunomodulatory aspects of naïve and engineered MSCs, and discuss strategies for increasing the potential of successfully using MSCs in clinical settings.
Collapse
Affiliation(s)
- Na Song
- Center for Stem Cell Therapeutics and Imaging (CSTI), Harvard Medical School, Boston, MA 02115, USA; Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Medical Oncology, the First Hospital of China Medical University, Shenyang 110001, China
| | - Martijn Scholtemeijer
- Center for Stem Cell Therapeutics and Imaging (CSTI), Harvard Medical School, Boston, MA 02115, USA; Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Khalid Shah
- Center for Stem Cell Therapeutics and Imaging (CSTI), Harvard Medical School, Boston, MA 02115, USA; Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
37
|
Mesenchymal Stem/Progenitor Cells: The Prospect of Human Clinical Translation. Stem Cells Int 2020; 2020:8837654. [PMID: 33953753 PMCID: PMC8063852 DOI: 10.1155/2020/8837654] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/19/2020] [Accepted: 07/20/2020] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem/progenitor cells (MSCs) are key players in regenerative medicine, relying principally on their differentiation/regeneration potential, immunomodulatory properties, paracrine effects, and potent homing ability with minimal if any ethical concerns. Even though multiple preclinical and clinical studies have demonstrated remarkable properties for MSCs, the clinical applicability of MSC-based therapies is still questionable. Several challenges exist that critically hinder a successful clinical translation of MSC-based therapies, including but not limited to heterogeneity of their populations, variability in their quality and quantity, donor-related factors, discrepancies in protocols for isolation, in vitro expansion and premodification, and variability in methods of cell delivery, dosing, and cell homing. Alterations of MSC viability, proliferation, properties, and/or function are also affected by various drugs and chemicals. Moreover, significant safety concerns exist due to possible teratogenic/neoplastic potential and transmission of infectious diseases. Through the current review, we aim to highlight the major challenges facing MSCs' human clinical translation and shed light on the undergoing strategies to overcome them.
Collapse
|
38
|
Haworth R, Sharpe M. Accept or Reject: The Role of Immune Tolerance in the Development of Stem Cell Therapies and Possible Future Approaches. Toxicol Pathol 2020; 49:1308-1316. [PMID: 32319357 DOI: 10.1177/0192623320918241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In 2011, Goldring and colleagues published a review article describing the potential safety issues of novel stem cell-derived treatments. Immunogenicity and immunotoxicity of the administered cell product were considered risks in the light of clinical experience of transplantation. The relative immunogenicity of mesenchymal stem cells, embryonic stem cells (ESCs), and induced pluripotent stem cells (iPSCs) was being addressed through in vitro and in vivo models. But the question arose as to whether the implanted cells needed to be identical to the recipient in every respect, including epigenetically, to evade immune recognition? If so, this set a high bar which may preclude use of many cells derived from iPSCs which have vestiges of a fetal phenotype and epigenetic memory of their cell of origin. However, for autologous iPSCs, the immunogenicity reduces once the surface antigen expression profile becomes close to that of the parent somatic cells. Therefore, a cell product containing incompletely differentiated cells could be more immunogenic. The properties of the administered cells, the immune privilege of the administration site, and the host immune status influence graft success or failure. In addition, the various approaches available to characterize potential immunogenicity of a cell therapy will be discussed.
Collapse
|
39
|
Kotze PG, Spinelli A, Lightner AL. Cell-based Therapy for Perianal Fistulising Crohn's Disease. Curr Pharm Des 2020; 25:41-46. [PMID: 31092172 DOI: 10.2174/1381612825666190308095651] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Accepted: 03/01/2019] [Indexed: 12/30/2022]
Abstract
BACKGROUND The management of complex perianal fistulas in Crohn's disease (CD) represents a challenge for patients, gastroenterologists and colorectal surgeons. There are clear limitations with current medical and surgical options, and healing rates remain far from what is expected. A multidisciplinary approach with optimized medical therapy, usually anti-TNF agents, associated with setons and additional surgical techniques is currently the best strategy to aim fistula healing. METHODS A comprehensive review of the literature was conducted on the use of mesenchymal stem cells (MSCs). RESULTS The use of mesenchymal stem cells (MSCs) has recently emerged as a promising new therapeutic strategy for complex fistulas in CD patients. This review summarizes the evidence of the use of MSCs in complex CD fistulas, by exploring in detail the types of cells that can be used and their modes of delivery. Additionally, the results of the most recent phase III randomized trial with local MSCs injection are described, and future challenges of this therapeutic option are discussed. CONCLUSION The use of MSCs represents hope for better outcomes in patients with CD-related perianal fistulas. More research in the field will help to position this specific therapy in treatment algorithms.
Collapse
Affiliation(s)
- Paulo Gustavo Kotze
- Colorectal Surgery Unit, IBD outpatient clinics, Catholic University of Parana, Curitiba, Brazil
| | - Antonino Spinelli
- Division of Colon and Rectal Surgery, Humanitas Clinical and Research Center, Rozzano, Italy
| | - Amy Lee Lightner
- Division of Colon and Rectal Surgery, Mayo Clinic, Rochester, United States
| |
Collapse
|
40
|
Barrachina L, Cequier A, Romero A, Vitoria A, Zaragoza P, Vázquez FJ, Rodellar C. Allo-antibody production after intraarticular administration of mesenchymal stem cells (MSCs) in an equine osteoarthritis model: effect of repeated administration, MSC inflammatory stimulation, and equine leukocyte antigen (ELA) compatibility. Stem Cell Res Ther 2020; 11:52. [PMID: 32028995 PMCID: PMC7006079 DOI: 10.1186/s13287-020-1571-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 12/11/2019] [Accepted: 01/26/2020] [Indexed: 02/07/2023] Open
Abstract
Background Antibody production after allogeneic administration of mesenchymal stem cells (MSCs) could impact their clinical application. Proinflammatory priming of MSCs can potentiate their regulatory ability in vivo but increased expression of major histocompatibility complex (MHC) might augment their immunogenicity, potentially leading to immune memory thus limiting repeated allogeneic administration. This study aimed at evaluating the production of cytotoxic allo-antibodies directed against donor’s ELA (equine leukocyte antigen) in mismatched and halfmatched horses receiving repeated intraarticular administration of stimulated MSCs (MSC-primed) and unstimulated MSCs (MSC-naïve) in pathologic joints. Methods From available stored samples from a previous in vivo study, cells from one donor and serially collected sera (five time-points) from three groups of recipients were used based on their ELA haplotypes to perform microcytotoxicity assays: Group 1 recipients mismatched with the donor that received MSC-naïve (naïve-mismatched recipients); Group 2 recipients mismatched with the donor that received MSC-primed (primed-mismatched recipients); Group 3 recipients halfmatched with the donor (sharing 1/2 haplotypes) that received MSC-primed (primed-halfmatched recipients). Sera from recipients (neat, 1:2 and 1:16 dilution) were tested against target cells from the donor (cryopreserved and expanded MSC-naïve and MSC-primed) or from one animal presenting the same ELA haplotypes than the donor (fresh peripheral blood lymphocytes as control). Results One to three weeks after first MSC administration, all recipient groups produced allo-antibodies regardless of MSC received (naïve or primed) and matching degree with donor. However, secondary response after MSC re-exposure was less evident in halfmatched recipients (MSC-primed) than in mismatched ones (both MSC-naïve and MSC-primed). Recipients of MSC-primed (both mismatched and halfmatched) tended towards developing lower antibody response than MSC-naïve recipients in vivo, but MSC-primed were targeted to death in higher percentage in vitro in the microcytoxicity assay. Conclusions After first intraarticular allogeneic administration, the immunomodulatory profile of MSC-primed would have led to lower antibody production, but these antibodies would target more easily MSC-primed after second injection (re-exposure), likely because of their higher MHC expression. Electronic supplementary material The online version of this article (10.1186/s13287-020-1571-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Laura Barrachina
- Laboratorio de Genética Bioquímica LAGENBIO - Instituto de Investigación Sanitaria de Aragón (IIS), Universidad de Zaragoza, C/Miguel Servet, 177, 50013, Zaragoza, Spain.,Instituto Agroalimentario de Aragón (IA2), Universidad de Zaragoza - CITA, C/Miguel Servet, 177, 50013, Zaragoza, Spain.,Servicio de Cirugía y Medicina Equina, Hospital Veterinario, Universidad de Zaragoza, C/Miguel Servet, 177, 50013, Zaragoza, Spain
| | - Alina Cequier
- Laboratorio de Genética Bioquímica LAGENBIO - Instituto de Investigación Sanitaria de Aragón (IIS), Universidad de Zaragoza, C/Miguel Servet, 177, 50013, Zaragoza, Spain.,Instituto Agroalimentario de Aragón (IA2), Universidad de Zaragoza - CITA, C/Miguel Servet, 177, 50013, Zaragoza, Spain
| | - Antonio Romero
- Laboratorio de Genética Bioquímica LAGENBIO - Instituto de Investigación Sanitaria de Aragón (IIS), Universidad de Zaragoza, C/Miguel Servet, 177, 50013, Zaragoza, Spain.,Servicio de Cirugía y Medicina Equina, Hospital Veterinario, Universidad de Zaragoza, C/Miguel Servet, 177, 50013, Zaragoza, Spain
| | - Arantza Vitoria
- Laboratorio de Genética Bioquímica LAGENBIO - Instituto de Investigación Sanitaria de Aragón (IIS), Universidad de Zaragoza, C/Miguel Servet, 177, 50013, Zaragoza, Spain.,Servicio de Cirugía y Medicina Equina, Hospital Veterinario, Universidad de Zaragoza, C/Miguel Servet, 177, 50013, Zaragoza, Spain
| | - Pilar Zaragoza
- Laboratorio de Genética Bioquímica LAGENBIO - Instituto de Investigación Sanitaria de Aragón (IIS), Universidad de Zaragoza, C/Miguel Servet, 177, 50013, Zaragoza, Spain.,Instituto Agroalimentario de Aragón (IA2), Universidad de Zaragoza - CITA, C/Miguel Servet, 177, 50013, Zaragoza, Spain
| | - Francisco José Vázquez
- Laboratorio de Genética Bioquímica LAGENBIO - Instituto de Investigación Sanitaria de Aragón (IIS), Universidad de Zaragoza, C/Miguel Servet, 177, 50013, Zaragoza, Spain.,Servicio de Cirugía y Medicina Equina, Hospital Veterinario, Universidad de Zaragoza, C/Miguel Servet, 177, 50013, Zaragoza, Spain
| | - Clementina Rodellar
- Laboratorio de Genética Bioquímica LAGENBIO - Instituto de Investigación Sanitaria de Aragón (IIS), Universidad de Zaragoza, C/Miguel Servet, 177, 50013, Zaragoza, Spain. .,Instituto Agroalimentario de Aragón (IA2), Universidad de Zaragoza - CITA, C/Miguel Servet, 177, 50013, Zaragoza, Spain.
| |
Collapse
|
41
|
Angiogenic Activity of Cytochalasin B-Induced Membrane Vesicles of Human Mesenchymal Stem Cells. Cells 2019; 9:cells9010095. [PMID: 31906012 PMCID: PMC7016674 DOI: 10.3390/cells9010095] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/19/2019] [Accepted: 12/27/2019] [Indexed: 12/14/2022] Open
Abstract
: The cytochalasin B-induced membrane vesicles (CIMVs) are suggested to be used as a vehicle for the delivery of therapeutics. However, the angiogenic activity and therapeutic potential of human mesenchymal stem/stromal cells (MSCs) derived CIMVs (CIMVs-MSCs) remains unknown. OBJECTIVES The objectives of this study were to analyze the morphology, size distribution, molecular composition, and angiogenic properties of CIMVs-MSCs. METHODS The morphology of CIMVs-MSC was analyzed by scanning electron microscopy. The proteomic analysis, multiplex analysis, and immunostaining were used to characterize the molecular composition of the CIMVs-MSCs. The transfer of surface proteins from a donor to a recipient cell mediated by CIMVs-MSCs was demonstrated using immunostaining and confocal microscopy. The angiogenic potential of CIMVs-MSCs was evaluated using an in vivo approach of subcutaneous implantation of CIMVs-MSCs in mixture with Matrigel matrix. RESULTS Human CIMVs-MSCs retain parental MSCs content, such as growth factors, cytokines, and chemokines: EGF, FGF-2, Eotaxin, TGF-α, G-CSF, Flt-3L, GM-CSF, Fractalkine, IFNα2, IFN-γ, GRO, IL-10, MCP-3, IL-12p40, MDC, IL-12p70, IL-15, sCD40L, IL-17A, IL-1RA, IL-1a, IL-9, IL-1b, IL-2, IL-4, IL-5, IL-6, IL-7, IL-8, IP-10, MCP-1, MIP_1a, MIP-1b, TNF-α, TNF-β, VEGF. CIMVs-MSCs also have the expression of surface receptors similar to those in parental human MSCs (CD90+, CD29+, CD44+, CD73+). Additionally, CIMVs-MSCs could transfer membrane receptors to the surfaces of target cells in vitro. Finally, CIMVs-MSCs can induce angiogenesis in vivo after subcutaneous injection into adult rats. CONCLUSIONS Human CIMVs-MSCs have similar content, immunophenotype, and angiogenic activity to those of the parental MSCs. Therefore, we believe that human CIMVs-MSCs could be used for cell free therapy of degenerative diseases.
Collapse
|
42
|
Miyamae J, Yagi H, Sato K, Okano M, Nishiya K, Katakura F, Sakai M, Nakayama T, Moritomo T, Shiina T. Evaluation of alloreactive T cells based on the degree of MHC incompatibility using flow cytometric mixed lymphocyte reaction assay in dogs. Immunogenetics 2019; 71:635-645. [PMID: 31745606 DOI: 10.1007/s00251-019-01147-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 11/08/2019] [Indexed: 12/12/2022]
Abstract
It has become anticipated that regenerative medicine will extend into the field of veterinary medicine as new treatments for various disorders. Although the use of allogeneic stem cells for tissue regeneration is more attractive than that of autologous cells in emergencies, the therapeutic potential of allogeneic transplantation is often limited by allo-immune responses inducing graft rejection. Therefore, a methodology for quantifying and monitoring alloreactive T cells is necessary for evaluating allo-immune responses. The mixed lymphocyte reaction (MLR) is widely used to evaluate T cell alloreactivity. In human, flow cytometric MLR with carboxyfluorescein diacetate succinimidyl ester has been established and used as a more useful assay than conventional MLR with radioisotope labeling. However, the available information about alloreactivity based on the differences of dog major histocompatibility complex (MHC) (dog leukocyte antigen, DLA) is quite limited in dog. In this paper, we describe our established flow cytometric MLR method that can quantify the T cell alloreactivity while distinguishing cell phenotypes in dog, and T cell alloreactivity among DLA-type matched pairs was significantly lower than DLA-mismatched pairs, suggesting that our developed flow cytometric MLR method is useful for quantifying T cell alloreactivity. In addition, we demonstrated the advantage of DLA homozygous cells as a donor (stimulator) for allogeneic transplantation. We also elucidated that the frequency of alloreactive T cell precursors was almost the same as that of mouse and human (1-10%). To our knowledge, this is the first report to focus on the degree of allo-immune responses in dog based on the differences of DLA polymorphisms.
Collapse
Affiliation(s)
- Jiro Miyamae
- Faculty of Veterinary Medicine, Okayama University of Science, 1-3 Ikoino-oka, Imabari, Ehime, 794-8555, Japan.
| | - Hayato Yagi
- Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa, 252-0880, Japan
| | - Keita Sato
- Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa, 252-0880, Japan
| | - Masaharu Okano
- Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa, 252-0880, Japan
| | - Kohei Nishiya
- Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa, 252-0880, Japan
| | - Fumihiko Katakura
- Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa, 252-0880, Japan
| | - Manabu Sakai
- Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa, 252-0880, Japan
| | - Tomohiro Nakayama
- Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa, 252-0880, Japan
| | - Tadaaki Moritomo
- Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa, 252-0880, Japan
| | - Takashi Shiina
- Division of Basic Medical Science and Molecular Medicine, Department of Molecular Life Science, Tokai University, 143 Shimokasuya, Isehara, Kanagawa, 259-1143, Japan
| |
Collapse
|
43
|
Kot M, Baj-Krzyworzeka M, Szatanek R, Musiał-Wysocka A, Suda-Szczurek M, Majka M. The Importance of HLA Assessment in "Off-the-Shelf" Allogeneic Mesenchymal Stem Cells Based-Therapies. Int J Mol Sci 2019; 20:E5680. [PMID: 31766164 PMCID: PMC6888380 DOI: 10.3390/ijms20225680] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/31/2019] [Accepted: 11/05/2019] [Indexed: 02/07/2023] Open
Abstract
The need for more effective therapies of chronic and acute diseases has led to the attempts of developing more adequate and less invasive treatment methods. Regenerative medicine relies mainly on the therapeutic potential of stem cells. Mesenchymal stem cells (MSCs), due to their immunosuppressive properties and tissue repair abilities, seem to be an ideal tool for cell-based therapies. Taking into account all available sources of MSCs, perinatal tissues become an attractive source of allogeneic MSCs. The allogeneic MSCs provide "off-the-shelf" cellular therapy, however, their allogenicity may be viewed as a limitation for their use. Moreover, some evidence suggests that MSCs are not as immune-privileged as it was previously reported. Therefore, understanding their interactions with the recipient's immune system is crucial for their successful clinical application. In this review, we discuss both autologous and allogeneic application of MSCs, focusing on current approaches to allogeneic MSCs therapies, with a particular interest in the role of human leukocyte antigens (HLA) and HLA-matching in allogeneic MSCs transplantation. Importantly, the evidence from the currently completed and ongoing clinical trials demonstrates that allogeneic MSCs transplantation is safe and seems to cause no major side-effects to the patient. These findings strongly support the case for MSCs efficacy in treatment of a variety of diseases and their use as an "off-the-shelf" medical product.
Collapse
Affiliation(s)
- Marta Kot
- Department of Transplantation, Faculty of Medicine, Medical College, Jagiellonian University, Wielicka 265, 30-663 Kraków, Poland; (M.K.); (A.M.-W.); (M.S.-S.)
| | - Monika Baj-Krzyworzeka
- Department of Clinical Immunology, Medical College, Jagiellonian University, Wielicka 265, 30-663 Kraków, Poland; (M.B.-K.); (R.S.)
| | - Rafał Szatanek
- Department of Clinical Immunology, Medical College, Jagiellonian University, Wielicka 265, 30-663 Kraków, Poland; (M.B.-K.); (R.S.)
| | - Aleksandra Musiał-Wysocka
- Department of Transplantation, Faculty of Medicine, Medical College, Jagiellonian University, Wielicka 265, 30-663 Kraków, Poland; (M.K.); (A.M.-W.); (M.S.-S.)
| | - Magdalena Suda-Szczurek
- Department of Transplantation, Faculty of Medicine, Medical College, Jagiellonian University, Wielicka 265, 30-663 Kraków, Poland; (M.K.); (A.M.-W.); (M.S.-S.)
| | - Marcin Majka
- Department of Transplantation, Faculty of Medicine, Medical College, Jagiellonian University, Wielicka 265, 30-663 Kraków, Poland; (M.K.); (A.M.-W.); (M.S.-S.)
| |
Collapse
|
44
|
Emmerson S, Mukherjee S, Melendez-Munoz J, Cousins F, Edwards SL, Karjalainen P, Ng M, Tan KS, Darzi S, Bhakoo K, Rosamilia A, Werkmeister JA, Gargett CE. Composite mesh design for delivery of autologous mesenchymal stem cells influences mesh integration, exposure and biocompatibility in an ovine model of pelvic organ prolapse. Biomaterials 2019; 225:119495. [PMID: 31606680 DOI: 10.1016/j.biomaterials.2019.119495] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 08/20/2019] [Accepted: 09/11/2019] [Indexed: 12/21/2022]
Abstract
The widespread use of synthetic transvaginal polypropylene mesh for treating Pelvic Organ Prolapse (POP) has been curtailed due to serious adverse effects highlighted in 2008 and 2011 FDA warnings and subsequent legal action. We are developing new synthetic mesh to deliver endometrial mesenchymal stem cells (eMSC) to improve mesh biocompatibility and restore strength to prolapsed vaginal tissue. Here we evaluated knitted polyamide (PA) mesh in an ovine multiparous model using transvaginal implantation and matched for the degree of POP. Polyamide mesh dip-coated in gelatin and stabilised with 0.5% glutaraldehyde (PA/G) were used either alone or seeded with autologous ovine eMSC (eMSC/PA/G), which resulted in substantial mesh folding, poor tissue integration and 42% mesh exposure in the ovine model. In contrast, a two-step insertion protocol, whereby the uncoated PA mesh was inserted transvaginally followed by application of autologous eMSC in a gelatin hydrogel onto the mesh and crosslinked with blue light (PA + eMSC/G), integrated well with little folding and no mesh exposure. The autologous ovine eMSC survived 30 days in vivo but had no effect on mesh integration. The stiff PA/G constructs provoked greater myofibroblast and inflammatory responses in the vaginal wall, disrupted the muscularis layer and reduced elastin fibres compared to PA + eMSC/G constructs. This study identified the superiority of a two-step protocol for implanting synthetic mesh in cellular compatible composite constructs and simpler surgical application, providing additional translational value.
Collapse
Affiliation(s)
- S Emmerson
- Ritchie Centre, Hudson Institute of Medical Research, 27-31 Wright Street, Clayton, Melbourne, Australia; Department of Obstetrics and Gynaecology, Monash University, Wellington Road, Clayton, Melbourne, Australia
| | - S Mukherjee
- Ritchie Centre, Hudson Institute of Medical Research, 27-31 Wright Street, Clayton, Melbourne, Australia; Department of Obstetrics and Gynaecology, Monash University, Wellington Road, Clayton, Melbourne, Australia
| | | | - F Cousins
- Ritchie Centre, Hudson Institute of Medical Research, 27-31 Wright Street, Clayton, Melbourne, Australia
| | - S L Edwards
- CSIRO Manufacturing, Research Way, Clayton, Melbourne, Australia
| | - P Karjalainen
- Monash Health, Centre Road, Moorabbin, Melbourne, Australia
| | - M Ng
- Singapore Bioimaging Consortium, 1 Agency for Science, Technology and Research (A*STAR), 1 Biopolis Way, Singapore
| | - K S Tan
- Ritchie Centre, Hudson Institute of Medical Research, 27-31 Wright Street, Clayton, Melbourne, Australia
| | - S Darzi
- Ritchie Centre, Hudson Institute of Medical Research, 27-31 Wright Street, Clayton, Melbourne, Australia; Department of Obstetrics and Gynaecology, Monash University, Wellington Road, Clayton, Melbourne, Australia
| | - K Bhakoo
- Singapore Bioimaging Consortium, 1 Agency for Science, Technology and Research (A*STAR), 1 Biopolis Way, Singapore
| | - A Rosamilia
- Department of Obstetrics and Gynaecology, Monash University, Wellington Road, Clayton, Melbourne, Australia; Monash Health, Centre Road, Moorabbin, Melbourne, Australia
| | - J A Werkmeister
- Ritchie Centre, Hudson Institute of Medical Research, 27-31 Wright Street, Clayton, Melbourne, Australia; Department of Obstetrics and Gynaecology, Monash University, Wellington Road, Clayton, Melbourne, Australia
| | - C E Gargett
- Ritchie Centre, Hudson Institute of Medical Research, 27-31 Wright Street, Clayton, Melbourne, Australia; Department of Obstetrics and Gynaecology, Monash University, Wellington Road, Clayton, Melbourne, Australia.
| |
Collapse
|
45
|
Wang Y, Tian M, Wang F, Heng BC, Zhou J, Cai Z, Liu H. Understanding the Immunological Mechanisms of Mesenchymal Stem Cells in Allogeneic Transplantation: From the Aspect of Major Histocompatibility Complex Class I. Stem Cells Dev 2019; 28:1141-1150. [PMID: 31215341 DOI: 10.1089/scd.2018.0256] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cell (MSC) transplantation therapy appears to be an ideal strategy for repairing structural defects and restoring the functions of diseased tissues and organs. Additionally, MSCs are also used as immunosuppressants in allogeneic organ transplantation. However, owing to their inherent immunogenicity, MSC transplantation can induce the activation of an immune response, which can lead to the death and clearance of the transplanted MSCs. Major histocompatibility complex (MHC) molecules are responsible for antigen presentation, help T lymphocytes to recognize endogenous/extrinsic antigens, and trigger immune activation. Many studies have shown that MHC molecules (particularly class I) play key roles in the immunogenicity of MSCs. This review, therefore, focuses on the relationship between MHC-I surface expression on MSCs and its immunogenicity, as well as potential strategies to overcome the hurdle of MHC incompatibility.
Collapse
Affiliation(s)
- Yafei Wang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, School of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Hangzhou, China
| | - Mengya Tian
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, School of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Hangzhou, China
| | - Fei Wang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, School of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Hangzhou, China
| | - Boon Chin Heng
- School of Stomatology, Peking University, Beijing, China
| | - Jing Zhou
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, School of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Hangzhou, China
| | - Zhijian Cai
- Institute of Immunology, School of Medicine, Zhejiang University, Hangzhou, China.,Department of Orthopedics of the Second Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Hua Liu
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, School of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Hangzhou, China
| |
Collapse
|
46
|
Avivar-Valderas A, Martín-Martín C, Ramírez C, Del Río B, Menta R, Mancheño-Corvo P, Ortiz-Virumbrales M, Herrero-Méndez Á, Panés J, García-Olmo D, Castañer JL, Palacios I, Lombardo E, Dalemans W, DelaRosa O. Dissecting Allo-Sensitization After Local Administration of Human Allogeneic Adipose Mesenchymal Stem Cells in Perianal Fistulas of Crohn's Disease Patients. Front Immunol 2019; 10:1244. [PMID: 31258526 PMCID: PMC6587893 DOI: 10.3389/fimmu.2019.01244] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 05/16/2019] [Indexed: 12/19/2022] Open
Abstract
Adipose mesenchymal stem cells (ASC) are considered minimally immunogenic. This is due to the low expression of human leukocyte antigens I (HLA-I), lack of HLA-II expression and low expression of co-stimulatory molecules such as CD40 and CD80. The low rate of observed immunological rejection as well as the immunomodulatory qualities, position ASC as a promising cell-based therapy for the treatment of a variety of inflammatory indications. Yet, few studies have addressed relevant aspects of immunogenicity such as ASC donor-to-patient HLA histocompatibility or assessment of immune response triggered by ASC administration, particularly in the cases of presensitization. The present study aims to assess allo-immune responses in a cohort of Crohn's disease patients administered with allogeneic ASC (darvadstrocel formerly Cx601) for the treatment of complex perianal fistulas. We identified donor-specific antibodies (DSA) generation in a proportion of patients and observed that patients showing preexisting immunity were prone to generating DSA after allogeneic therapy. Noteworthy, naïve patients generating DSA at week 12 (W12) showed a significant reduction in DSA titer at week 52 (W52), whereas DSA titer was reduced in pre-sensitized patients only with no specificities against the donor administered. Remarkably, we did not observe any correlation of DSA generation with ASC therapeutic efficacy. In vitro complement-dependent cytotoxicity (CDC) studies have revealed limited cytotoxic levels based upon HLA-I expression and binding capacity even in pro-inflammatory conditions. We sought to identify CDC coping mechanisms contributing to the limited cytotoxic killing observed in ASC in vitro. We found that ASC express membrane-bound complement regulatory proteins (mCRPs) CD55, CD46, and CD59 at basal levels, with CD46 more actively expressed in pro-inflammatory conditions. We demonstrated that CD46 is a main driver of CDC signaling; its depletion significantly enhances sensitivity of ASC to CDC. In summary, despite relatively high clearance, DSA generation may represent a major challenge for allogeneic cell therapy management. Sensitization may be a significant concern when evaluating re-treatment or multi-donor trials. It is still unknown whether DSA generation could potentially be the consequence of donor-to-patient interaction and, therefore, subsequently link to efficacy or biological activity. Lastly, we propose that CDC modulators such as CD46 could be used to ultimately link CDC specificity with allogeneic cell therapy efficacy.
Collapse
Affiliation(s)
| | | | - Cristina Ramírez
- Takeda Madrid, Cell Therapy Technology Center-Cell Therapies, Madrid, Spain
| | - Borja Del Río
- Takeda Madrid, Cell Therapy Technology Center-Cell Therapies, Madrid, Spain
| | - Ramón Menta
- Takeda Madrid, Cell Therapy Technology Center-Cell Therapies, Madrid, Spain
| | | | | | | | - Julián Panés
- Department of Gastroenterology, Hospital Clínic, IDIBAPS, CIBERehd, Barcelona, Spain
| | - Damián García-Olmo
- Department of Surgery, Hospital U. Fundación Jiménez Díaz, Madrid, Spain
| | - José Luís Castañer
- Department of Immunology, University Hospital Ramon y Cajal, Madrid, Spain
| | - Itziar Palacios
- Takeda Madrid, Cell Therapy Technology Center-Cell Therapies, Madrid, Spain
| | - Eleuterio Lombardo
- Takeda Madrid, Cell Therapy Technology Center-Cell Therapies, Madrid, Spain
| | | | - Olga DelaRosa
- Takeda Madrid, Cell Therapy Technology Center-Cell Therapies, Madrid, Spain
| |
Collapse
|
47
|
Brennen WN, Schweizer MT, Wang H, Bivalacqua TJ, Partin AW, Lim SJ, Chapman C, Abdallah R, Levy O, Bhowmick NA, Karp JM, De Marzo A, Isaacs JT, Denmeade SR. In Reply. Stem Cells Transl Med 2019; 8:739-740. [PMID: 30925030 PMCID: PMC6591553 DOI: 10.1002/sctm.19-0068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 03/12/2019] [Indexed: 11/25/2022] Open
Affiliation(s)
- W Nathaniel Brennen
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Michael T Schweizer
- Department of Medicine, University of Washington, Seattle, Washington, USA.,Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Hao Wang
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Trinity J Bivalacqua
- Department of Urology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Alan W Partin
- Department of Urology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Su Jin Lim
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Carolyn Chapman
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Rehab Abdallah
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Oren Levy
- Center for Nanomedicine and Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Harvard Stem Cell Institute, Cambridge, Massachusetts, USA.,Division of Health Sciences and Technology, Harvard-MIT, Cambridge, Massachusetts, USA
| | - Neil A Bhowmick
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Jeffrey M Karp
- Center for Nanomedicine and Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Harvard Stem Cell Institute, Cambridge, Massachusetts, USA.,Division of Health Sciences and Technology, Harvard-MIT, Cambridge, Massachusetts, USA
| | - Angelo De Marzo
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - John T Isaacs
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Samuel R Denmeade
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
48
|
Delivery of oncolytic vaccinia virus by matched allogeneic stem cells overcomes critical innate and adaptive immune barriers. J Transl Med 2019; 17:100. [PMID: 30917829 PMCID: PMC6437877 DOI: 10.1186/s12967-019-1829-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 02/27/2018] [Indexed: 02/07/2023] Open
Abstract
Background Previous studies have identified IFNγ as an important early barrier to oncolytic viruses including vaccinia. The existing innate and adaptive immune barriers restricting oncolytic virotherapy, however, can be overcome using autologous or allogeneic mesenchymal stem cells as carrier cells with unique immunosuppressive properties. Methods To test the ability of mesenchymal stem cells to overcome innate and adaptive immune barriers and to successfully deliver oncolytic vaccinia virus to tumor cells, we performed flow cytometry and virus plaque assay analysis of ex vivo co-cultures of stem cells infected with vaccinia virus in the presence of peripheral blood mononuclear cells from healthy donors. Comparative analysis was performed to establish statistically significant correlations and to evaluate the effect of stem cells on the activity of key immune cell populations. Results Here, we demonstrate that adipose-derived stem cells (ADSCs) have the potential to eradicate resistant tumor cells through a combination of potent virus amplification and sensitization of the tumor cells to virus infection. Moreover, the ADSCs demonstrate ability to function as a virus-amplifying Trojan horse in the presence of both autologous and allogeneic human PBMCs, which can be linked to the intrinsic immunosuppressive properties of stem cells and their unique potential to overcome innate and adaptive immune barriers. The clinical application of ready-to-use ex vivo expanded allogeneic stem cell lines, however, appears significantly restricted by patient-specific allogeneic differences associated with the induction of potent anti-stem cell cytotoxic and IFNγ responses. These allogeneic responses originate from both innate (NK)- and adaptive (T)- immune cells and might compromise therapeutic efficacy through direct elimination of the stem cells or the induction of an anti-viral state, which can block the potential of the Trojan horse to amplify and deliver vaccinia virus to the tumor. Conclusions Overall, our findings and data indicate the feasibility to establish simple and informative assays that capture critically important patient-specific differences in the immune responses to the virus and stem cells, which allows for proper patient-stem cell matching and enables the effective use of off-the-shelf allogeneic cell-based delivery platforms, thus providing a more practical and commercially viable alternative to the autologous stem cell approach. Electronic supplementary material The online version of this article (10.1186/s12967-019-1829-z) contains supplementary material, which is available to authorized users.
Collapse
|
49
|
Hakim R, Covacu R, Zachariadis V, Frostell A, Sankavaram S, Svensson M, Brundin L. Syngeneic, in contrast to allogeneic, mesenchymal stem cells have superior therapeutic potential following spinal cord injury. J Neuroimmunol 2019; 328:5-19. [PMID: 30551037 DOI: 10.1016/j.jneuroim.2018.11.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 11/06/2018] [Accepted: 11/07/2018] [Indexed: 01/11/2023]
Abstract
We evaluated the importance of histocompatibility of transplanted MSCs in terms of therapeutic potential. Mouse syngeneic MSCs or allogeneic MSCs were transplanted following SCI in mouse. In this study we found that syngeneic, but not allogeneic, MSCs alternatively activated macrophages resulting in a down-regulation of pro-inflammation. Syngeneic MSCs also had a general suppressive effect on the immune response as compared to allogeneic MSCs. Additionally, syngeneic, but not allogeneic, MSCs significantly enhanced the recovery of hind limb function. In this study we show that the histocompatibility of transplanted MSCs is of importance for their therapeutic potential.
Collapse
Affiliation(s)
- Ramil Hakim
- Center for Molecular Medicine, Karolinska Institutet, Solna 17176, Stockholm, Sweden; Department of Clinical Neuroscience, Karolinska Institutet, Solna 17176, Stockholm, Sweden.
| | - Ruxandra Covacu
- Center for Molecular Medicine, Karolinska Institutet, Solna 17176, Stockholm, Sweden; Department of Clinical Neuroscience, Karolinska Institutet, Solna 17176, Stockholm, Sweden.
| | - Vasilios Zachariadis
- Department of Oncology and Pathology, Karolinska Institutet, Solna 17176, Stockholm, Sweden.
| | - Arvid Frostell
- Department of Clinical Neuroscience, Karolinska Institutet, Solna 17176, Stockholm, Sweden.
| | - Sreenivasa Sankavaram
- Center for Molecular Medicine, Karolinska Institutet, Solna 17176, Stockholm, Sweden; Department of Clinical Neuroscience, Karolinska Institutet, Solna 17176, Stockholm, Sweden.
| | - Mikael Svensson
- Department of Neurology and Neurosurgery, Karolinska University Hospital, BioClinicum, Solnavägen 30, Solna, Stockholm 17176, Sweden; Department of Clinical Neuroscience, Karolinska Institutet, Solna 17176, Stockholm, Sweden.
| | - Lou Brundin
- Department of Neurology and Neurosurgery, Karolinska University Hospital, BioClinicum, Solnavägen 30, Solna, Stockholm 17176, Sweden; Center for Molecular Medicine, Karolinska Institutet, Solna 17176, Stockholm, Sweden; Department of Clinical Neuroscience, Karolinska Institutet, Solna 17176, Stockholm, Sweden.
| |
Collapse
|
50
|
Manufacturing of primed mesenchymal stromal cells for therapy. Nat Biomed Eng 2019; 3:90-104. [PMID: 30944433 DOI: 10.1038/s41551-018-0325-8] [Citation(s) in RCA: 225] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 11/14/2018] [Indexed: 12/11/2022]
Abstract
Mesenchymal stromal cells (MSCs) for basic research and clinical applications are manufactured and developed as unique cell products by many different manufacturers and laboratories, often under different conditions. The lack of standardization of MSC identity has limited consensus around which MSC properties are relevant for specific outcomes. In this Review, we examine how the choice of media, cell source, culture environment and storage affects the phenotype and clinical utility of MSC-based products, and discuss the techniques better suited to prime MSCs with specific phenotypes of interest and the need for the continued development of standardized assays that provide quality assurance for clinical-grade MSCs. Bioequivalence between cell products and batches must be investigated rather than assumed, so that the diversity of phenotypes between differing MSC products can be accounted for to identify products with the highest therapeutic potential and to preserve their safety in clinical treatments.
Collapse
|