1
|
Islam Z, Ali AM, Naik A, Eldaw M, Decock J, Kolatkar PR. Transcription Factors: The Fulcrum Between Cell Development and Carcinogenesis. Front Oncol 2021; 11:681377. [PMID: 34195082 PMCID: PMC8236851 DOI: 10.3389/fonc.2021.681377] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/26/2021] [Indexed: 12/15/2022] Open
Abstract
Higher eukaryotic development is a complex and tightly regulated process, whereby transcription factors (TFs) play a key role in controlling the gene regulatory networks. Dysregulation of these regulatory networks has also been associated with carcinogenesis. Transcription factors are key enablers of cancer stemness, which support the maintenance and function of cancer stem cells that are believed to act as seeds for cancer initiation, progression and metastasis, and treatment resistance. One key area of research is to understand how these factors interact and collaborate to define cellular fate during embryogenesis as well as during tumor development. This review focuses on understanding the role of TFs in cell development and cancer. The molecular mechanisms of cell fate decision are of key importance in efforts towards developing better protocols for directed differentiation of cells in research and medicine. We also discuss the dysregulation of TFs and their role in cancer progression and metastasis, exploring TF networks as direct or indirect targets for therapeutic intervention, as well as specific TFs' potential as biomarkers for predicting and monitoring treatment responses.
Collapse
Affiliation(s)
- Zeyaul Islam
- Diabetes Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Ameena Mohamed Ali
- Diabetes Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Adviti Naik
- Translational Cancer and Immunity Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Mohamed Eldaw
- Diabetes Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Julie Decock
- Translational Cancer and Immunity Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Prasanna R. Kolatkar
- Diabetes Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| |
Collapse
|
2
|
Bach DH, Long NP, Luu TTT, Anh NH, Kwon SW, Lee SK. The Dominant Role of Forkhead Box Proteins in Cancer. Int J Mol Sci 2018; 19:E3279. [PMID: 30360388 PMCID: PMC6213973 DOI: 10.3390/ijms19103279] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 10/19/2018] [Accepted: 10/20/2018] [Indexed: 12/16/2022] Open
Abstract
Forkhead box (FOX) proteins are multifaceted transcription factors that are significantly implicated in cancer, with various critical roles in biological processes. Herein, we provide an overview of several key members of the FOXA, FOXC, FOXM1, FOXO and FOXP subfamilies. Important pathophysiological processes of FOX transcription factors at multiple levels in a context-dependent manner are discussed. We also specifically summarize some major aspects of FOX transcription factors in association with cancer research such as drug resistance, tumor growth, genomic alterations or drivers of initiation. Finally, we suggest that targeting FOX proteins may be a potential therapeutic strategy to combat cancer.
Collapse
Affiliation(s)
- Duc-Hiep Bach
- College of Pharmacy, Seoul National University, Seoul 08826, Korea.
| | | | | | - Nguyen Hoang Anh
- College of Pharmacy, Seoul National University, Seoul 08826, Korea.
| | - Sung Won Kwon
- College of Pharmacy, Seoul National University, Seoul 08826, Korea.
| | - Sang Kook Lee
- College of Pharmacy, Seoul National University, Seoul 08826, Korea.
| |
Collapse
|
3
|
Hwangbo Y, Park YJ. Genome-Wide Association Studies of Autoimmune Thyroid Diseases, Thyroid Function, and Thyroid Cancer. Endocrinol Metab (Seoul) 2018; 33:175-184. [PMID: 29947174 PMCID: PMC6021314 DOI: 10.3803/enm.2018.33.2.175] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 05/08/2018] [Accepted: 05/14/2018] [Indexed: 12/16/2022] Open
Abstract
Thyroid diseases, including autoimmune thyroid diseases and thyroid cancer, are known to have high heritability. Family and twin studies have indicated that genetics plays a major role in the development of thyroid diseases. Thyroid function, represented by thyroid stimulating hormone (TSH) and free thyroxine (T4), is also known to be partly genetically determined. Before the era of genome-wide association studies (GWAS), the ability to identify genes responsible for susceptibility to thyroid disease was limited. Over the past decade, GWAS have been used to identify genes involved in many complex diseases, including various phenotypes of the thyroid gland. In GWAS of autoimmune thyroid diseases, many susceptibility loci associated with autoimmunity (human leukocyte antigen [HLA], protein tyrosine phosphatase, non-receptor type 22 [PTPN22], cytotoxic T-lymphocyte associated protein 4 [CTLA4], and interleukin 2 receptor subunit alpha [IL2RA]) or thyroid-specific genes (thyroid stimulating hormone receptor [TSHR] and forkhead box E1 [FOXE1]) have been identified. Regarding thyroid function, many susceptibility loci for levels of TSH and free T4 have been identified through genome-wide analyses. In GWAS of differentiated thyroid cancer, associations at FOXE1, MAP3K12 binding inhibitory protein 1 (MBIP)-NK2 homeobox 1 (NKX2-1), disrupted in renal carcinoma 3 (DIRC3), neuregulin 1 (NRG1), and pecanex-like 2 (PCNXL2) have been commonly identified in people of European and Korean ancestry, and many other susceptibility loci have been found in specific populations. Through GWAS of various thyroid-related phenotypes, many susceptibility loci have been found, providing insights into the pathogenesis of thyroid diseases and disease co-clustering within families and individuals.
Collapse
Affiliation(s)
- Yul Hwangbo
- Center for Thyroid Cancer, National Cancer Center, Goyang, Korea
| | - Young Joo Park
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea.
| |
Collapse
|
4
|
Wang F, Yan D, Ji X, Han J, Chen M, Qiao H, Zhang S. rs965513 polymorphism as a common risk marker is associated with papillary thyroid cancer. Oncotarget 2018; 7:41336-41345. [PMID: 27191655 PMCID: PMC5173063 DOI: 10.18632/oncotarget.9324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 04/16/2016] [Indexed: 02/06/2023] Open
Abstract
Papillary thyroid cancer (PTC) is the most common type of thyroid cancer. With the rapid development of genome-wide association studies (GWAS), many genome variants associated with susceptibility to PTC have been identified, including the single nucleotide polymorphism rs965513 (9q22.33) near FOXE1. To evaluate the association between rs965513 and PTC in different ethnicities and countries, we conducted a meta-analysis using relatively large-scale samples from 23 studies (N = 163,136; 20,736 cases and 142,400 controls) by searching the PubMed and Google Scholar databases. Significant heterogeneity caused by different populations among the selected studies was observed. The A allele of rs965513 polymorphism was shown to be highly associated with risk of thyroid cancer, with odds ratios of 1.58 (95% CI 1.32–1.90) in all populations, 1.65 (95% CI 1.31–2.07)) in Caucasian populations and 1.49 in Asian populations. Compared to the dominant and recessive models, we observed the highest odds ratio (OR = 2.80, 95% CI 2.12–3.69) in the homozygous model. These results revealed that the rs965513 polymorphism is a risk factor for thyroid cancer
Collapse
Affiliation(s)
- Fang Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Dehui Yan
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Xu Ji
- Department of Otolaryngology, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Jun Han
- Department of Endemic Disease, the Second Affiliated Hospital, Harbin Medical University, Harbin, 150086, China
| | - Meijun Chen
- Department of Endemic Disease, the Second Affiliated Hospital, Harbin Medical University, Harbin, 150086, China
| | - Hong Qiao
- Department of Endemic Disease, the Second Affiliated Hospital, Harbin Medical University, Harbin, 150086, China
| | - Shaojun Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| |
Collapse
|
5
|
Son HY, Hwangbo Y, Yoo SK, Im SW, Yang SD, Kwak SJ, Park MS, Kwak SH, Cho SW, Ryu JS, Kim J, Jung YS, Kim TH, Kim SJ, Lee KE, Park DJ, Cho NH, Sung J, Seo JS, Lee EK, Park YJ, Kim JI. Genome-wide association and expression quantitative trait loci studies identify multiple susceptibility loci for thyroid cancer. Nat Commun 2017; 8:15966. [PMID: 28703219 PMCID: PMC5511346 DOI: 10.1038/ncomms15966] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 05/16/2017] [Indexed: 01/12/2023] Open
Abstract
Thyroid cancer is the most common cancer in Korea. Several susceptibility loci of differentiated thyroid cancer (DTC) were identified by previous genome-wide association studies (GWASs) in Europeans only. Here we conducted a GWAS and a replication study in Koreans using a total of 1,085 DTC cases and 8,884 controls, and validated these results using expression quantitative trait loci (eQTL) analysis and clinical phenotypes. The most robust associations were observed in the NRG1 gene (rs6996585, P=1.08 × 10-10) and this SNP was also associated with NRG1 expression in thyroid tissues. In addition, we confirmed three previously reported loci (FOXE1, NKX2-1 and DIRC3) and identified seven novel susceptibility loci (VAV3, PCNXL2, INSR, MRSB3, FHIT, SEPT11 and SLC24A6) associated with DTC. Furthermore, we identified specific variants of DTC that have different effects according to cancer type or ethnicity. Our findings provide deeper insight into the genetic contribution to thyroid cancer in different populations.
Collapse
Affiliation(s)
- Ho-Young Son
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea
| | - Yul Hwangbo
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Center for Thyroid Cancer, National Cancer Center, Goyang 10408, Republic of Korea
| | - Seong-Keun Yoo
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul 03080, Republic of Korea
- Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul 03080, Republic of Korea
| | - Sun-Wha Im
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea
| | - San Duk Yang
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul 03080, Republic of Korea
| | - Soo-Jung Kwak
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul 03080, Republic of Korea
| | - Min Seon Park
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea
- Graduate Program in Genetic Counseling, Northwestern University, Chicago, Illinois 60637, USA
| | - Soo Heon Kwak
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Sun Wook Cho
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Jun Sun Ryu
- Center for Thyroid Cancer, National Cancer Center, Goyang 10408, Republic of Korea
| | - Jeongseon Kim
- Molecular Epidemiology Branch, Division of Cancer Epidemiology and Prevention, Research Institute, National Cancer Center, Goyang 10408, Republic of Korea
| | - Yuh-Seog Jung
- Center for Thyroid Cancer, National Cancer Center, Goyang 10408, Republic of Korea
| | - Tae Hyun Kim
- Center for Thyroid Cancer, National Cancer Center, Goyang 10408, Republic of Korea
| | - Su-jin Kim
- Department of Surgery, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Kyu Eun Lee
- Department of Surgery, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Do Joon Park
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Nam Han Cho
- Department of Preventive Medicine Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Joohon Sung
- Department of Epidemiology and Institute of Environment and Health, School of Public Health, Seoul National University, Seoul 08826, Republic of Korea
| | - Jeong-Sun Seo
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul 03080, Republic of Korea
- Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul 03080, Republic of Korea
| | - Eun Kyung Lee
- Center for Thyroid Cancer, National Cancer Center, Goyang 10408, Republic of Korea
| | - Young Joo Park
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul 03080, Republic of Korea
| | - Jong-Il Kim
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul 03080, Republic of Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| |
Collapse
|
6
|
Raimundo J, Alvelos MI, Azevedo T, Martins T, Rodrigues FJ, Lemos MC. Association of FOXE1 polyalanine repeat region with thyroid cancer is dependent on tumour size. Clin Endocrinol (Oxf) 2017; 86:243-246. [PMID: 27474100 DOI: 10.1111/cen.13166] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 07/23/2016] [Accepted: 07/27/2016] [Indexed: 11/27/2022]
Abstract
OBJECTIVE Polymorphisms in the thyroid transcription factor forkhead factor E1 (FOXE1) gene have been implicated in the genetic susceptibility to differentiated thyroid cancer, but little is known about their effect on tumour characteristics. The objective of this study was to determine the contribution of the FOXE1 polyalanine repeat region to the susceptibility to thyroid cancer and to its clinical characteristics. DESIGN, PATIENTS AND MEASUREMENTS A total of 500 patients with sporadic thyroid cancer (440 papillary and 60 follicular thyroid carcinoma) and 502 healthy controls were included in this case-control association study. The number of FOXE1 alanine repeats in each subject was determined by PCR and multiplex fragment analysis by capillary electrophoresis. FOXE1 genotype and allele frequencies among groups were compared by logistic regression and adjusted for sex and age at diagnosis. Data were analysed according to cancer subtype, tumour size and the presence of lymph node or distant metastasis. RESULTS FOXE1 alleles with 16 or more alanine repeats were more frequent in patients with tumour size > 1 cm compared to tumour size ≤ 1 cm (adjusted OR 1·44; 95% CI 1·05-1·88; P = 0·019). Genotypes containing at least one allele with 16 or more alanine repeats were associated with larger tumour size (adjusted OR 1·71; 95% CI 1·15-2·57; P = 0·009). No significant differences were observed between cancer subtypes or the presence/absence of metastasis. CONCLUSIONS FOXE1 polyalanine repeat polymorphisms are associated with thyroid cancer, but only for tumours larger than 1 cm, suggesting a role in disease progression.
Collapse
Affiliation(s)
- Joana Raimundo
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Maria I Alvelos
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Teresa Azevedo
- Endocrinology Service, Portuguese Institute of Oncology of Coimbra, Coimbra, Portugal
| | - Teresa Martins
- Endocrinology Service, Portuguese Institute of Oncology of Coimbra, Coimbra, Portugal
| | - Fernando J Rodrigues
- Endocrinology Service, Portuguese Institute of Oncology of Coimbra, Coimbra, Portugal
| | - Manuel C Lemos
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| |
Collapse
|
7
|
Nikitski AV, Rogounovitch TI, Bychkov A, Takahashi M, Yoshiura KI, Mitsutake N, Kawaguchi T, Matsuse M, Drozd VM, Demidchik Y, Nishihara E, Hirokawa M, Miyauchi A, Rubanovich AV, Matsuda F, Yamashita S, Saenko VA. Genotype Analyses in the Japanese and Belarusian Populations Reveal Independent Effects of rs965513 and rs1867277 but Do Not Support the Role of FOXE1 Polyalanine Tract Length in Conferring Risk for Papillary Thyroid Carcinoma. Thyroid 2017; 27:224-235. [PMID: 27824288 DOI: 10.1089/thy.2015.0541] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Several functional single-nucleotide polymorphisms (SNPs) at the FOXE1 locus on chromosome 9q22.33 have been associated with the risk for papillary thyroid carcinoma (PTC). This study set out to elucidate whether their effects are independent, using genotyping results in populations of Asian and European descent. METHODS SNPs rs965513 and rs1867277 and a polymorphic region determining the length of the FOXE1 polyalanine (poly-Ala) tract were genotyped in 501 patients with PTC and 748 healthy individuals from Japan, and in 660 patients and 820 population controls from Belarus. Functional analysis of transactivation activities of FOXE1 isoforms with varying number of alanine repeats was performed by a Dual-Luciferase® Assay. RESULTS All three polymorphisms were significantly associated with PTC in both populations on univariate analysis. However, conditional analysis revealed independent effects of rs965513 and rs1867277 SNPs but not of the FOXE1 poly-Ala polymorphism. The independent effect of the lead rs965513 SNP was observed in both populations, while that of rs1867277 was only identified in the Japanese population, in which linkage disequilibrium between the three polymorphisms is markedly weaker. Despite the strong decrease in transcriptional activity with increasing FOXE1 poly-Ala tract length, no difference in transactivation potential of the FOXE1 poly-Ala isoforms could be seen after adjustment for the minimal promoter activity in the reporter vectors. Plasmids encoding FOXE1 isoforms of increasing poly-Ala tract length were also found to produce less FOXE1 protein after cell transfection. CONCLUSIONS The functional variants rs965513 and rs1867277 independently contribute to genetic predisposition to PTC, while a contributing role of the FOXE1 poly-Ala polymorphism could not be confirmed.
Collapse
Affiliation(s)
- Alyaksandr V Nikitski
- 1 Department of Radiation Medical Sciences, Atomic Bomb Disease Institute, Nagasaki University , Nagasaki, Japan
| | - Tatiana I Rogounovitch
- 1 Department of Radiation Medical Sciences, Atomic Bomb Disease Institute, Nagasaki University , Nagasaki, Japan
| | - Andrey Bychkov
- 1 Department of Radiation Medical Sciences, Atomic Bomb Disease Institute, Nagasaki University , Nagasaki, Japan
| | - Meiko Takahashi
- 2 Center for the Promotion of Interdisciplinary Education and Research, Kyoto University , Kyoto, Japan
| | - Koh-Ichiro Yoshiura
- 3 Department of Human Genetics, Atomic Bomb Disease Institute, Nagasaki University , Nagasaki, Japan
| | - Norisato Mitsutake
- 1 Department of Radiation Medical Sciences, Atomic Bomb Disease Institute, Nagasaki University , Nagasaki, Japan
- 4 Nagasaki University Research Center for Genomic Instability and Carcinogenesis , Nagasaki, Japan
| | - Takahisa Kawaguchi
- 5 Center for Genomic Medicine, Kyoto University Graduate School of Medicine , Kyoto, Japan
| | - Michiko Matsuse
- 1 Department of Radiation Medical Sciences, Atomic Bomb Disease Institute, Nagasaki University , Nagasaki, Japan
| | - Valentina M Drozd
- 6 Department of Endocrinology, Belarusian Academy for Postgraduate Education , Minsk, Belarus
| | - Yuri Demidchik
- 7 Department of Oncology, Belarusian Academy for Postgraduate Education , Minsk, Belarus
| | | | | | | | - Alexander V Rubanovich
- 9 Ecological Genetics Laboratory, Vavilov Institute of General Genetics, Russian Academy of Sciences , Moscow, Russia
- 10 Department of Radiation Molecular Epidemiology, Atomic Bomb Disease Institute, Nagasaki University , Nagasaki, Japan
| | - Fumihiko Matsuda
- 5 Center for Genomic Medicine, Kyoto University Graduate School of Medicine , Kyoto, Japan
| | - Shunichi Yamashita
- 1 Department of Radiation Medical Sciences, Atomic Bomb Disease Institute, Nagasaki University , Nagasaki, Japan
- 10 Department of Radiation Molecular Epidemiology, Atomic Bomb Disease Institute, Nagasaki University , Nagasaki, Japan
| | - Vladimir A Saenko
- 10 Department of Radiation Molecular Epidemiology, Atomic Bomb Disease Institute, Nagasaki University , Nagasaki, Japan
| |
Collapse
|
8
|
MYH9 binds to lncRNA gene PTCSC2 and regulates FOXE1 in the 9q22 thyroid cancer risk locus. Proc Natl Acad Sci U S A 2017; 114:474-479. [PMID: 28049826 DOI: 10.1073/pnas.1619917114] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A locus on chromosome 9q22 harbors a SNP (rs965513) firmly associated with risk of papillary thyroid carcinoma (PTC). The locus also comprises the forkhead box E1 (FOXE1) gene, which is implicated in thyroid development, and a long noncoding RNA (lncRNA) gene, papillary thyroid cancer susceptibility candidate 2 (PTCSC2). How these might interact is not known. Here we report that PTCSC2 binds myosin-9 (MYH9). In a bidirectional promoter shared by FOXE1 and PTCSC2, MYH9 inhibits the promoter activity in both directions. This inhibition can be reversed by PTCSC2, which acts as a suppressor. RNA knockdown of FOXE1 in primary thyroid cells profoundly interferes with the p53 pathway. We propose that the interaction between the lncRNA, its binding protein MYH9, and the coding gene FOXE1 underlies the predisposition to PTC triggered by rs965513.
Collapse
|
9
|
Fei X, Wu J, Liu Q, Ren Y, Lou Z. Spatiotemporal analysis and risk assessment of thyroid cancer in Hangzhou, China. STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT 2016; 30:2155-2168. [DOI: 10.1007/s00477-015-1123-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
|
10
|
Jendrzejewski J, Liyanarachchi S, Nagy R, Senter L, Wakely PE, Thomas A, Nabhan F, He H, Li W, Sworczak K, Ringel MD, Kirschner LS, de la Chapelle A. Papillary Thyroid Carcinoma: Association Between Germline DNA Variant Markers and Clinical Parameters. Thyroid 2016; 26:1276-84. [PMID: 27342578 PMCID: PMC5036310 DOI: 10.1089/thy.2015.0665] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
BACKGROUND Papillary thyroid cancer (PTC) is reported to be highly heritable in epidemiological studies. Genome-wide association studies (GWAS) have uncovered several variants associated with PTC predisposition. It remains unknown whether these variants might contribute to better clinical stratification of PTC patients. METHODS In order to assess the usefulness of germline genetic analyses in the management of PTC patients, the genotypes of five variants (rs965513, rs944289, rs116909374, rs2439302, and rs966423) were determined in 1216 PTC patients and 1416 controls. Additionally, the expression of seven genes located close to GWAS variants (PTCSC3, MBIP, NKX2-1, FOXE1, DIRC3, PTCSC2, and NRG1) were measured in 73 PTC paired tumor/normal tissues, respectively. Next, the association was analyzed between the genotypes of the germline variants and the levels of gene expression with clinical/pathological features such as age, sex, TNM staging, multifocality status, extrathyroidal expansion, and MACIS score. RESULTS The risk allele of rs965513 was associated with larger tumor size (p = 0.025) and extrathyroidal expansion (odd ratio [OR] = 1.29, p = 0.045). The variant rs2439302 showed association with lymph node metastasis (OR = 1.24, p = 0.016), and multifocality status of the tumor (OR = 1.24, p = 0.012). The expression of MBIP was associated with T stage (p = 0.010). MBIP and PTCSC3 displayed lower expression in PTC tissue in males than in females (p = 0.025 and p = 0.036, respectively). NKX2-1 displayed lower expression in patients with N1 stage (p = 0.040). CONCLUSIONS The studied germline risk alleles predisposing to PTC were associated with a more aggressive course of the disease reflected by larger tumor diameter, higher multifocality rate, and more advanced N stage at the time of diagnosis. These results show that germline variants not only predispose to PTC but also might impact its clinical course. However, these associations were only moderate, and further large multi-ethnic studies are required to evaluate the usefulness of these germline variants in the clinical stratification of PTC patients.
Collapse
Affiliation(s)
- Jaroslaw Jendrzejewski
- Human Cancer Genetics Program, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
- Department of Endocrinology and Internal Medicine, Medical University of Gdansk, Gdansk, Poland
| | - Sandya Liyanarachchi
- Human Cancer Genetics Program, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Rebecca Nagy
- Human Cancer Genetics Program, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Leigha Senter
- Human Cancer Genetics Program, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Paul E. Wakely
- Department of Pathology, The Ohio State University, Columbus, Ohio
| | - Andrew Thomas
- Human Cancer Genetics Program, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Fadi Nabhan
- Division of Endocrinology, Diabetes and Metabolism, The Ohio State University, Columbus, Ohio
| | - Huiling He
- Human Cancer Genetics Program, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Wei Li
- Human Cancer Genetics Program, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Krzysztof Sworczak
- Department of Endocrinology and Internal Medicine, Medical University of Gdansk, Gdansk, Poland
| | - Matthew D. Ringel
- Division of Endocrinology, Diabetes and Metabolism, The Ohio State University, Columbus, Ohio
| | - Lawrence S. Kirschner
- Division of Endocrinology, Diabetes and Metabolism, The Ohio State University, Columbus, Ohio
| | - Albert de la Chapelle
- Human Cancer Genetics Program, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| |
Collapse
|
11
|
Fei X, Christakos G, Lou Z, Ren Y, Liu Q, Wu J. Spatiotemporal Co-existence of Female Thyroid and Breast Cancers in Hangzhou, China. Sci Rep 2016; 6:28524. [PMID: 27341638 PMCID: PMC4920092 DOI: 10.1038/srep28524] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 06/02/2016] [Indexed: 12/22/2022] Open
Abstract
Thyroid and breast cancers (TC, BC) are common female malignant tumors worldwide. Studies suggest that TC patients have a higher BC risk, and vice versa. However, it has not been investigated quantitatively if there is an association between the space-time TC and BC incidence distributions at the population level. This work aims to answer this question. 5358 TC and 8784 BC (female) cases were diagnosed in Hangzhou (China, 2008-2012). Pearson and Spearman rank correlation coefficients of the TC and BC incidences were high, and their patterns were geographically similar. The spatiotemporal co-existence of TC and BC distributions was investigated using the integrative disease predictability (IDP) criterion: if TC-BC association is part of the disease mapping knowledge bases, it should yield improved space-time incidence predictions. Improved TC (BC) incidence predictions were generated when integrating both TC and BC data than when using only TC (BC) data. IDP consistently demonstrated the spatiotemporal co-existence of TC and BC distributions throughout Hangzhou (2008-2012), which means that when the population experiences high incidences of one kind of cancer attention should be paid to the other kind of cancer too. The strength of TC-BC association was measured by the IDP coefficients and incidence prediction accuracy.
Collapse
Affiliation(s)
- Xufeng Fei
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - George Christakos
- Institute of Islands and Coastal Ecosystems, Zhejiang University, Zhoushan, China
- Department of Geography, San Diego State University, San Diego, CA, USA
| | - Zhaohan Lou
- Institute of Islands and Coastal Ecosystems, Zhejiang University, Zhoushan, China
| | - Yanjun Ren
- Hangzhou Center for Disease Control and Prevention, Hangzhou, China
| | - Qingmin Liu
- Hangzhou Center for Disease Control and Prevention, Hangzhou, China
| | - Jiaping Wu
- Institute of Islands and Coastal Ecosystems, Zhejiang University, Zhoushan, China
| |
Collapse
|
12
|
Multiple functional variants in long-range enhancer elements contribute to the risk of SNP rs965513 in thyroid cancer. Proc Natl Acad Sci U S A 2015; 112:6128-33. [PMID: 25918370 DOI: 10.1073/pnas.1506255112] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The [A] allele of SNP rs965513 in 9q22 has been consistently shown to be highly associated with increased papillary thyroid cancer (PTC) risk with an odds ratio of ∼1.8 as determined by genome-wide association studies, yet the molecular mechanisms remain poorly understood. Previously, we noted that the expression of two genes in the region, forkhead box E1 (FOXE1) and PTC susceptibility candidate 2 (PTCSC2), is regulated by rs965513 in unaffected thyroid tissue, but the underlying mechanisms were not elucidated. Here, we fine-mapped the 9q22 region in PTC and controls and detected an ∼33-kb linkage disequilibrium block (containing the lead SNP rs965513) that significantly associates with PTC risk. Chromatin characteristics and regulatory element signatures in this block disclosed at least three regulatory elements functioning as enhancers. These enhancers harbor at least four SNPs (rs7864322, rs12352658, rs7847449, and rs10759944) that serve as functional variants. The variant genotypes are associated with differential enhancer activities and/or transcription factor binding activities. Using the chromosome conformation capture methodology, long-range looping interactions of these elements with the promoter region shared by FOXE1 and PTCSC2 in a human papillary thyroid carcinoma cell line (KTC-1) and unaffected thyroid tissue were found. Our results suggest that multiple variants coinherited with the lead SNP and located in long-range enhancers are involved in the transcriptional regulation of FOXE1 and PTCSC2 expression. These results explain the mechanism by which the risk allele of rs965513 predisposes to thyroid cancer.
Collapse
|
13
|
Zhang J, Yang Y, Yang T, Yuan S, Wang R, Pan Z, Yang Y, Huang G, Gu F, Jiang B, Lin C, Zhou W. Double-negative feedback loop between microRNA-422a and forkhead box (FOX)G1/Q1/E1 regulates hepatocellular carcinoma tumor growth and metastasis. Hepatology 2015; 61:561-73. [PMID: 25251503 DOI: 10.1002/hep.27491] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 09/10/2014] [Accepted: 09/19/2014] [Indexed: 01/05/2023]
Abstract
UNLABELLED Growing evidence indicates that the aberrant expression of microRNAs (miRNAs) contributes to tumor development; however, the function of miRNAs in human hepatocellular carcinoma (HCC) remains largely undefined. In this study, we report that microRNA-422a (miR-422a) is significantly down-regulated in HCC tumor samples and cell lines compared with normal controls, and its expression level is negatively correlated with pathological grading, recurrence, and metastasis. The restoration of miR-422a expression in HCC tumor cells significantly inhibited cell proliferation and migration in vitro. At the same time, the overexpression of miR-422a in HCC tumor cells significantly inhibits tumor growth and liver metastasis in xenograft tumor models. A mechanistic study identified three genes, forkhead box G1 (FOXG1), FOXQ1, and FOXE1, as miR-422a targets in the regulation of HCC development. We also investigated the function of the three targets themselves in HCC tumorigenesis using RNAi manipulation and demonstrated that the knockdown of these targets led to significant inhibition of tumor cell proliferation and migration both in vitro and in vivo. More interestingly, a potential miR-422a promoter region was identified. Both the promoter activity and miR-422a expression were negatively regulated by the three targets, indicating that a double-negative feedback loop exists between miR-422a and its targets. Moreover, we explored the therapeutic potential of miR-422a in HCC treatment and found that the therapeutic delivery of miR-422a significantly inhibited tumor development in a xenograft tumor model and a diethylnitrosamine-induced primary HCC model. CONCLUSION Our findings show the critical roles of miR-422a and its targets--FOXG1, FOXQ1, and FOXE1--in the regulation of HCC development and provide new potential candidates for HCC therapy.
Collapse
Affiliation(s)
- Jin Zhang
- Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
He H, Li W, Liyanarachchi S, Jendrzejewski J, Srinivas M, Davuluri RV, Nagy R, de la Chapelle A. Genetic predisposition to papillary thyroid carcinoma: involvement of FOXE1, TSHR, and a novel lincRNA gene, PTCSC2. J Clin Endocrinol Metab 2015; 100:E164-72. [PMID: 25303483 PMCID: PMC4283026 DOI: 10.1210/jc.2014-2147] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
CONTEXT By genome-wide association studies, the risk allele [A] of SNP rs965513 predisposes strongly to papillary thyroid carcinoma (PTC). It is located in a gene-poor region of 9q22, some 60 kb from the FOXE1 gene. The underlying mechanisms remain to be discovered. OBJECTIVE Our objective was to identify novel transcripts in the 9q22 locus and correlate gene expression levels with the genotypes of rs965513. DESIGN We performed 3' and 5' rapid amplification of cDNA ends and RT-PCR to detect novel transcripts. One novel transcript was forcibly expressed in a cell line followed by gene expression array analysis. We genotyped rs965513 from PTC patients and measured gene expression levels by real-time RT-PCR in unaffected thyroid tissue and matched tumor. SETTING This was a laboratory-based study using cells from clinical tissue samples and a cancer cell line. MAIN OUTCOME MEASURES We detected previously uncharacterized transcripts and evaluated the gene expression levels and the correlation with the risk allele of rs965513, age, gender, chronic lymphocyte thyroiditis (CLT), and TSH levels. RESULTS We found a novel long intergenic noncoding RNA gene and named it papillary thyroid cancer susceptibility candidate 2 (PTCSC2). Transcripts of PTCSC2 are down-regulated in PTC tumors. The risk allele [A] of rs965513 was significantly associated with low expression of unspliced PTCSC2, FOXE1, and TSHR in unaffected thyroid tissue. We also observed a significant association of age and CLT with PTCSC2 unspliced transcript levels. The correlation between the rs965513 genotype and the PTCSC2 unspliced transcript levels remained significant after adjusting for age, gender, and CLT. Forced expression of PTCSC2 in the BCPAP cell line affected the expression of a subset of noncoding and coding transcripts with enrichment of genes functionally involved in cell cycle and cancer. CONCLUSIONS Our data suggest a role for PTCSC2, FOXE1, and TSHR in the predisposition to PTC.
Collapse
Affiliation(s)
- Huiling He
- Human Cancer Genetics Program and Department of Molecular Virology, Immunology, and Medical Genetics (H.H., W.L., S.L., J.J., M.S., R.N., A.d.l.C), and Department of Internal Medicine (R.N.), Ohio State University Comprehensive Cancer Center, the Ohio State University, Columbus, Ohio 43210; and Division of Health and Biomedical Informatics, Department of Preventive Medicine, Robert H. Lurie Comprehensive Cancer Center (R.V.D.), Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611
| | | | | | | | | | | | | | | |
Collapse
|