1
|
Opa interacting protein 5 promotes proliferation and migration of trophoblast cells via activating STAT3 pathway. Reprod Biol 2022; 22:100639. [DOI: 10.1016/j.repbio.2022.100639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 03/29/2022] [Accepted: 03/31/2022] [Indexed: 11/19/2022]
|
2
|
Derežanin L, Blažytė A, Dobrynin P, Duchêne DA, Grau JH, Jeon S, Kliver S, Koepfli KP, Meneghini D, Preick M, Tomarovsky A, Totikov A, Fickel J, Förster DW. Multiple types of genomic variation contribute to adaptive traits in the mustelid subfamily Guloninae. Mol Ecol 2022; 31:2898-2919. [PMID: 35334142 DOI: 10.1111/mec.16443] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 03/06/2022] [Accepted: 03/14/2022] [Indexed: 11/28/2022]
Abstract
Species of the mustelid subfamily Guloninae inhabit diverse habitats on multiple continents, and occupy a variety of ecological niches. They differ in feeding ecologies, reproductive strategies and morphological adaptations. To identify candidate loci associated with adaptations to their respective environments, we generated a de novo assembly of the tayra (Eira barbara), the earliest diverging species in the subfamily, and compared this with the genomes available for the wolverine (Gulo gulo) and the sable (Martes zibellina). Our comparative genomic analyses included searching for signs of positive selection, examining changes in gene family sizes, as well as searching for species-specific structural variants (SVs). Among candidate loci associated with phenotypic traits, we observed many related to diet, body condition and reproduction. For example, for the tayra, which has an atypical gulonine reproductive strategy of aseasonal breeding, we observe species-specific changes in many pregnancy-related genes. For the wolverine, a circumpolar hypercarnivore that must cope with seasonal food scarcity, we observed many changes in genes associated with diet and body condition. All types of genomic variation examined (single nucleotide polymorphisms, gene family expansions, structural variants) contributed substantially to the identification of candidate loci. This strongly argues for consideration of variation other than single nucleotide polymorphisms in comparative genomics studies aiming to identify loci of adaptive significance.
Collapse
Affiliation(s)
- Lorena Derežanin
- Leibniz Institute for Zoo and Wildlife Research (IZW, Alfred Kowalke Straße 17, 10315, Berlin, Germany
| | - Asta Blažytė
- Department of Biomedical Engineering, College of Information and Biotechnology, Ulsan National Institute of Science and Technology (UNIST, Ulsan, 44919, Republic of Korea
| | - Pavel Dobrynin
- Computer Technologies Laboratory, ITMO University, 49 Kronverkskiy Pr, 197101, Saint Petersburg, Russia
| | - David A Duchêne
- Center for Evolutionary Hologenomics, The GLOBE Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Øster Farimagsgade 5, 1353, Copenhagen, Denmark
| | - José Horacio Grau
- amedes Genetics, amedes Medizinische Dienstleistungen GmbH, Jägerstr. 61, 10117, Berlin, Germany
| | - Sungwon Jeon
- Department of Biomedical Engineering, College of Information and Biotechnology, Ulsan National Institute of Science and Technology (UNIST, Ulsan, 44919, Republic of Korea.,Clinomics Inc, Ulsan, 44919, Republic of Korea
| | - Sergei Kliver
- Institute of Molecular and Cellular Biology, SB RAS, 8/2 Acad. Lavrentiev Ave, Novosibirsk, 630090, Russia
| | - Klaus-Peter Koepfli
- Computer Technologies Laboratory, ITMO University, 49 Kronverkskiy Pr, 197101, Saint Petersburg, Russia.,Smithsonian-Mason School of Conservation, 1500 Remount Road, Front Royal, VA, 22630, USA.,Smithsonian Conservation Biology Institute, Center for Species Survival, National Zoological Park, 1500 Remount Road, Front Royal, VA, 22630, USA
| | - Dorina Meneghini
- Leibniz Institute for Zoo and Wildlife Research (IZW, Alfred Kowalke Straße 17, 10315, Berlin, Germany
| | - Michaela Preick
- Institute for Biochemistry and Biology, Faculty of Mathematics and Natural Sciences, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476, OT, Germany
| | - Andrey Tomarovsky
- Computer Technologies Laboratory, ITMO University, 49 Kronverkskiy Pr, 197101, Saint Petersburg, Russia.,Institute of Molecular and Cellular Biology, SB RAS, 8/2 Acad. Lavrentiev Ave, Novosibirsk, 630090, Russia.,Novosibirsk State University, 1 Pirogova str, Novosibirsk, 630090, Russia
| | - Azamat Totikov
- Computer Technologies Laboratory, ITMO University, 49 Kronverkskiy Pr, 197101, Saint Petersburg, Russia.,Institute of Molecular and Cellular Biology, SB RAS, 8/2 Acad. Lavrentiev Ave, Novosibirsk, 630090, Russia.,Novosibirsk State University, 1 Pirogova str, Novosibirsk, 630090, Russia
| | - Jörns Fickel
- Leibniz Institute for Zoo and Wildlife Research (IZW, Alfred Kowalke Straße 17, 10315, Berlin, Germany.,Institute for Biochemistry and Biology, Faculty of Mathematics and Natural Sciences, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476, OT, Germany
| | - Daniel W Förster
- Leibniz Institute for Zoo and Wildlife Research (IZW, Alfred Kowalke Straße 17, 10315, Berlin, Germany
| |
Collapse
|
3
|
Wan Nasri WN, Makpol S, Mazlan M, Tooyama I, Wan Ngah WZ, Damanhuri HA. Tocotrienol Rich Fraction Supplementation Modulate Brain Hippocampal Gene Expression in APPswe/PS1dE9 Alzheimer's Disease Mouse Model. J Alzheimers Dis 2020; 70:S239-S254. [PMID: 30507571 PMCID: PMC6700627 DOI: 10.3233/jad-180496] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder characterized by loss of memory and other cognitive abilities. AD is associated with aggregation of amyloid-β (Aβ) deposited in the hippocampal brain region. Our previous work has shown that tocotrienol rich fraction (TRF) supplementation was able to attenuate the blood oxidative status, improve behavior, and reduce fibrillary-type Aβ deposition in the hippocampus of an AD mouse model. In the present study, we investigate the effect of 6 months of TRF supplementation on transcriptome profile in the hippocampus of APPswe/PS1dE9 double transgenic mice. TRF supplementation can alleviate AD conditions by modulating several important genes in AD. Moreover, TRF supplementation attenuated the affected biological process and pathways that were upregulated in the AD mouse model. Our findings indicate that TRF supplementation can modulate hippocampal gene expression as well as biological processes that can potentially delay the progression of AD.
Collapse
Affiliation(s)
- Wan Nurzulaikha Wan Nasri
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur, Malaysia
| | - Suzana Makpol
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur, Malaysia
| | - Musalmah Mazlan
- Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh, Selangor, Malaysia
| | - Ikuo Tooyama
- Molecular Neuroscience Research Centre, Shiga University of Medical Sciences, Seta Tsukinowacho, Otsu, Shiga, Japan
| | - Wan Zurinah Wan Ngah
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur, Malaysia
| | - Hanafi Ahmad Damanhuri
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur, Malaysia
| |
Collapse
|
4
|
Inoue M, Sakai Y, Oe K, Ueha T, Koga T, Nishimoto H, Akahane S, Harada R, Lee SY, Niikura T, Kuroda R. Transcutaneous carbon dioxide application inhibits muscle atrophy after fracture in rats. J Orthop Sci 2020; 25:338-343. [PMID: 31031109 DOI: 10.1016/j.jos.2019.03.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 03/18/2019] [Accepted: 03/26/2019] [Indexed: 01/07/2023]
Abstract
BACKGROUND Muscle atrophy causes difficulty in resuming daily activities after a fracture. Because transcutaneous carbon dioxide (CO2) application has previously upregulated oxygen pressure in the local tissue, thereby demonstrating its potential in preventing muscle atrophy, here we investigated effects of CO2 application on muscle atrophy after femoral shaft fracture. METHODS Thirty fracture model rats were produced and randomly divided into a no treatment (control group) and treatment (CO2 group) groups. After treatment, the soleus muscle was dissected at post-fracture days 0, 14, and 21. Evaluations were performed by measuring muscle weight and performing histological examination and gene expression analysis. RESULTS Muscle weight was significantly higher in the CO2 group than in the control group. Histological analysis revealed that the muscle fiber cross-sectional area was reduced in both groups. Nevertheless, the extent of atrophy was lesser in the CO2 group. Muscle fibers in the control group tended to change into fast muscle fibers. Vascular staining revealed that more capillary vessels surrounded the muscle fibers in the CO2 group than in the control group. Messenger RNA (mRNA) analysis revealed that the CO2 group had a significantly enhanced expression of genes that were related to muscle synthesis. CONCLUSION Transcutaneous CO2 application may be a novel therapeutic strategy for preventing skeletal muscle atrophy after fracture.
Collapse
Affiliation(s)
- Miho Inoue
- Department of Orthopedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yoshitada Sakai
- Division of Rehabilitation Medicine, Kobe University Graduate School of Medicine, Kobe, Japan.
| | - Keisuke Oe
- Department of Orthopedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Takeshi Ueha
- Division of Rehabilitation Medicine, Kobe University Graduate School of Medicine, Kobe, Japan; NeoChemir Inc., Kobe, Japan
| | - Takaaki Koga
- Department of Orthopedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Hanako Nishimoto
- Department of Orthopedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Shiho Akahane
- Department of Orthopedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Risa Harada
- Department of Orthopedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Sang Yang Lee
- Department of Orthopedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Takahiro Niikura
- Department of Orthopedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Ryosuke Kuroda
- Department of Orthopedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
5
|
Mastrangelo S, Bahbahani H, Moioli B, Ahbara A, Al Abri M, Almathen F, da Silva A, Belabdi I, Portolano B, Mwacharo JM, Hanotte O, Pilla F, Ciani E. Novel and known signals of selection for fat deposition in domestic sheep breeds from Africa and Eurasia. PLoS One 2019; 14:e0209632. [PMID: 31199810 PMCID: PMC6568386 DOI: 10.1371/journal.pone.0209632] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Accepted: 05/28/2019] [Indexed: 01/24/2023] Open
Abstract
Genomic regions subjected to selection frequently show signatures such as within-population reduced nucleotide diversity and outlier values of differentiation among differentially selected populations. In this study, we analyzed 50K SNP genotype data of 373 animals belonging to 23 sheep breeds of different geographic origins using the Rsb (extended haplotype homozygosity) and FST statistical approaches, to identify loci associated with the fat-tail phenotype. We also checked if these putative selection signatures overlapped with regions of high-homozygosity (ROH). The analyses identified novel signals and confirmed the presence of selection signature in genomic regions that harbor candidate genes known to affect fat deposition. Several genomic regions that frequently appeared in ROH were also identified within each breed, but only two ROH islands overlapped with the putative selection signatures. The results reported herein provide the most complete genome-wide study of selection signatures for fat-tail in African and Eurasian sheep breeds; they also contribute insights into the genetic basis for the fat tail phenotype in sheep, and confirm the great complexity of the mechanisms that underlie quantitative traits, such as the fat-tail.
Collapse
Affiliation(s)
- Salvatore Mastrangelo
- Dipartimento di Scienze Agrarie, Alimentari e Forestali, University of Palermo, Palermo, Italy
| | - Hussain Bahbahani
- Department of Biological Sciences, Faculty of Science, Kuwait University, Safat, Kuwait
| | - Bianca Moioli
- Consiglio per la ricerca in agricoltura e l’analisi dell’economia agraria (CREA), Monterotondo, Italy
| | - Abulgasim Ahbara
- School of Life Sciences, University of Nottingham, University Park, Nottingham, United Kingdom
- Department of Zoology, Faculty of Sciences, Misurata University, Misurata, Libya
| | - Mohammed Al Abri
- Department of Animal and Veterinary Sciences, Sultan Qaboos University, Oman
| | - Faisal Almathen
- Department of Public Health and Animal Welfare, College of Veterinary Medicine, King Faisal University, Alhufuf, Al-Ahsa, Saudi Arabia
| | - Anne da Silva
- Université de Limoges, INRA, PEREINE EA7500, USC1061 GAMAA, Limoges, France
| | - Ibrahim Belabdi
- Science Veterinary Institute, University of Blida, Blida, Algeria
- Laboratory of Biotechnology related to Animal Reproduction (LBRA), University of Blida, Blida, Algeria
| | - Baldassare Portolano
- Dipartimento di Scienze Agrarie, Alimentari e Forestali, University of Palermo, Palermo, Italy
| | - Joram M. Mwacharo
- Small Ruminant Genomics, International Center for Agricultural Research in the Dry Areas (ICARDA), Addis Ababa, Ethiopia
| | - Olivier Hanotte
- School of Life Sciences, University of Nottingham, University Park, Nottingham, United Kingdom
| | - Fabio Pilla
- Dipartimento Agricoltura, Ambiente e Alimenti, Università degli Studi del Molise, Campobasso, Italy
| | - Elena Ciani
- Dipartimento di Bioscienze, Biotecnologie e Biofarmaceutica, Università degli Studi di Bari Aldo Moro, Bari, Italy
- * E-mail:
| |
Collapse
|
6
|
Li Y, Xiao F, Li W, Hu P, Xu R, Li J, Li G, Zhu C. Overexpression of Opa interacting protein 5 increases the progression of liver cancer via BMPR2/JUN/CHEK1/RAC1 dysregulation. Oncol Rep 2019; 41:2075-2088. [PMID: 30816485 PMCID: PMC6412147 DOI: 10.3892/or.2019.7006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 01/30/2019] [Indexed: 12/24/2022] Open
Abstract
Opa interacting protein 5 (OIP5) overexpression is associated with human carcinoma. However, its biological function, underlying mechanism and clinical significance in liver cancer remain unknown. In the present study, the effects of OIP5 expression on liver cancer, and the mechanisms regulating these effects, were investigated. OIP5 expression was measured in human hepatocellular carcinoma (HCC) tissues and liver cancer cell lines. The effect of OIP5 knockdown on tumorigenesis was also detected in nude mice, and differentially‑expressed genes (DEGs) were identified and their biological functions were identified. The results indicated that OIP5 expression was significantly upregulated in HCC tissues and four liver cancer cell lines (P<0.01). Increased OIP5 protein expression significantly predicted reduced survival rate of patients with HCC (P<0.01). OIP5 knockdown resulted in the suppression of proliferation and colony forming abilities, cell cycle arrest at the G0/G1 or G2/M phases, and promotion of cell apoptosis. A total of 628 DEGs, including 87 upregulated and 541 downregulated genes, were identified following OIP5 knockdown. Functional enrichment analysis indicated that DEGs were involved in 'RNA Post‑Transcriptional Modification, Cancer and Organismal Injury and Abnormalities'. Finally, OIP5 knockdown in Huh7 cells dysregulated bone morphogenetic protein receptor type 2/JUN/checkpoint kinase 1/Rac family small GTPase 1 expression. In conclusion, the overall results demonstrated the involvement of OIP5 in the progression of liver cancer and its mechanism of action.
Collapse
MESH Headings
- Adult
- Animals
- Bone Morphogenetic Protein Receptors, Type II/metabolism
- Carcinogenesis/genetics
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/mortality
- Carcinoma, Hepatocellular/pathology
- Cell Cycle Proteins
- Cell Line, Tumor
- Checkpoint Kinase 1/metabolism
- Chromosomal Proteins, Non-Histone/genetics
- Chromosomal Proteins, Non-Histone/metabolism
- Disease Progression
- Down-Regulation
- Female
- Gene Expression Regulation, Neoplastic
- Gene Knockdown Techniques
- Humans
- JNK Mitogen-Activated Protein Kinases/metabolism
- Kaplan-Meier Estimate
- Liver/pathology
- Liver Neoplasms/genetics
- Liver Neoplasms/mortality
- Liver Neoplasms/pathology
- Male
- Mice, Inbred BALB C
- Mice, Nude
- Middle Aged
- RNA, Small Interfering/metabolism
- Up-Regulation
- Xenograft Model Antitumor Assays
- rac1 GTP-Binding Protein/metabolism
Collapse
Affiliation(s)
- Yuwen Li
- Department of Pediatrics, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
- Department of Pediatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Fei Xiao
- Department of Infectious Diseases, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong 519000, P.R. China
| | - Wenting Li
- Third Liver Unit, Department of Infectious Disease, The First Affiliated Hospital of Science and Technology of China, Hefei, Anhui 230001, P.R. China
| | - Pingping Hu
- Department of Infectious Disease, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Ruirui Xu
- Department of Infectious Disease, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Jun Li
- Department of Infectious Disease, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Guimei Li
- Department of Pediatrics, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
- Correspondence to: Dr Guimei Li, Department of Pediatrics, Shandong Provincial Hospital Affiliated to Shandong University, 9677 Jingshi Road, Jinan, Shandong 250021, P.R. China, E-mail:
| | - Chuanlong Zhu
- Department of Infectious Disease, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
- Dr Chuanlong Zhu, Department of Infectious Disease, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu 210029, P.R. China, E-mail:
| |
Collapse
|
7
|
Lin Z, Changfu H, Fengling Z, Wei G, Lei B, Yiping L, Miao Z, Zhongzheng Y, Youliang Z, Shuyin D, Wu Y. Long non-coding RNA deep sequencing reveals the role of macrophage in liver disorders. Oncotarget 2017; 8:114966-114979. [PMID: 29383134 PMCID: PMC5777746 DOI: 10.18632/oncotarget.23154] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Accepted: 11/15/2017] [Indexed: 12/31/2022] Open
Abstract
Liver disorders such as hepatitis, cirrhosis and hepatocellular carcinoma are a series of the most life threatening diseases along with extensive inflammatory cellular infiltrations. Macrophage has been proved to be key regulators and initiators of inflammation, and long non-coding RNAs (lncRNAs) are recommended to play critical roles in the occurrence and development of a variety of diseases. To uncover the role of macrophage in liver disorders via lncRNA sequencing method, we first applied a lncRNA classification pipeline to identify 1247 lncRNAs represented on the Affymetrix Mouse Genome 430/430A 2.0 array. We then analyzed the lncRNA expression patterns in a set of previously published gene expression profiles of silica particle exposed macrophages and liver respectively, and identified and validated sets of differentially expressed lncRNAs shared by macrophages and liver. The functional enrichment analysis of these lncRNAs was processed on the basis of their expression signatures, three aspects including cis, trans and co-acting proteins were proposed. This is the first time to correlate macrophage with liver disorders via co-expressed lncRNAs. Our findings indicated that roles of macrophage in liver disorders were double-edged, the differentially expressed lncRNAs and their corresponding regulatory genes or proteins may serve as potential diagnostic biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Zhang Lin
- Department of Occupational and Environmental Health, School of Public Health, Zhengzhou University, Zhengzhou 450001, China.,Center for Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250001, China.,Key Laboratory of Reproductive Endocrinology, Shandong University, Ministry of Education, National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan 250001, China
| | - Hao Changfu
- Department of Occupational and Environmental Health, School of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Zhao Fengling
- Department of Occupational Disease, Henan Provincial Institute of Occupational Health, Zhengzhou 450052, China
| | - Guo Wei
- Department of Occupational Disease, Henan Provincial Institute of Occupational Health, Zhengzhou 450052, China
| | - Bao Lei
- Department of Occupational and Environmental Health, School of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Li Yiping
- Department of Occupational and Environmental Health, School of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Zhang Miao
- Department of Occupational and Environmental Health, School of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Yue Zhongzheng
- Department of Occupational and Environmental Health, School of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Zhao Youliang
- Department of Occupational and Environmental Health, School of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Duan Shuyin
- Department of Occupational and Environmental Health, School of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Yao Wu
- Department of Occupational and Environmental Health, School of Public Health, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
8
|
He X, Hou J, Ping J, Wen D, He J. Opa interacting protein 5 acts as an oncogene in bladder cancer. J Cancer Res Clin Oncol 2017; 143:2221-2233. [PMID: 28752236 DOI: 10.1007/s00432-017-2485-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 07/25/2017] [Indexed: 01/09/2023]
Abstract
PURPOSE To explore the biological functions and mechanism of Opa interacting protein 5 (OIP5) in bladder cancer (BC). METHODS We investigated the expression of OIP5 in BC through immunohistochemical staining (IHC) and its correlation with clinicopathologic features of BC patients. Moreover, knockdown of OIP5 was performed in BC cell lines and colony formation capacity, cell growth curve, cell cycle phase and cell apoptosis assay was applied for investigating the roles of OIP5 in BC. Moreover, the expression of OIP5 was validated through the Cancer Genome Atlas (TCGA) database. The diagnosis value of OIP5 was accessed by receiver operating characteristic (ROC) analysis in TCGA database. RESULTS The expression of OIP5 in BC tissues was significantly higher than that in adjacent non-tumor tissues and bladder mucosa tissues with chronic cystitis. Higher protein expression level of OIP5 predicted shorter survival time in patients with BC, which was significantly correlated with larger tumor size, high-grade tumor and advanced T classification. The expression of OIP5 was considerably decreased after lentivirus infection both at mRNA and protein levels. Functional assay displayed that silencing of OIP5 inhibited colony formation capacity and cell growth in BC cell lines. Cell cycle assays indicated that suppressed OIP5 disturbed the balance of the cell cycle in BC cell lines, which increased the cell population of the G1 phase and decreased the cell population of the S phase. Furthermore, knockdown of OIP5 expression enhanced cell apoptosis process. The expression of OIP5 was significantly up-regulated in BC compared with adjacent non-tumor tissues based on TCGA database. OIP5 had the potential diagnostic value for BC. CONCLUSIONS Our work demonstrated that OIP5 might function as an oncogene to promote colony formation capacity and cell growth, arrest cell cycle and suppress cell apoptosis in bladder cancer.
Collapse
Affiliation(s)
- Xuefeng He
- Department of Urology, The First Affiliated Hospital of Soochow University, No. 899 Pinghai Road, Suzhou, 215000, Jiang Su, China
| | - Jianquan Hou
- Department of Urology, The First Affiliated Hospital of Soochow University, No. 899 Pinghai Road, Suzhou, 215000, Jiang Su, China
| | - Jigen Ping
- Department of Urology, The First Affiliated Hospital of Soochow University, No. 899 Pinghai Road, Suzhou, 215000, Jiang Su, China
| | - Duangai Wen
- Department of Urology, The First Affiliated Hospital of Soochow University, No. 899 Pinghai Road, Suzhou, 215000, Jiang Su, China.
| | - Jun He
- Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
9
|
Yamaoka M, Maeda N, Takayama Y, Sekimoto R, Tsushima Y, Matsuda K, Mori T, Inoue K, Nishizawa H, Tominaga M, Funahashi T, Shimomura I. Adipose hypothermia in obesity and its association with period homolog 1, insulin sensitivity, and inflammation in fat. PLoS One 2014; 9:e112813. [PMID: 25397888 PMCID: PMC4232416 DOI: 10.1371/journal.pone.0112813] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 10/15/2014] [Indexed: 12/12/2022] Open
Abstract
Visceral fat adiposity plays an important role in the development of metabolic syndrome. We reported previously the impact of human visceral fat adiposity on gene expression profile of peripheral blood cells. Genes related to circadian rhythm were highly associated with visceral fat area and period homolog 1 (PER1) showed the most significant negative correlation with visceral fat area. However, regulation of adipose Per1 remains poorly understood. The present study was designed to understand the regulation of Per1 in adipose tissues. Adipose Per1 mRNA levels of ob/ob mice were markedly low at 25 and 35 weeks of age. The levels of other core clock genes of white adipose tissues were also low in ob/ob mice at 25 and 35 weeks of age. Per1 mRNA was mainly expressed in the mature adipocyte fraction (MAF) and it was significantly low in MAF of ob/ob mice. To examine the possible mechanisms, 3T3-L1 adipocytes were treated with H2O2, tumor necrosis factor-α (TNF-α), S100A8, and lipopolysaccharide (LPS). However, no significant changes in Per1 mRNA level were observed by these agents. Exposure of cultured 3T3-L1 adipocytes to low temperature (33°C) decreased Per1 and catalase, and increased monocyte chemoattractant protein-1 (Mcp-1) mRNA levels. Hypothermia also worsened insulin-mediated Akt phosphorylation in 3T3-L1 adipocytes. Finally, telemetric analysis showed low temperature of adipose tissues in ob/ob mice. In obesity, adipose hypothermia seems to accelerate adipocyte dysfunction.
Collapse
Affiliation(s)
- Masaya Yamaoka
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Norikazu Maeda
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan
- * E-mail:
| | - Yasunori Takayama
- Division of Cell Signaling, Okazaki Institute for Integrative Bioscience (National Institute for Physiological Sciences), National Institutes of Natural Sciences, Okazaki, Aichi, 444-8787, Japan
| | - Ryohei Sekimoto
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Yu Tsushima
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Keisuke Matsuda
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Takuya Mori
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Kana Inoue
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Hitoshi Nishizawa
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Makoto Tominaga
- Division of Cell Signaling, Okazaki Institute for Integrative Bioscience (National Institute for Physiological Sciences), National Institutes of Natural Sciences, Okazaki, Aichi, 444-8787, Japan
- Department of Physiological Sciences, The Graduate University for Advanced Studies, Okazaki, Aichi, 444-8585, Japan
| | - Tohru Funahashi
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan
- Department of Metabolism and Atherosclerosis, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Iichiro Shimomura
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan
| |
Collapse
|