1
|
Suvac A, Ashton J, Bristow RG. Tumour hypoxia in driving genomic instability and tumour evolution. Nat Rev Cancer 2025:10.1038/s41568-024-00781-9. [PMID: 39875616 DOI: 10.1038/s41568-024-00781-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/21/2024] [Indexed: 01/30/2025]
Abstract
Intratumour hypoxia is a feature of all heterogenous solid tumours. Increased levels or subregions of tumour hypoxia are associated with an adverse clinical prognosis, particularly when this co-occurs with genomic instability. Experimental evidence points to the acquisition of DNA and chromosomal alterations in proliferating hypoxic cells secondary to inhibition of DNA repair pathways such as homologous recombination, base excision repair and mismatch repair. Cell adaptation and selection in repair-deficient cells give rise to a model whereby novel single-nucleotide mutations, structural variants and copy number alterations coexist with altered mitotic control to drive chromosomal instability and aneuploidy. Whole-genome sequencing studies support the concept that hypoxia is a critical microenvironmental cofactor alongside the driver mutations in MYC, BCL2, TP53 and PTEN in determining clonal and subclonal evolution in multiple tumour types. We propose that the hypoxic tumour microenvironment selects for unstable tumour clones which survive, propagate and metastasize under reduced immune surveillance. These aggressive features of hypoxic tumour cells underpin resistance to local and systemic therapies and unfavourable outcomes for patients with cancer. Possible ways to counter the effects of hypoxia to block tumour evolution and improve treatment outcomes are described.
Collapse
Affiliation(s)
- Alexandru Suvac
- Translational Oncogenomics Laboratory, Cancer Research UK Manchester Institute, University of Manchester, Manchester, UK
- Manchester Cancer Research Centre, University of Manchester, Manchester, UK
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Jack Ashton
- Translational Oncogenomics Laboratory, Cancer Research UK Manchester Institute, University of Manchester, Manchester, UK
- Manchester Cancer Research Centre, University of Manchester, Manchester, UK
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Robert G Bristow
- Translational Oncogenomics Laboratory, Cancer Research UK Manchester Institute, University of Manchester, Manchester, UK.
- Manchester Cancer Research Centre, University of Manchester, Manchester, UK.
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.
| |
Collapse
|
2
|
Murphy T, Mason JM, Leber B, Bray MR, Chan SM, Gupta V, Khalaf D, Maze D, McNamara CJ, Schimmer AD, Schuh AC, Sibai H, Trus M, Valiquette D, Martin K, Nguyen L, Li X, Mak TW, Minden MD, Yee KWL. Preclinical characterization and clinical trial of CFI-400945, a polo-like kinase 4 inhibitor, in patients with relapsed/refractory acute myeloid leukemia and higher-risk myelodysplastic neoplasms. Leukemia 2024; 38:502-512. [PMID: 38114624 DOI: 10.1038/s41375-023-02110-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/23/2023] [Accepted: 11/30/2023] [Indexed: 12/21/2023]
Abstract
CFI-400945 is a selective oral polo-like kinase 4 (PLK4) inhibitor that regulates centriole duplication. PLK4 is aberrantly expressed in patients with acute myeloid leukemia (AML). Preclinical studies indicate that CFI-400945 has potent in vivo efficacy in hematological malignancies and xenograft models, with activity in cells harboring TP53 mutations. In this phase 1 study in very high-risk patients with relapsed/refractory AML and myelodysplastic syndrome (MDS) (NCT03187288), 13 patients were treated with CFI-400945 continuously in dose escalation from 64 mg/day to 128 mg/day. Three of the 9 efficacy evaluable AML patients achieved complete remission (CR). Two of 4 AML patients (50%) with TP53 mutations and complex monosomal karyotype achieved a CR with 1 patient proceeding to allogenic stem cell transplant. A third patient with TP53 mutated AML had a significant reduction in marrow blasts by > 50% with an improvement in neutrophil and platelet counts. Responses were observed after 1 cycle of therapy. Dose-limiting toxicity was enteritis/colitis. A monotherapy and combination therapy study with a newer crystal form of CFI-400945 in patients with AML, MDS and chronic myelomonocytic leukemia (CMML) is ongoing (NCT04730258).
Collapse
Affiliation(s)
- Tracy Murphy
- Leukemia Program, Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Jacqueline M Mason
- Campbell Family Institute for Breast Cancer Research, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Treadwell Therapeutics Canada Inc, Toronto, Canada
| | - Brian Leber
- Division of Hematology, Juravinski Cancer Centre, McMaster University, Hamilton, ON, Canada
| | - Mark R Bray
- Campbell Family Institute for Breast Cancer Research, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Treadwell Therapeutics Canada Inc, Toronto, Canada
| | - Steven M Chan
- Leukemia Program, Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Vikas Gupta
- Leukemia Program, Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Dina Khalaf
- Division of Hematology, Juravinski Cancer Centre, McMaster University, Hamilton, ON, Canada
| | - Dawn Maze
- Leukemia Program, Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Caroline J McNamara
- Leukemia Program, Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Aaron D Schimmer
- Leukemia Program, Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Andre C Schuh
- Leukemia Program, Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Hassan Sibai
- Leukemia Program, Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Michael Trus
- Division of Hematology, Juravinski Cancer Centre, McMaster University, Hamilton, ON, Canada
| | - Debbie Valiquette
- Division of Hematology, Juravinski Cancer Centre, McMaster University, Hamilton, ON, Canada
| | - Kylie Martin
- Leukemia Program, Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Linh Nguyen
- Treadwell Therapeutics Inc., San Mateo, CA, USA
| | - Xuan Li
- Department of Biostatistics, University Health Network, Toronto, ON, Canada
| | - Tak W Mak
- Campbell Family Institute for Breast Cancer Research, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Treadwell Therapeutics Canada Inc, Toronto, Canada
| | - Mark D Minden
- Leukemia Program, Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Karen W L Yee
- Leukemia Program, Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada.
| |
Collapse
|
3
|
Lei Q, Yu Q, Yang N, Xiao Z, Song C, Zhang R, Yang S, Liu Z, Deng H. Therapeutic potential of targeting polo-like kinase 4. Eur J Med Chem 2024; 265:116115. [PMID: 38199166 DOI: 10.1016/j.ejmech.2023.116115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/21/2023] [Accepted: 12/30/2023] [Indexed: 01/12/2024]
Abstract
Polo-like kinase 4 (PLK4), a highly conserved serine/threonine kinase, masterfully regulates centriole duplication in a spatiotemporal manner to ensure the fidelity of centrosome duplication and proper mitosis. Abnormal expression of PLK4 contributes to genomic instability and associates with a poor prognosis in cancer. Inhibition of PLK4 is demonstrated to exhibit significant efficacy against various types of human cancers, further highlighting its potential as a promising therapeutic target for cancer treatment. As such, numerous small-molecule inhibitors with distinct chemical scaffolds targeting PLK4 have been extensively investigated for the treatment of different human cancers, with several undergoing clinical evaluation (e.g., CFI-400945). Here, we review the structure, distribution, and biological functions of PLK4, encapsulate its intricate regulatory mechanisms of expression, and highlighting its multifaceted roles in cancer development and metastasis. Moreover, the recent advancements of PLK4 inhibitors in patent or literature are summarized, and their therapeutic potential as monotherapies or combination therapies with other anticancer agents are also discussed.
Collapse
Affiliation(s)
- Qian Lei
- Department of Respiratory and Critical Care Medicine, West China Hospital and Targeted Tracer Research and Development Laboratory, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Quanwei Yu
- Department of Respiratory and Critical Care Medicine, West China Hospital and Targeted Tracer Research and Development Laboratory, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Na Yang
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Zhaolin Xiao
- Department of Respiratory and Critical Care Medicine, West China Hospital and Targeted Tracer Research and Development Laboratory, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Chao Song
- Department of Respiratory and Critical Care Medicine, West China Hospital and Targeted Tracer Research and Development Laboratory, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Rui Zhang
- Department of Pharmacy, Guizhou Provincial People's Hospital, Guizhou, Guiyang, 550002, China
| | - Shuxin Yang
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Zhihao Liu
- Department of Emergency Medicine and Laboratory of Emergency Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.
| | - Hui Deng
- Department of Respiratory and Critical Care Medicine, West China Hospital and Targeted Tracer Research and Development Laboratory, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.
| |
Collapse
|
4
|
Man CH, Lam W, Dang CC, Zeng XY, Zheng LC, Chan NNM, Ng KL, Chan KC, Kwok TH, Ng TCC, Leung WY, Huen MSY, Wong CCL, So CWE, Dou Z, Goyama S, Bray MR, Mak TW, Leung AYH. Inhibition of PLK4 remodels histone methylation and activates the immune response via the cGAS-STING pathway in TP53-mutated AML. Blood 2023; 142:2002-2015. [PMID: 37738460 DOI: 10.1182/blood.2023019782] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 06/29/2023] [Accepted: 07/20/2023] [Indexed: 09/24/2023] Open
Abstract
Acute myeloid leukemia (AML) with TP53 mutation is one of the most lethal cancers and portends an extremely poor prognosis. Based on in silico analyses of druggable genes and differential gene expression in TP53-mutated AML, we identified pololike kinase 4 (PLK4) as a novel therapeutic target and examined its expression, regulation, pathogenetic mechanisms, and therapeutic potential in TP53-mutated AML. PLK4 expression was suppressed by activated p53 signaling in TP53 wild-type AML and was increased in TP53-mutated AML cell lines and primary samples. Short-term PLK4 inhibition induced DNA damage and apoptosis in TP53 wild-type AML. Prolonged PLK4 inhibition suppressed the growth of TP53-mutated AML and was associated with DNA damage, apoptosis, senescence, polyploidy, and defective cytokinesis. A hitherto undescribed PLK4/PRMT5/EZH2/H3K27me3 axis was demonstrated in both TP53 wild-type and mutated AML, resulting in histone modification through PLK4-induced PRMT5 phosphorylation. In TP53-mutated AML, combined effects of histone modification and polyploidy activated the cGAS-STING pathway, leading to secretion of cytokines and chemokines and activation of macrophages and T cells upon coculture with AML cells. In vivo, PLK4 inhibition also induced cytokine and chemokine expression in mouse recipients, and its combination with anti-CD47 antibody, which inhibited the "don't-eat-me" signal in macrophages, synergistically reduced leukemic burden and prolonged animal survival. The study shed important light on the pathogenetic role of PLK4 and might lead to novel therapeutic strategies in TP53-mutated AML.
Collapse
Affiliation(s)
- Cheuk-Him Man
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Wing Lam
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Chee-Chean Dang
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Xiao-Yuan Zeng
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Li-Chuan Zheng
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Natalie Nok-Man Chan
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Ka-Lam Ng
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Koon-Chuen Chan
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Tsz-Ho Kwok
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Timothy Chi-Chun Ng
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Wing-Yan Leung
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Michael Shing-Yan Huen
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Carmen Chak-Lui Wong
- Department of Pathology, The University of Hong Kong, Hong Kong SAR, China
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong SAR, China
- Centre for Oncology and Immunology, Hong Kong Science Park, Hong Kong SAR, China
| | - Chi Wai Eric So
- Department of Haematological Medicine, Leukemia and Stem Cell Biology Team, King's College London, London, UK
| | - Zhixun Dou
- Center for Regenerative Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA
| | - Susumu Goyama
- Division of Molecular Oncology, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Mark Robert Bray
- The Campbell Family Institute for Breast Cancer Research, Princess Margaret Cancer Centre, Toronto, Canada
| | - Tak Wah Mak
- Department of Pathology, The University of Hong Kong, Hong Kong SAR, China
- Centre for Oncology and Immunology, Hong Kong Science Park, Hong Kong SAR, China
- The Campbell Family Institute for Breast Cancer Research, Princess Margaret Cancer Centre, Toronto, Canada
| | - Anskar Yu-Hung Leung
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Centre for Oncology and Immunology, Hong Kong Science Park, Hong Kong SAR, China
| |
Collapse
|
5
|
Puri S, Sawant S, Juvale K. A comprehensive review on the indazole based derivatives as targeted anticancer agents. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
|
6
|
Fonseca I, Horta C, Ribeiro AS, Sousa B, Marteil G, Bettencourt-Dias M, Paredes J. Polo-like kinase 4 (Plk4) potentiates anoikis-resistance of p53KO mammary epithelial cells by inducing a hybrid EMT phenotype. Cell Death Dis 2023; 14:133. [PMID: 36797240 PMCID: PMC9935921 DOI: 10.1038/s41419-023-05618-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 02/18/2023]
Abstract
Polo-like kinase 4 (Plk4), the major regulator of centriole biogenesis, has emerged as a putative therapeutic target in cancer due to its abnormal expression in human carcinomas, leading to centrosome number deregulation, mitotic defects and chromosomal instability. Moreover, Plk4 deregulation promotes tumor growth and metastasis in mouse models and is significantly associated with poor patient prognosis. Here, we further investigate the role of Plk4 in carcinogenesis and show that its overexpression significantly potentiates resistance to cell death by anoikis of nontumorigenic p53 knock-out (p53KO) mammary epithelial cells. Importantly, this effect is independent of Plk4's role in centrosome biogenesis, suggesting that this kinase has additional cellular functions. Interestingly, the Plk4-induced anoikis resistance is associated with the induction of a stable hybrid epithelial-mesenchymal phenotype and is partially dependent on P-cadherin upregulation. Furthermore, we found that the conditioned media of Plk4-induced p53KO mammary epithelial cells also induces anoikis resistance of breast cancer cells in a paracrine way, being also partially dependent on soluble P-cadherin secretion. Our work shows, for the first time, that high expression levels of Plk4 induce anoikis resistance of both mammary epithelial cells with p53KO background, as well as of breast cancer cells exposed to their secretome, which is partially mediated through P-cadherin upregulation. These results reinforce the idea that Plk4, independently of its role in centrosome biogenesis, functions as an oncogene, by impacting the tumor microenvironment to promote malignancy.
Collapse
Affiliation(s)
- Irina Fonseca
- Instituto Gulbenkian de Ciência (IGC), Oeiras, 2780-156, Portugal.
- Instituto de Investigação e Inovação em Saúde (i3S), Porto, 4200-135, Portugal.
- Cancel Stem, Portuguese Consortium on Cancer Stem Cells, Porto, Portugal.
| | - Cíntia Horta
- Instituto Gulbenkian de Ciência (IGC), Oeiras, 2780-156, Portugal
- Instituto de Investigação e Inovação em Saúde (i3S), Porto, 4200-135, Portugal
- Cancel Stem, Portuguese Consortium on Cancer Stem Cells, Porto, Portugal
| | - Ana Sofia Ribeiro
- Instituto de Investigação e Inovação em Saúde (i3S), Porto, 4200-135, Portugal
- Cancel Stem, Portuguese Consortium on Cancer Stem Cells, Porto, Portugal
| | - Barbara Sousa
- Instituto de Investigação e Inovação em Saúde (i3S), Porto, 4200-135, Portugal
| | | | - Mónica Bettencourt-Dias
- Instituto Gulbenkian de Ciência (IGC), Oeiras, 2780-156, Portugal.
- Cancel Stem, Portuguese Consortium on Cancer Stem Cells, Porto, Portugal.
| | - Joana Paredes
- Instituto de Investigação e Inovação em Saúde (i3S), Porto, 4200-135, Portugal.
- Cancel Stem, Portuguese Consortium on Cancer Stem Cells, Porto, Portugal.
| |
Collapse
|
7
|
Mittal K, Kaur J, Sharma S, Sharma N, Wei G, Choudhary I, Imhansi-Jacob P, Maganti N, Pawar S, Rida P, Toss MS, Aleskandarany M, Janssen EA, Søiland H, Gupta MV, Reid MD, Rakha EA, Aneja R. Hypoxia Drives Centrosome Amplification in Cancer Cells via HIF1α-dependent Induction of Polo-Like Kinase 4. Mol Cancer Res 2022; 20:596-606. [PMID: 34933912 PMCID: PMC8983505 DOI: 10.1158/1541-7786.mcr-20-0798] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/20/2021] [Accepted: 12/14/2021] [Indexed: 11/16/2022]
Abstract
Centrosome amplification (CA) has been implicated in the progression of various cancer types. Although studies have shown that overexpression of PLK4 promotes CA, the effect of tumor microenvironment on polo-like kinase 4 (PLK4) regulation is understudied. The aim of this study was to examine the role of hypoxia in promoting CA via PLK4. We found that hypoxia induced CA via hypoxia-inducible factor-1α (HIF1α). We quantified the prevalence of CA in tumor cell lines and tissue sections from breast cancer, pancreatic ductal adenocarcinoma (PDAC), colorectal cancer, and prostate cancer and found that CA was prevalent in cells with increased HIF1α levels under normoxic conditions. HIF1α levels were correlated with the extent of CA and PLK4 expression in clinical samples. We analyzed the correlation between PLK4 and HIF1A mRNA levels in The Cancer Genome Atlas (TCGA) datasets to evaluate the role of PLK4 and HIF1α in breast cancer and PDAC prognosis. High HIF1A and PLK4 levels in patients with breast cancer and PDAC were associated with poor overall survival. We confirmed PLK4 as a transcriptional target of HIF1α and demonstrated that in PLK4 knockdown cells, hypoxia-mimicking agents did not affect CA and expression of CA-associated proteins, underscoring the necessity of PLK4 in HIF1α-related CA. To further dissect the HIF1α-PLK4 interplay, we used HIF1α-deficient cells overexpressing PLK4 and showed a significant increase in CA compared with HIF1α-deficient cells harboring wild-type PLK4. These findings suggest that HIF1α induces CA by directly upregulating PLK4 and could help us risk-stratify patients and design new therapies for CA-rich cancers. IMPLICATIONS Hypoxia drives CA in cancer cells by regulating expression of PLK4, uncovering a novel HIF1α/PLK4 axis.
Collapse
Affiliation(s)
- Karuna Mittal
- Department of Biology, Georgia State University, Atlanta, Georgia
| | - Jaspreet Kaur
- Department of Biology, Georgia State University, Atlanta, Georgia
| | - Shaligram Sharma
- Department of Biology, Georgia State University, Atlanta, Georgia
| | - Nivya Sharma
- Department of Biology, Georgia State University, Atlanta, Georgia
| | - Guanhao Wei
- Department of Biology, Georgia State University, Atlanta, Georgia
| | - Ishita Choudhary
- Department of Biology, Georgia State University, Atlanta, Georgia
| | | | - Nagini Maganti
- Department of Biology, Georgia State University, Atlanta, Georgia
| | - Shrikant Pawar
- Department of Biology, Georgia State University, Atlanta, Georgia
| | - Padmashree Rida
- Novazoi Theranostics, Inc., Rolling Hills Estates, California
| | - Michael S. Toss
- University of Nottingham and Nottingham University Hospitals, Nottingham, United Kingdom
| | - Mohammed Aleskandarany
- University of Nottingham and Nottingham University Hospitals, Nottingham, United Kingdom
| | | | - Håvard Søiland
- Department of Breast and Endocrine Surgery, Stavanger University Hospital, Stavanger, Norway
| | | | | | - Emad A. Rakha
- University of Nottingham and Nottingham University Hospitals, Nottingham, United Kingdom
| | - Ritu Aneja
- Department of Biology, Georgia State University, Atlanta, Georgia
| |
Collapse
|
8
|
Kudo M, Zalles N, Distefano R, Nigita G, Veneziano D, Gasparini P, Croce CM. Synergistic apoptotic effect of miR-183-5p and Polo-Like kinase 1 inhibitor NMS-P937 in breast cancer cells. Cell Death Differ 2022; 29:407-419. [PMID: 34561554 PMCID: PMC8816952 DOI: 10.1038/s41418-021-00864-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 08/27/2021] [Accepted: 08/30/2021] [Indexed: 02/08/2023] Open
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs that act as endogenous regulatory molecules targeting specific mRNAs for translational repression. Studies of breast cancer genomics indicate that breast cancer subtypes are distinguished and regulated by specific sets of miRNAs which affect activities such as tumor initiation, progression, and even drug response. Polo-like Kinase 1 (PLK1) is widely considered to be a proto-oncogene due to its increased expression in multiple tumor types, as well as its crucial role in regulating mitosis. Pharmacological inhibition of PLK1 can reduce tumor volume and induce tumor cell death in solid and hematologic malignancies. This prompted us to investigate how PLK1 inhibition with the target-specific inhibitor NMS-P937 would impact breast cancer cells, and how miRNAs may influence the overall response of these cells to this inhibition. We found that miR-183-5p targets PLK1 gene, effectively reducing its protein expression. Such miRNA-driven regulation of PLK1 expression sensitizes breast cancer cells to NMS-P937, resulting in synergistically increased apoptosis. We also show that the miRNA-regulated reduction of PLK1 influences the expression of apoptosis-related key proteins and possibly inducing further indirect PLK1 downmodulation through a DNMT1-p53 axis. These results suggest a potential biologically significant link between the expression of miR-183-5p and the efficacy of PLK1-specific inhibitors in breast cancer cells. Our work further elucidates how miR-183-5p regulates PLK1 gene while also enhancing NMS-P937 effect in breast cancer. Future studies assessing the role of miR-183-5p as a novel biomarker for anti-PLK1 chemotherapy agents are warranted.
Collapse
Affiliation(s)
- Masahisa Kudo
- Department of Cancer Biology and Genetics, The Ohio State University College of Medicine, Comprehensive Cancer Center, Columbus, OH, USA
| | - Nicole Zalles
- Department of Cancer Biology and Genetics, The Ohio State University College of Medicine, Comprehensive Cancer Center, Columbus, OH, USA
| | - Rosario Distefano
- Department of Cancer Biology and Genetics, The Ohio State University College of Medicine, Comprehensive Cancer Center, Columbus, OH, USA
| | - Giovanni Nigita
- Department of Cancer Biology and Genetics, The Ohio State University College of Medicine, Comprehensive Cancer Center, Columbus, OH, USA
| | - Dario Veneziano
- Department of Cancer Biology and Genetics, The Ohio State University College of Medicine, Comprehensive Cancer Center, Columbus, OH, USA
| | - Pierluigi Gasparini
- Department of Cancer Biology and Genetics, The Ohio State University College of Medicine, Comprehensive Cancer Center, Columbus, OH, USA.
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Newcastle, NSW, Australia.
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia.
| | - Carlo M Croce
- Department of Cancer Biology and Genetics, The Ohio State University College of Medicine, Comprehensive Cancer Center, Columbus, OH, USA.
| |
Collapse
|
9
|
Zhang X, Wei C, Liang H, Han L. Polo-Like Kinase 4's Critical Role in Cancer Development and Strategies for Plk4-Targeted Therapy. Front Oncol 2021; 11:587554. [PMID: 33777739 PMCID: PMC7994899 DOI: 10.3389/fonc.2021.587554] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 01/22/2021] [Indexed: 12/12/2022] Open
Abstract
Polo-like kinases (Plks) are critical regulatory molecules during the cell cycle process. This family has five members: Plk1, 2, 3, 4, and 5. Plk4 has been identified as a master regulator of centriole replication, and its aberrant expression is closely associated with cancer development. In this review, we depict the DNA, mRNA, and protein structure of Plk4, and the regulation of Plk4 at a molecular level. Then we list the downstream targets of Plk4 and the hallmarks of cancer associated with these targets. The role of Plk4 in different cancers is also summarized. Finally, we review the inhibitors that target Plk4 in the hope of discovering effective anticancer drugs. From authors' perspective, Plk4 might represent a valuable tumor biomarker and critical target for cancer diagnosis and therapy.
Collapse
Affiliation(s)
| | | | | | - Lei Han
- Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
10
|
Abreu P, Ivanics T, Jiang K, Chen K, E Hansen B, Sapisochin G, Ghanekar A. Novel biomarker for hepatocellular carcinoma: high tumoral PLK-4 expression is associated with better prognosis in patients without microvascular invasion. HPB (Oxford) 2021; 23:359-366. [PMID: 32800449 DOI: 10.1016/j.hpb.2020.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 06/15/2020] [Accepted: 07/07/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) recurrence after liver resection (LR) adversely affects prognosis but is difficult to predict. Aberrant expression of Polo-Like Kinase 4 (PLK-4) is implicated in several adult malignancies. We sought to evaluate the prognostic value of PLK-4 expression in HCC after curative-intent LR. METHODS Patients undergoing LR for HCC between July-2015 and November-2017 at our centre were retrospectively identified. PLK-4 expression was measured in tumour and adjacent non-tumour liver tissue using quantitative RT-PCR. Disease-free survival (DFS) was evaluated by Kaplan-Meier and Cox proportional hazard models. RESULTS A total of 145 patients were identified. Patients were divided according to PLK-4 expression (high: n = 58, low: n = 87) by generating a receiver operating characteristic curve for recurrence with an area under the curve of 0.72 (95% CI: 0.6-0.8). Recurrence and death rates were similar between groups. In patients without mVI, low PLK-4 expression was associated with worse actuarial DFS (low 1-, 3-, 5-year 83%, 60%, 47% vs. high 91%, 81%, 81%; p = 0.02). In patients without mVI, high PLK-4 expression was an independent predictor of survival (HR 0.3, 95% CI: 0.1-1.0; p = 0.04). CONCLUSION PLK-4 represents a biomarker for good prognosis in patients with HCC who do not have mVI. This could aid clinical decision making for adjuvant clinical trials.
Collapse
Affiliation(s)
- Phillipe Abreu
- Multi-Organ Transplant Program, University Health Network, Toronto, Ontario, Canada
| | - Tommy Ivanics
- Multi-Organ Transplant Program, University Health Network, Toronto, Ontario, Canada
| | - Keruo Jiang
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Kui Chen
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Bettina E Hansen
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Gonzalo Sapisochin
- Multi-Organ Transplant Program, University Health Network, Toronto, Ontario, Canada; Division of General Surgery, University Health Network, Toronto, Ontario, Canada; Department of Surgery, University of Toronto, Toronto, Ontario, Canada.
| | - Anand Ghanekar
- Multi-Organ Transplant Program, University Health Network, Toronto, Ontario, Canada; Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada; Division of General Surgery, University Health Network, Toronto, Ontario, Canada; Department of Surgery, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
11
|
Raab CA, Raab M, Becker S, Strebhardt K. Non-mitotic functions of polo-like kinases in cancer cells. Biochim Biophys Acta Rev Cancer 2021; 1875:188467. [PMID: 33171265 DOI: 10.1016/j.bbcan.2020.188467] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/03/2020] [Accepted: 11/03/2020] [Indexed: 12/12/2022]
Abstract
Inhibitors of mitotic protein kinases are currently being developed as non-neurotoxic alternatives of microtubule-targeting agents (taxanes, vinca alkaloids) which provide a substantial survival benefit for patients afflicted with different types of solid tumors. Among the mitotic kinases, the cyclin-dependent kinases, the Aurora kinases, the kinesin spindle protein and Polo-like kinases (PLKs) have emerged as attractive targets of cancer therapeutics. The functions of mammalian PLK1-5 are traditionally linked to the regulation of the cell cycle and to the stress response. Especially the key role of PLK1 and PLK4 in cellular growth and proliferation, their overexpression in multiple types of human cancer and their druggability, make them appealing targets for cancer therapy. Inhibitors for PLK1 and PLK4 are currently being tested in multiple cancer trials. The clinical success of microtubule-targeting agents is attributed not solely to the induction of a mitotic arrest in cancer cells, but also to non-mitotic effects like targeting intracellular trafficking on microtubules. This raises the question whether new cancer targets like PLK1 and PLK4 regulate critical non-mitotic functions in tumor cells. In this article we summarize the important roles of PLK1-5 for the regulation of non-mitotic signaling. Due to these functions it is conceivable that inhibitors for PLK1 or PLK4 can target interphase cells, which underscores their attractive potential as cancer drug targets. Moreover, we also describe the contribution of the tumor-suppressors PLK2, PLK3 and PLK5 to cancer cell signaling outside of mitosis. These observations highlight the urgent need to develop highly specific ATP-competitive inhibitors for PLK4 and for PLK1 like the 3rd generation PLK-inhibitor Onvansertib to prevent the inhibition of tumor-suppressor PLKs in- and outside of mitosis. The remarkable feature of PLKs to encompass a unique druggable domain, the polo-box-domain (PBD) that can be found only in PLKs offers the opportunity for the development of inhibitors that target PLKs exclusively. Beyond the development of mono-specific ATP-competitive PLK inhibitors, the PBD as drug target will support the design of new drugs that eradicate cancer cells based on the mitotic and non-mitotic function of PLK1 and PLK4.
Collapse
Affiliation(s)
| | - Monika Raab
- Department of Gynecology, Goethe-University, Frankfurt, Germany
| | - Sven Becker
- Department of Gynecology, Goethe-University, Frankfurt, Germany
| | - Klaus Strebhardt
- Department of Gynecology, Goethe-University, Frankfurt, Germany; German Cancer Consortium (DKTK), German Cancer Research Center, Partner Site Frankfurt am Main, Frankfurt, Germany.
| |
Collapse
|
12
|
Montaldo P, Cunnington A, Oliveira V, Swamy R, Bandya P, Pant S, Lally PJ, Ivain P, Mendoza J, Atreja G, Padmesh V, Baburaj M, Sebastian M, Yasashwi I, Kamalarathnam C, Chandramohan R, Mangalabharathi S, Kumaraswami K, Kumar S, Benakappa N, Manerkar S, Mondhkar J, Prakash V, Sajjid M, Seeralar A, Jahan I, Moni SC, Shahidullah M, Sujatha R, Chandrasekaran M, Ramji S, Shankaran S, Kaforou M, Herberg J, Thayyil S. Transcriptomic profile of adverse neurodevelopmental outcomes after neonatal encephalopathy. Sci Rep 2020; 10:13100. [PMID: 32753750 PMCID: PMC7403382 DOI: 10.1038/s41598-020-70131-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 06/16/2020] [Indexed: 12/20/2022] Open
Abstract
A rapid and early diagnostic test to identify the encephalopathic babies at risk of adverse outcome may accelerate the development of neuroprotectants. We examined if a whole blood transcriptomic signature measured soon after birth, predicts adverse neurodevelopmental outcome eighteen months after neonatal encephalopathy. We performed next generation sequencing on whole blood ribonucleic acid obtained within six hours of birth from the first 47 encephalopathic babies recruited to the Hypothermia for Encephalopathy in Low and middle-income countries (HELIX) trial. Two infants with blood culture positive sepsis were excluded, and the data from remaining 45 were analysed. A total of 855 genes were significantly differentially expressed between the good and adverse outcome groups, of which RGS1 and SMC4 were the most significant. Biological pathway analysis adjusted for gender, trial randomisation allocation (cooling therapy versus usual care) and estimated blood leukocyte proportions revealed over-representation of genes from pathways related to melatonin and polo-like kinase in babies with adverse outcome. These preliminary data suggest that transcriptomic profiling may be a promising tool for rapid risk stratification in neonatal encephalopathy. It may provide insights into biological mechanisms and identify novel therapeutic targets for neuroprotection.
Collapse
Affiliation(s)
- Paolo Montaldo
- Department of Brain Sciences, Centre for Perinatal Neuroscience, Imperial College London, London, UK. .,Neonatal Unit, Università Degli Studi Della Campania "Luigi Vanvitelli", Naples, Italy.
| | - Aubrey Cunnington
- Paediatric Infectious Diseases, Department of Infectious Diseases, Imperial College London, London, UK
| | - Vania Oliveira
- Department of Brain Sciences, Centre for Perinatal Neuroscience, Imperial College London, London, UK
| | - Ravi Swamy
- Department of Brain Sciences, Centre for Perinatal Neuroscience, Imperial College London, London, UK
| | - Prathik Bandya
- Neonatal Medicine, Indira Gandhi Institute of Child Health, Bangalore, Karnataka, India
| | - Stuti Pant
- Department of Brain Sciences, Centre for Perinatal Neuroscience, Imperial College London, London, UK
| | - Peter J Lally
- Department of Brain Sciences, Centre for Perinatal Neuroscience, Imperial College London, London, UK
| | - Phoebe Ivain
- Department of Brain Sciences, Centre for Perinatal Neuroscience, Imperial College London, London, UK
| | - Josephine Mendoza
- Department of Brain Sciences, Centre for Perinatal Neuroscience, Imperial College London, London, UK
| | - Gaurav Atreja
- Department of Brain Sciences, Centre for Perinatal Neuroscience, Imperial College London, London, UK
| | - Vadakepat Padmesh
- Neonatal Medicine, Institute of Obstetrics and Gynaecology, Madras Medical College, Chennai, Tamil Nadu, India
| | - Mythili Baburaj
- Neonatal Medicine, Institute of Obstetrics and Gynaecology, Madras Medical College, Chennai, Tamil Nadu, India
| | - Monica Sebastian
- Neonatal Medicine, Institute of Child Health, Madras Medical College, Tamil Nadu, Chennai, India
| | - Indiramma Yasashwi
- Neonatal Medicine, Indira Gandhi Institute of Child Health, Bangalore, Karnataka, India
| | - Chinnathambi Kamalarathnam
- Neonatal Medicine, Institute of Obstetrics and Gynaecology, Madras Medical College, Chennai, Tamil Nadu, India
| | - Rema Chandramohan
- Neonatal Medicine, Institute of Obstetrics and Gynaecology, Madras Medical College, Chennai, Tamil Nadu, India
| | - Sundaram Mangalabharathi
- Neonatal Medicine, Institute of Obstetrics and Gynaecology, Madras Medical College, Chennai, Tamil Nadu, India
| | - Kumutha Kumaraswami
- Neonatal Medicine, Institute of Obstetrics and Gynaecology, Madras Medical College, Chennai, Tamil Nadu, India
| | - Shobha Kumar
- Neonatal Medicine, Institute of Obstetrics and Gynaecology, Madras Medical College, Chennai, Tamil Nadu, India
| | - Naveen Benakappa
- Neonatal Medicine, Indira Gandhi Institute of Child Health, Bangalore, Karnataka, India
| | | | | | - Vinayagam Prakash
- Neonatal Medicine, Institute of Obstetrics and Gynaecology, Madras Medical College, Chennai, Tamil Nadu, India
| | - Mohammed Sajjid
- Neonatal Medicine, Institute of Obstetrics and Gynaecology, Madras Medical College, Chennai, Tamil Nadu, India
| | - Arasar Seeralar
- Neonatal Medicine, Institute of Child Health, Madras Medical College, Tamil Nadu, Chennai, India
| | - Ismat Jahan
- Neonatal Medicine, Bangabandhu Sheikh Mujib Medical University, Dhaka, Bangladesh
| | | | - Mohammod Shahidullah
- Neonatal Medicine, Bangabandhu Sheikh Mujib Medical University, Dhaka, Bangladesh
| | - Radhika Sujatha
- Neonatal Medicine, Government Medical College, Thiruvananthapuram, Kerala, India
| | - Manigandan Chandrasekaran
- Department of Brain Sciences, Centre for Perinatal Neuroscience, Imperial College London, London, UK
| | - Siddarth Ramji
- Neonatal Medicine, Maulana Azad Medical College, New Delhi, Delhi, India
| | - Seetha Shankaran
- Neonatal-Perinatal Medicine, Wayne State University, Detroit, MI, USA
| | - Myrsini Kaforou
- Paediatric Infectious Diseases, Department of Infectious Diseases, Imperial College London, London, UK
| | - Jethro Herberg
- Paediatric Infectious Diseases, Department of Infectious Diseases, Imperial College London, London, UK
| | - Sudhin Thayyil
- Department of Brain Sciences, Centre for Perinatal Neuroscience, Imperial College London, London, UK
| |
Collapse
|
13
|
Sánchez-Luis E, Joaquín-García A, Campos-Laborie FJ, Sánchez-Guijo F, De las Rivas J. Deciphering Master Gene Regulators and Associated Networks of Human Mesenchymal Stromal Cells. Biomolecules 2020; 10:E557. [PMID: 32260546 PMCID: PMC7226324 DOI: 10.3390/biom10040557] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 03/27/2020] [Accepted: 04/02/2020] [Indexed: 12/11/2022] Open
Abstract
Mesenchymal Stromal Cells (MSC) are multipotent cells characterized by self-renewal, multilineage differentiation, and immunomodulatory properties. To obtain a gene regulatory profile of human MSCs, we generated a compendium of more than two hundred cell samples with genome-wide expression data, including a homogeneous set of 93 samples of five related primary cell types: bone marrow mesenchymal stem cells (BM-MSC), hematopoietic stem cells (HSC), lymphocytes (LYM), fibroblasts (FIB), and osteoblasts (OSTB). All these samples were integrated to generate a regulatory gene network using the algorithm ARACNe (Algorithm for the Reconstruction of Accurate Cellular Networks; based on mutual information), that finds regulons (groups of target genes regulated by transcription factors) and regulators (i.e., transcription factors, TFs). Furtherly, the algorithm VIPER (Algorithm for Virtual Inference of Protein-activity by Enriched Regulon analysis) was used to inference protein activity and to identify the most significant TF regulators, which control the expression profile of the studied cells. Applying these algorithms, a footprint of candidate master regulators of BM-MSCs was defined, including the genes EPAS1, NFE2L1, SNAI2, STAB2, TEAD1, and TULP3, that presented consistent upregulation and hypomethylation in BM-MSCs. These TFs regulate the activation of the genes in the bone marrow MSC lineage and are involved in development, morphogenesis, cell differentiation, regulation of cell adhesion, and cell structure.
Collapse
Affiliation(s)
- Elena Sánchez-Luis
- Bioinformatics and Functional Genomics Group, Cancer Research Center (CiC-IMBCC, CSIC/USAL/IBSAL), Consejo Superior de Investigaciones Científicas (CSIC) and University of Salamanca (USAL), 37007 Salamanca, Spain; (E.S.-L.); (A.J.-G.); (F.J.C.-L.)
| | - Andrea Joaquín-García
- Bioinformatics and Functional Genomics Group, Cancer Research Center (CiC-IMBCC, CSIC/USAL/IBSAL), Consejo Superior de Investigaciones Científicas (CSIC) and University of Salamanca (USAL), 37007 Salamanca, Spain; (E.S.-L.); (A.J.-G.); (F.J.C.-L.)
| | - Francisco J. Campos-Laborie
- Bioinformatics and Functional Genomics Group, Cancer Research Center (CiC-IMBCC, CSIC/USAL/IBSAL), Consejo Superior de Investigaciones Científicas (CSIC) and University of Salamanca (USAL), 37007 Salamanca, Spain; (E.S.-L.); (A.J.-G.); (F.J.C.-L.)
- Bioinformatics and Cancer genomics, Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, CB2 1QN Cambridge, UK
| | - Fermín Sánchez-Guijo
- Cell Therapy Area and Department of Hematology, Institute of Biomedical Research of Salamanca -Hospital Universitario de Salamanca (IBSAL-HUS) and Department of Medicine, University of Salamanca (USAL), 37007 Salamanca, Spain;
| | - Javier De las Rivas
- Bioinformatics and Functional Genomics Group, Cancer Research Center (CiC-IMBCC, CSIC/USAL/IBSAL), Consejo Superior de Investigaciones Científicas (CSIC) and University of Salamanca (USAL), 37007 Salamanca, Spain; (E.S.-L.); (A.J.-G.); (F.J.C.-L.)
| |
Collapse
|
14
|
Quan R, Wei L, Hou L, Wang J, Zhu S, Li Z, Lv M, Liu J. Proteome Analysis in a Mammalian Cell line Reveals that PLK2 is Involved in Avian Metapneumovirus Type C (aMPV/C)-Induced Apoptosis. Viruses 2020; 12:v12040375. [PMID: 32231136 PMCID: PMC7232392 DOI: 10.3390/v12040375] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 03/25/2020] [Accepted: 03/26/2020] [Indexed: 01/09/2023] Open
Abstract
Avian metapneumovirus subtype C (aMPV/C) causes an acute respiratory disease that has caused serious economic losses in the Chinese poultry industry. In the present study, we first explored the protein profile in aMPV/C-infected Vero cells using iTRAQ quantitative proteomics. A total of 921 of 7034 proteins were identified as significantly altered by aMPV/C infection. Three selected proteins were confirmed by Western blot analysis. Bioinformatics GO analysis revealed multiple signaling pathways involving cell cycle, endocytosis, and PI3K-Akt, mTOR, MAPK and p53 signaling pathways, which might participate in viral infection. In this analysis, we found that PLK2 expression was upregulated by aMPV/C infection and investigated whether it contributed to aMPV/C-mediated cellular dysfunction. Suppressing PLK2 attenuated aMPV/C-induced reactive oxygen species (ROS) production and p53-dependent apoptosis and reduced virus release. These results in a mammalian cell line suggest that high PLK2 expression correlates with aMPV/C-induced apoptosis and viral replication, providing new insight into the potential avian host cellular response to aMPV/C infection and antiviral targets.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jue Liu
- Correspondence: ; Tel.: 86-10-51503671; Fax: 86-10-51503498
| |
Collapse
|
15
|
Mittal K, Aneja R. Spotlighting the hypoxia-centrosome amplification axis. Med Res Rev 2020; 40:1508-1513. [PMID: 32039498 DOI: 10.1002/med.21663] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 12/03/2019] [Accepted: 01/27/2020] [Indexed: 12/17/2022]
Abstract
The abysmal success rate of anticancer drugs in clinical trials, is in part, attributable to discordance between cultured cancer cells and patient tumors. While tumors in vivo, display a lower mitotic index, patient tumors portray much higher centrosomal aberrations, relative to in vitro cultured cells. The microenvironment too differs considerably between the in vitro and in vivo scenarios. Notably, another hallmark of cancer, hypoxia, is not recapitulated in cell lines cultured under normoxic conditions. These observations raise the possibility that hypoxia may be the missing link that explains the discordance between cell biological phenomena in vitro versus physiological conditions. Further, the interplay between hypoxia and centrosome amplification (CA) is relatively understudied. Recent research from our laboratory, geared toward examining the biological link between the two, has uncovered that hypoxia induces the expression of proteins (Plk4, Aurora A, Cyclin D) implicated in CA, in a hypoxia-inducible factor 1α (HIF-1α)-dependent context. Our studies evidence that hypoxia fuels CA that underlie intratumoral heterogeneity and metastatic potential of cancer cells. Given the advent of HIF-1α inhibitors, this research has ramifications in aiding patient risk stratification and designing new cancer drug therapies to facilitate clinical decision-making.
Collapse
Affiliation(s)
- Karuna Mittal
- Department of Biology, Georgia State University, Atlanta, Georgia
| | - Ritu Aneja
- Department of Biology, Georgia State University, Atlanta, Georgia
| |
Collapse
|
16
|
Shen T, Li Y, Chen Z, Liang S, Qiu Y, Zhu L, Ba G, Lu G, Qiu L. Activating transcription factor 6 (ATF6) negatively regulates Polo-like kinase 4 expression via recruiting C/EBPβ to the upstream-promoter during ER stress. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2020; 1863:194488. [PMID: 31926341 DOI: 10.1016/j.bbagrm.2020.194488] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 12/26/2019] [Accepted: 01/07/2020] [Indexed: 01/18/2023]
Abstract
Polo-like kinase 4 (PLK4) is a member of the serine/threonine protein kinase family involved in cell-cycle regulation and cellular response to stresses. However, the alteration of PLK4 in response to endoplasmic reticulum (ER) stress has not been well described. In the present study, we focused on the regulation of PLK4 regulation in response to ER stress. PLK4 expression was dramatically reduced under ER stress induced by brefeldin A (BFA), tunicamycin (TM), or thapsigargin (TG) and down regulation of PLK4 expression was dependent on activating transcription factor 6 (ATF6) and CCAAT/enhancer-binding protein β (C/EBPβ). Luciferase activity analysis of the truncated PLK4 promoter indicated that region from -1343 to -1250 of the PLK4 promoter was sensitive to BFA or TG. Additionally, ChIP and ChIP Re-IP assays showed that ATF6 and C/EBPβ were assembled on the same region of Plk4 promoter. Notably, we identified one C/EBPβ responsive element at position -1284, to which ATF6 or C/EBPβ binding was enhanced by BFA or TG under in vitro and in vivo conditions. Finally, overexpression of PLK4 inhibits apoptosis and promotes cell proliferation in response to ER stress. In summary, these results demonstrated that ER stress plays a crucial role in PLK4 expression. ATF6 may upregulate DNA-binding affinities after BFA treatment, via recruiting C/EBPβ to the upstream promoter of PLK4. These findings may contribute to the understanding of the molecular mechanism of PLK4 regulation.
Collapse
Affiliation(s)
- Tao Shen
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic China.
| | - Yan Li
- Department of Cell Biology, Key Laboratory of Cell Biology of Ministry of Public Health, and Key Laboratory of Medical Cell Biology of Ministry of Education, China Medical University, No. 77, Puhe Road, Shenyang North New Area, 110122, Shenyang, Liaoning, People's Republic of China; Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Zhiguang Chen
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic China
| | - Shuang Liang
- Department of Laboratory Medicine & Pathology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Yu Qiu
- Department of Cell Biology, Key Laboratory of Cell Biology of Ministry of Public Health, and Key Laboratory of Medical Cell Biology of Ministry of Education, China Medical University, No. 77, Puhe Road, Shenyang North New Area, 110122, Shenyang, Liaoning, People's Republic of China
| | - Lin Zhu
- Department of Cell Biology, Key Laboratory of Cell Biology of Ministry of Public Health, and Key Laboratory of Medical Cell Biology of Ministry of Education, China Medical University, No. 77, Puhe Road, Shenyang North New Area, 110122, Shenyang, Liaoning, People's Republic of China
| | - Gen Ba
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic China
| | - Guangwei Lu
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic China
| | - Lian Qiu
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic China
| |
Collapse
|
17
|
Zhao Y, Wang X. PLK4: a promising target for cancer therapy. J Cancer Res Clin Oncol 2019; 145:2413-2422. [PMID: 31492983 DOI: 10.1007/s00432-019-02994-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Accepted: 08/05/2019] [Indexed: 12/11/2022]
Abstract
PURPOSE Polo-like kinase 4 (PLK4) is a serine/threonine protein kinase that regulates centriole duplication. PLK4 deregulation causes centrosome number abnormalities, mitotic defects, chromosomal instability and, consequently, tumorigenesis. Therefore, PLK4 has emerged as a therapeutic target for the treatment of multiple cancers. In this review, we summarize the critical role of centrosome amplification and PLK4 in cancer. We also highlight recent advances in the development of PLK4 inhibitors and discuss potential combination therapies for cancer. METHODS The relevant literature from PubMed is reviewed in this article. The ClinicalTrials.gov database was searched for clinical trials related to the specific topic. RESULTS PLK4 is aberrantly expressed in multiple cancers and has prognostic value. Targeting PLK4 with inhibitors suppresses tumor growth in vitro and in vivo. CONCLUSIONS PLK4 plays an important role in centrosome amplification and tumor progression. PLK4 inhibitors used alone or in combination with other drugs have shown significant anticancer efficacy, suggesting a potential therapeutic strategy for cancer. The results of relevant clinical trials await evaluation.
Collapse
Affiliation(s)
- Yi Zhao
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, No. 324, Jingwu Road, Jinan, 250021, Shandong, People's Republic of China
| | - Xin Wang
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, No. 324, Jingwu Road, Jinan, 250021, Shandong, People's Republic of China.
- School of Medicine, Shandong University, Jinan, 250012, Shandong, China.
- Shandong Provincial Engineering Research Center of Lymphoma, Jinan, 250021, Shandong, China.
- Key Laboratory for Kidney Regeneration of Shandong Province, Jinan, 250021, Shandong, China.
| |
Collapse
|
18
|
Iron Pathophysiology in Alzheimer’s Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1173:67-104. [DOI: 10.1007/978-981-13-9589-5_5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
19
|
Srinivas US, Tan BWQ, Vellayappan BA, Jeyasekharan AD. ROS and the DNA damage response in cancer. Redox Biol 2019; 25:101084. [PMID: 30612957 PMCID: PMC6859528 DOI: 10.1016/j.redox.2018.101084] [Citation(s) in RCA: 1180] [Impact Index Per Article: 196.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 12/12/2018] [Accepted: 12/17/2018] [Indexed: 12/14/2022] Open
Abstract
Reactive oxygen species (ROS) are a group of short-lived, highly reactive, oxygen-containing molecules that can induce DNA damage and affect the DNA damage response (DDR). There is unequivocal pre-clinical and clinical evidence that ROS influence the genotoxic stress caused by chemotherapeutics agents and ionizing radiation. Recent studies have provided mechanistic insight into how ROS can also influence the cellular response to DNA damage caused by genotoxic therapy, especially in the context of Double Strand Breaks (DSBs). This has led to the clinical evaluation of agents modulating ROS in combination with genotoxic therapy for cancer, with mixed success so far. These studies point to context dependent outcomes with ROS modulator combinations with Chemotherapy and radiotherapy, indicating a need for additional pre-clinical research in the field. In this review, we discuss the current knowledge on the effect of ROS in the DNA damage response, and its clinical relevance.
Collapse
Affiliation(s)
| | - Bryce W Q Tan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | | | - Anand D Jeyasekharan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore; Department of Haematology-Oncology, National University Hospital, Singapore.
| |
Collapse
|
20
|
Abstract
Genomic instability is a common feature of tumours that has a wide range of disruptive effects on cellular homeostasis. In this review we briefly discuss how instability comes about, then focus on the impact of gain or loss of DNA (aneuploidy) on oxidative stress. We discuss several mechanisms that lead from aneuploidy to the production of reactive oxygen species, including the effects on protein complex stoichiometry, endoplasmic reticulum stress and metabolic disruption. Each of these are involved in positive feedback loops that amplify relatively minor genetic changes into major cellular disruption or cell death, depending on the capacity of the cell to induce antioxidants or processes such as mitophagy that can moderate the disruption. Finally we examine the direct effects of reactive oxygen species on mitosis and how oxidative stress can compromise centrosome number, cytoskeletal integrity and signalling processes that are vital for mitotic fidelity.
Collapse
Affiliation(s)
- David L Newman
- a Department of Molecular and Biomedical Science, University of Adelaide , Adelaide , Australia
| | - Lauren A Thurgood
- b Discipline of Molecular Medicine and Pathology and Flinders Centre for Innovation in Cancer, College of Medicine and Public Health, Flinders University , Adelaide , Australia
| | - Stephen L Gregory
- a Department of Molecular and Biomedical Science, University of Adelaide , Adelaide , Australia.,b Discipline of Molecular Medicine and Pathology and Flinders Centre for Innovation in Cancer, College of Medicine and Public Health, Flinders University , Adelaide , Australia
| |
Collapse
|
21
|
Maniswami RR, Prashanth S, Karanth AV, Koushik S, Govindaraj H, Mullangi R, Rajagopal S, Jegatheesan SK. PLK4: a link between centriole biogenesis and cancer. Expert Opin Ther Targets 2017; 22:59-73. [PMID: 29171762 DOI: 10.1080/14728222.2018.1410140] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Polo like kinase (PLK) is known to play a pivotal role in various cell cycle processes to perpetuate proper division and growth of the cells. Polo like kinase-4 (PLK4) is one such kinase that appears in low abundance and plays a well-characterized role in centriole duplication. PLK4 deregulation (i.e. both overexpression and depletion of PLK4), leads to altered mitotic fidelity and thereby triggers tumorigenesis. Hence, over the last few years PLK4 has emerged as a potential therapeutic target for the treatment of various advanced cancers. Areas covered: In this review, we discuss the basic structure, expression, localization and functions of PLK4 along with its regulation by various proteins. We also discuss the role of altered PLK4 activity in the onset of cancer and the current pre-clinical and clinical inhibitors to regulate PLK4. Expert opinion: PLK4 mediated centriole duplication has a crucial role in maintaining mitotic correctness in normal cells, while its deregulation has a greater impact on genesis of cancer. Henceforth, a deep knowledge of the PLK4 levels, its role and interactions with various proteins in cancer is required to design effective inhibitors for clinical use.
Collapse
Affiliation(s)
| | | | | | - Sindhu Koushik
- a Jubilant Biosys Ltd, Bioinformatics , Bangalore , India
| | | | | | | | | |
Collapse
|
22
|
Cadamuro M, Stecca T, Brivio S, Mariotti V, Fiorotto R, Spirli C, Strazzabosco M, Fabris L. The deleterious interplay between tumor epithelia and stroma in cholangiocarcinoma. Biochim Biophys Acta Mol Basis Dis 2017; 1864:1435-1443. [PMID: 28757170 DOI: 10.1016/j.bbadis.2017.07.028] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 07/26/2017] [Accepted: 07/26/2017] [Indexed: 12/15/2022]
Abstract
Prognosis of cholangiocarcinoma, a devastating liver epithelial malignancy characterized by early invasiveness, remains very dismal, though its incidence has been steadily increasing. Evidence is mounting that in cholangiocarcinoma, tumor epithelial cells establish an intricate web of mutual interactions with multiple stromal components, largely determining the pervasive behavior of the tumor. The main cellular components of the tumor microenvironment (i.e. myofibroblasts, macrophages, lymphatic endothelial cells), which has been recently termed as 'tumor reactive stroma', are recruited and activated by neoplastic cells, and in turn, deleteriously mold tumor behavior by releasing a huge variety of paracrine signals, including cyto/chemokines, growth factors, morphogens and proteinases. An abnormally remodeled and stiff extracellular matrix favors and supports these cell interactions. Although the mechanisms responsible for the generation of tumor reactive stroma are largely uncertain, hypoxia presumably plays a central role. In this review, we will dissect the intimate relationship among the different cell elements cooperating within this complex 'ecosystem', with the ultimate goal to pave the way for a deeper understanding of the mechanisms underlying cholangiocarcinoma aggressiveness, and possibly, to foster the development of innovative, combinatorial therapies aimed at halting tumor progression. This article is part of a Special Issue entitled: Cholangiocytes in Health and Diseaseedited by Jesus Banales, Marco Marzioni, Nicholas LaRusso and Peter Jansen.
Collapse
Affiliation(s)
- Massimiliano Cadamuro
- Department of Medicine and Surgery, University of Milan-Bicocca School of Medicine, 20126 Milan, Italy; International Center for Digestive Health (ICDH), University of Milan-Bicocca School of Medicine, 20126 Milan, Italy
| | - Tommaso Stecca
- Department of Surgical, Oncological, and Gastroenterological Sciences (DiSCOG), University of Padova, 35128 Padova, Italy
| | - Simone Brivio
- Department of Medicine and Surgery, University of Milan-Bicocca School of Medicine, 20126 Milan, Italy
| | - Valeria Mariotti
- Department of Molecular Medicine, University of Padua School of Medicine, 35121 Padua, Italy
| | - Romina Fiorotto
- International Center for Digestive Health (ICDH), University of Milan-Bicocca School of Medicine, 20126 Milan, Italy; Liver Center, Section of Digestive Diseases, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Carlo Spirli
- International Center for Digestive Health (ICDH), University of Milan-Bicocca School of Medicine, 20126 Milan, Italy; Liver Center, Section of Digestive Diseases, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Mario Strazzabosco
- Department of Medicine and Surgery, University of Milan-Bicocca School of Medicine, 20126 Milan, Italy; International Center for Digestive Health (ICDH), University of Milan-Bicocca School of Medicine, 20126 Milan, Italy; Liver Center, Section of Digestive Diseases, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Luca Fabris
- International Center for Digestive Health (ICDH), University of Milan-Bicocca School of Medicine, 20126 Milan, Italy; Department of Molecular Medicine, University of Padua School of Medicine, 35121 Padua, Italy; Liver Center, Section of Digestive Diseases, Yale University School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
23
|
Van den Bossche J, Deben C, Op de Beeck K, Deschoolmeester V, Hermans C, De Pauw I, Jacobs J, Van Schil P, Vermorken JB, Pauwels P, Peeters M, Lardon F, Wouters A. Towards Prognostic Profiling of Non-Small Cell Lung Cancer: New Perspectives on the Relevance of Polo-Like Kinase 1 Expression, the TP53 Mutation Status and Hypoxia. J Cancer 2017. [PMID: 28638459 PMCID: PMC5479250 DOI: 10.7150/jca.18455] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Background: Currently, prognosis of non-small cell lung cancer (NSCLC) patients is based on clinicopathological factors, including TNM stage. However, there are considerable differences in patient outcome within a similar staging group, even when patients received identical treatments. In order to improve prognostic predictions and to guide treatment options, additional parameters influencing outcome are required. Polo-like kinase 1 (Plk1), a master regulator of mitotic cell division and the DNA damage response, is considered as a new potential biomarker in this research area. While several studies reported Plk1 overexpression in a broad range of human malignancies, inconsistent results were published regarding the clinical significance hereof. A prognostic panel, consisting of Plk1 and additional biomarkers that are related to the Plk1 pathway, might further improve prediction of patient prognosis. Methods: In this study, we evaluated for the first time the prognostic value of Plk1 mRNA and protein expression in combination with the TP53 mutation status (next generation sequencing), induction of apoptotic cell death (immunohistochemistry for cleaved caspase 3) and hypoxia (immunohistochemistry for carbonic anhydrase IX (CA IX)) in 98 NSCLC adenocarcinoma patients. Results: Both Plk1 mRNA and protein expression and CA IX protein levels were upregulated in the majority of tumor samples. Plk1 mRNA and protein expression levels were higher in TP53 mutant samples, suggesting that Plk1 overexpression is, at least partially, the result of loss of functional p53 (<0.05). Interestingly, the outcome of patients with both Plk1 mRNA and CA IX protein overexpression, who also harbored a TP53 mutation, was much worse than that of patients with aberrant expression of only one of the three markers (p=0.001). Conclusion: The combined evaluation of Plk1 mRNA expression, CA IX protein expression and TP53 mutations shows promise as a prognostic panel in NSCLC patients. Moreover, these results pave the way for new combination strategies with Plk1 inhibitors.
Collapse
Affiliation(s)
- Jolien Van den Bossche
- Center for Oncological Research (CORE), University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Christophe Deben
- Center for Oncological Research (CORE), University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium.,Department of Pathology, Antwerp University Hospital, Wilrijkstraat 10, 2650 Edegem, Belgium
| | - Ken Op de Beeck
- Center for Oncological Research (CORE), University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium.,Center of Medical Genetics, University of Antwerp, Antwerp University Hospital, Prins Boudewijnlaan 43, 2650 Edegem, Belgium
| | - Vanessa Deschoolmeester
- Center for Oncological Research (CORE), University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium.,Department of Pathology, Antwerp University Hospital, Wilrijkstraat 10, 2650 Edegem, Belgium
| | - Christophe Hermans
- Center for Oncological Research (CORE), University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium.,Department of Pathology, Antwerp University Hospital, Wilrijkstraat 10, 2650 Edegem, Belgium
| | - Ines De Pauw
- Center for Oncological Research (CORE), University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Julie Jacobs
- Center for Oncological Research (CORE), University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium.,Department of Pathology, Antwerp University Hospital, Wilrijkstraat 10, 2650 Edegem, Belgium
| | - Paul Van Schil
- Department of Thoracic and Vascular Surgery, Antwerp University Hospital, Wilrijkstraat 10, 2650 Edegem, Belgium
| | - Jan Baptist Vermorken
- Center for Oncological Research (CORE), University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium.,Department of Oncology, Antwerp University Hospital, Wilrijkstraat 10, 2650 Edegem, Belgium
| | - Patrick Pauwels
- Center for Oncological Research (CORE), University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium.,Department of Pathology, Antwerp University Hospital, Wilrijkstraat 10, 2650 Edegem, Belgium
| | - Marc Peeters
- Center for Oncological Research (CORE), University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium.,Department of Oncology, Antwerp University Hospital, Wilrijkstraat 10, 2650 Edegem, Belgium
| | - Filip Lardon
- Center for Oncological Research (CORE), University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - An Wouters
- Center for Oncological Research (CORE), University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| |
Collapse
|
24
|
Weng Ng WT, Shin JS, Roberts TL, Wang B, Lee CS. Molecular interactions of polo-like kinase 1 in human cancers. J Clin Pathol 2016; 69:557-62. [PMID: 26941182 DOI: 10.1136/jclinpath-2016-203656] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Accepted: 02/09/2016] [Indexed: 01/22/2023]
Abstract
Polo-like kinase 1 (PLK1) is an essential protein in communicating cell-cycle progression and DNA damage. Overexpression of PLK1 has been validated as a marker for poor prognosis in many cancers. PLK1 knockdown decreases the survival of cancer cells. PLK1 is therefore an attractive target for anticancer treatments. Several inhibitors have been developed, and some have been clinically tested to show additive effects with conventional therapies. Upstream regulation of PLK1 involves multiple interactions of proteins such as FoxM1, E2F and p21. Other cancer-related proteins such as pRB and p53 also indirectly influence PLK1 expression. With the high mutation rates of these genes seen in cancers, they may be associated with PLK1 deregulation. This raises the question of whether PLK1 overexpression is a cause or a consequence of oncogenesis. In addition, hypomethylation of the CpG island of the PLK1 promoter region contributes to its upregulation. PLK1 expression can be affected by many factors; thus, it is possible that PLK1 deregulation in each individual patient tumours could be due to different underlying mechanisms.
Collapse
Affiliation(s)
- Wayne Tiong Weng Ng
- Discipline of Pathology, School of Medicine, Western Sydney University, Sydney, Australia Centre for Oncology Education and Research Translation (CONCERT), Ingham Institute for Applied Medical Research, Sydney, Australia Cancer Pathology and Cell Biology Laboratory, Ingham Institute for Applied Medical Research, Sydney, Australia
| | - Joo-Shik Shin
- Discipline of Pathology, School of Medicine, Western Sydney University, Sydney, Australia Centre for Oncology Education and Research Translation (CONCERT), Ingham Institute for Applied Medical Research, Sydney, Australia Cancer Pathology and Cell Biology Laboratory, Ingham Institute for Applied Medical Research, Sydney, Australia Molecular Medicine Research Group, School of Medicine, Western Sydney University, Sydney, Australia Department of Anatomical Pathology, Liverpool Hospital, Sydney, Australia
| | - Tara Laurine Roberts
- Centre for Oncology Education and Research Translation (CONCERT), Ingham Institute for Applied Medical Research, Sydney, Australia Molecular Medicine Research Group, School of Medicine, Western Sydney University, Sydney, Australia
| | - Bin Wang
- Discipline of Pathology, School of Medicine, Western Sydney University, Sydney, Australia Centre for Oncology Education and Research Translation (CONCERT), Ingham Institute for Applied Medical Research, Sydney, Australia South Western Sydney Clinical School, University of New South Wales, Sydney, Australia
| | - Cheok Soon Lee
- Discipline of Pathology, School of Medicine, Western Sydney University, Sydney, Australia Centre for Oncology Education and Research Translation (CONCERT), Ingham Institute for Applied Medical Research, Sydney, Australia Cancer Pathology and Cell Biology Laboratory, Ingham Institute for Applied Medical Research, Sydney, Australia Molecular Medicine Research Group, School of Medicine, Western Sydney University, Sydney, Australia Department of Anatomical Pathology, Liverpool Hospital, Sydney, Australia South Western Sydney Clinical School, University of New South Wales, Sydney, Australia Cancer Pathology, Bosch Institute, University of Sydney, Sydney, Australia
| |
Collapse
|
25
|
Liu X. Targeting Polo-Like Kinases: A Promising Therapeutic Approach for Cancer Treatment. Transl Oncol 2015; 8:185-95. [PMID: 26055176 PMCID: PMC4486469 DOI: 10.1016/j.tranon.2015.03.010] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 03/19/2015] [Accepted: 03/24/2015] [Indexed: 12/29/2022] Open
Abstract
Polo-like kinases (Plks) are a family of serine-threonine kinases that regulate multiple intracellular processes including DNA replication, mitosis, and stress response. Plk1, the most well understood family member, regulates numerous stages of mitosis and is overexpressed in many cancers. Plk inhibitors are currently under clinical investigation, including phase III trials of volasertib, a Plk inhibitor, in acute myeloid leukemia and rigosertib, a dual inhibitor of Plk1/phosphoinositide 3-kinase signaling pathways, in myelodysplastic syndrome. Other Plk inhibitors, including the Plk1 inhibitors GSK461364A, TKM-080301, GW843682, purpurogallin, and poloxin and the Plk4 inhibitor CFI-400945 fumarate, are in earlier clinical development. This review discusses the biologic roles of Plks in cell cycle progression and cancer, and the mechanisms of action of Plk inhibitors currently in development as cancer therapies.
Collapse
Affiliation(s)
- Xiaoqi Liu
- Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
26
|
Nakanishi A, Minami A, Kitagishi Y, Ogura Y, Matsuda S. BRCA1 and p53 tumor suppressor molecules in Alzheimer's disease. Int J Mol Sci 2015; 16:2879-92. [PMID: 25636033 PMCID: PMC4346871 DOI: 10.3390/ijms16022879] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 11/20/2014] [Accepted: 01/20/2015] [Indexed: 12/16/2022] Open
Abstract
Tumor suppressor molecules play a pivotal role in regulating DNA repair, cell proliferation, and cell death, which are also important processes in the pathogenesis of Alzheimer’s disease. Alzheimer’s disease is the most common neurodegenerative disorder, however, the precise molecular events that control the death of neuronal cells are unclear. Recently, a fundamental role for tumor suppressor molecules in regulating neurons in Alzheimer’s disease was highlighted. Generally, onset of neurodegenerative diseases including Alzheimer’s disease may be delayed with use of dietary neuro-protective agents against oxidative stresses. Studies suggest that dietary antioxidants are also beneficial for brain health in reducing disease-risk and in slowing down disease-progression. We summarize research advances in dietary regulation for the treatment of Alzheimer’s disease with a focus on its modulatory roles in BRCA1 and p53 tumor suppressor expression, in support of further therapeutic research in this field.
Collapse
Affiliation(s)
- Atsuko Nakanishi
- Department of Food Science and Nutrition, Nara Women's University, Kita-Uoya Nishimachi, Nara 630-8506, Japan.
| | - Akari Minami
- Department of Food Science and Nutrition, Nara Women's University, Kita-Uoya Nishimachi, Nara 630-8506, Japan.
| | - Yasuko Kitagishi
- Department of Food Science and Nutrition, Nara Women's University, Kita-Uoya Nishimachi, Nara 630-8506, Japan.
| | - Yasunori Ogura
- Department of Food Science and Nutrition, Nara Women's University, Kita-Uoya Nishimachi, Nara 630-8506, Japan.
| | - Satoru Matsuda
- Department of Food Science and Nutrition, Nara Women's University, Kita-Uoya Nishimachi, Nara 630-8506, Japan.
| |
Collapse
|
27
|
Lange L, Keppner-Witter S, Grigat J, Spänkuch B. Combinatorial inhibition of Plk1 and PKCβ in cancer cells with different p53 status. Oncotarget 2014; 5:2263-75. [PMID: 24810255 PMCID: PMC4039161 DOI: 10.18632/oncotarget.1897] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 04/11/2014] [Indexed: 01/23/2023] Open
Abstract
PKCβ and Plk1 are fascinating targets in cancer therapy. Therefore, we combined Enzastaurin targeting PKCβ and SBE13 targeting Plk1 to test synergistic effects in cells with different p53 status. We analyzed cell proliferation and apoptosis induction, and did Western blot and FACScan analyses to examine the combined PKCβ and Plk1 inhibition. p53-wild-type cells are more resistant to the combinatorial treatment than p53-deficient cells, which displayed a synergistic reduction of cell proliferation after the combination. HeLa, MCF-7 and HCT116(p53wt) and HCT116(p53-/-) cells differed in their cell cycle distribution after combinatorial treatment in dependence on a functional p53-dependent G1/S checkpoint (p53-deficient cells showed an enrichment in S and G2/M, p53-wild-type cells in G0/G1 phase). hTERT-RPE1 cells did not show the synergistic effects of cancer cells. Thus, we demonstrate for the first time that Plk1 inhibition using SBE13 enhances the effects of Enzastaurin in cancer cells. HCT116(p53wt) and HCT116(p53-/-) cells confirmed the p53-dependence of different effects after Plk1 and PKCβ inhibition observed in HeLa and MCF-7 cells. Obviously, p53 protects cells from the cytotoxicity of Enzastaurin in combination with SBE13. For that reason this combination can be useful to treat p53-deficient cancers, without displaying toxicity to normal cells, which all have functional p53.
Collapse
Affiliation(s)
- Lisa Lange
- Friedrich-Schiller-University, CMB, Institute for Biochemistry, Hans-Knöll-Straße 2, 07745 Jena, Germany
| | - Sarah Keppner-Witter
- Eberhard-Karls-University, Department of Gynecology, Calwer Straße 7, 72076 Tübingen, Germany
| | - Juline Grigat
- Department of Obstetrics and Gynecology, Medical School, Goethe-University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Birgit Spänkuch
- Friedrich-Schiller-University, CMB, Institute for Biochemistry, Hans-Knöll-Straße 2, 07745 Jena, Germany
| |
Collapse
|