1
|
Li R, Cao X, Chen J, He T, Zhang Y, Wang W, Wang Y, Wang Y, Qiu Y, Xie M, Shi K, Xu Y, Zhang S, Liu P. Deciphering the impact of MreB on the morphology and pathogenicity of the aquatic pathogen Spiroplasma eriocheiris. Biol Direct 2024; 19:98. [PMID: 39444023 PMCID: PMC11515736 DOI: 10.1186/s13062-024-00537-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 09/26/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND Spiroplasma eriocheiris has been proved to be a pathogen causing tremor disease of Eriocheir sinensis, it is also infectious to other aquatic crustaceans, resulting in a serious threat on the sustainable development of the aquaculture industry. S. eriocheiris is a helical-shaped microbe without a cell wall, and its motility is related to the cytoskeleton protein MreB which belongs to the actin superfamily and has five MreB homologs. RESULTS In this study, we purified MreB3, MreB4 and MreB5, and successfully prepared monoclonal antibodies. After S. eriocheiris treated with actin stabilizator Phalloidin and inhibitors A22, we found that Phalloidin and A22 affect the S. eriocheiris morphology by altering MreB expression. We confirmed that the ability of S. eriocheiris to invade E. sinensis was increased after treatment with Phalloidin, including that the morphology of E. sinensis blood lymphocytes was deteriorated, blood lymphocytes viability was decreased, peroxidase activity and cell necrosis were increased. On the contrary, the pathogenicity of S. eriocheiris decreased after treatment with A22. CONCLUSIONS Our findings suggest that the MreB protein in S. eriocheiris plays a crucial role in its morphology and pathogenicity, providing new insights into potential strategies for the prevention and control of S. eriocheiris infections.
Collapse
Affiliation(s)
- Rong Li
- Institute of Pathogenic Biology, Basic Medical School,University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, Hunan, 421001, China
| | - Xiaohui Cao
- Jiangsu Marine Fisheries Research Institute, Nantong, Jiangsu, 226007, China
| | - Jiaxin Chen
- Institute of Pathogenic Biology, Basic Medical School,University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, Hunan, 421001, China
| | - Tingting He
- Shaoxing Center for Disease Control and Prevention, 276 Century Street, Shaoxing, Zhejiang Province, 312000, China
| | - Yan Zhang
- Institute of Pathogenic Biology, Basic Medical School,University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, Hunan, 421001, China
| | - Wen Wang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, Jiangsu, China
| | - Yaqi Wang
- Institute of Pathogenic Biology, Basic Medical School,University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, Hunan, 421001, China
| | - Yifei Wang
- Institute of Pathogenic Biology, Basic Medical School,University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, Hunan, 421001, China
| | - Yanyan Qiu
- Institute of Pathogenic Biology, Basic Medical School,University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, Hunan, 421001, China
| | - Mengji Xie
- Institute of Pathogenic Biology, Basic Medical School,University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, Hunan, 421001, China
| | - Kailin Shi
- Institute of Pathogenic Biology, Basic Medical School,University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, Hunan, 421001, China
| | - Yuhua Xu
- Institute of Pathogenic Biology, Basic Medical School,University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, Hunan, 421001, China
| | - Siyuan Zhang
- Institute of Pathogenic Biology, Basic Medical School,University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, Hunan, 421001, China
| | - Peng Liu
- Institute of Pathogenic Biology, Basic Medical School,University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, Hunan, 421001, China.
| |
Collapse
|
2
|
Ryan PM, Shaevitz JW, Wolgemuth CW. Bend or Twist? What Plectonemes Reveal about the Mysterious Motility of Spiroplasma. PHYSICAL REVIEW LETTERS 2023; 131:178401. [PMID: 37955476 DOI: 10.1103/physrevlett.131.178401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 09/15/2023] [Indexed: 11/14/2023]
Abstract
Spiroplasma is a unique, helical bacterium that lacks a cell wall and swims using propagating helix hand inversions. These deformations are likely driven by a set of cytoskeletal filaments, but how remains perplexing. Here, we probe the underlying mechanism using a model where either twist or bend drive spiroplasma's chirality inversions. We show that Spiroplasma should wrap into plectonemes at different values of the length and external viscosity, depending on the mechanism. Then, by experimentally measuring the bending modulus of Spiroplasma and if and when plectonemes form, we show that Spiroplasma's helix hand inversions are likely driven by bending.
Collapse
Affiliation(s)
- Paul M Ryan
- Department of Physics, University of Arizona, Tucson, Arizona 85721, USA
| | - Joshua W Shaevitz
- Joseph Henry Laboratories of Physics and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08544, USA
| | - Charles W Wolgemuth
- Department of Physics, University of Arizona, Tucson, Arizona 85721, USA
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona 85721, USA
| |
Collapse
|
3
|
Schuck P, To SC, Zhao H. An automated interface for sedimentation velocity analysis in SEDFIT. PLoS Comput Biol 2023; 19:e1011454. [PMID: 37669309 PMCID: PMC10503714 DOI: 10.1371/journal.pcbi.1011454] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 09/15/2023] [Accepted: 08/22/2023] [Indexed: 09/07/2023] Open
Abstract
Sedimentation velocity analytical ultracentrifugation (SV-AUC) is an indispensable tool for the study of particle size distributions in biopharmaceutical industry, for example, to characterize protein therapeutics and vaccine products. In particular, the diffusion-deconvoluted sedimentation coefficient distribution analysis, in the software SEDFIT, has found widespread applications due to its relatively high resolution and sensitivity. However, a lack of suitable software compatible with Good Manufacturing Practices (GMP) has hampered the use of SV-AUC in this regulatory environment. To address this, we have created an interface for SEDFIT so that it can serve as an automatically spawned module with controlled data input through command line parameters and output of key results in files. The interface can be integrated in custom GMP compatible software, and in scripts that provide documentation and meta-analyses for replicate or related samples, for example, to streamline analysis of large families of experimental data, such as binding isotherm analyses in the study of protein interactions. To test and demonstrate this approach we provide a MATLAB script mlSEDFIT.
Collapse
Affiliation(s)
- Peter Schuck
- Laboratory of Dynamics of Macromolecular Assembly, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Samuel C. To
- Laboratory of Dynamics of Macromolecular Assembly, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Huaying Zhao
- Laboratory of Dynamics of Macromolecular Assembly, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
4
|
Schuck P, To SC, Zhao H. An automated interface for sedimentation velocity analysis in SEDFIT. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.14.540690. [PMID: 37425873 PMCID: PMC10327192 DOI: 10.1101/2023.05.14.540690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Sedimentation velocity analytical ultracentrifugation (SV-AUC) is an indispensable tool for the study of particle size distributions in biopharmaceutical industry, for example, to characterize protein therapeutics and vaccine products. In particular, the diffusion-deconvoluted sedimentation coefficient distribution analysis, in the software SEDFIT, has found widespread applications due to its relatively high resolution and sensitivity. However, a lack of available software compatible with Good Manufacturing Practices (GMP) has hampered the use of SV-AUC in this regulatory environment. To address this, we have created an interface for SEDFIT so that it can serve as an automatically spawned module with controlled data input through command line parameters and output of key results in files. The interface can be integrated in custom GMP compatible software, and in scripts that provide documentation and meta-analyses for replicate or related samples, for example, to streamline analysis of large families of experimental data, such as binding isotherm analyses in the study of protein interactions. To test and demonstrate this approach we provide a MATLAB script mlSEDFIT.
Collapse
Affiliation(s)
- Peter Schuck
- Laboratory of Dynamics of Macromolecular Assembly, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA
| | - Samuel C. To
- Laboratory of Dynamics of Macromolecular Assembly, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA
| | - Huaying Zhao
- Laboratory of Dynamics of Macromolecular Assembly, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
5
|
Sasajima Y, Miyata M. Prospects for the Mechanism of Spiroplasma Swimming. Front Microbiol 2021; 12:706426. [PMID: 34512583 PMCID: PMC8432965 DOI: 10.3389/fmicb.2021.706426] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 07/12/2021] [Indexed: 11/18/2022] Open
Abstract
Spiroplasma are helical bacteria that lack a peptidoglycan layer. They are widespread globally as parasites of arthropods and plants. Their infectious processes and survival are most likely supported by their unique swimming system, which is unrelated to well-known bacterial motility systems such as flagella and pili. Spiroplasma swims by switching the left- and right-handed helical cell body alternately from the cell front. The kinks generated by the helicity shift travel down along the cell axis and rotate the cell body posterior to the kink position like a screw, pushing the water backward and propelling the cell body forward. An internal structure called the "ribbon" has been focused to elucidate the mechanisms for the cell helicity formation and swimming. The ribbon is composed of Spiroplasma-specific fibril protein and a bacterial actin, MreB. Here, we propose a model for helicity-switching swimming focusing on the ribbon, in which MreBs generate a force like a bimetallic strip based on ATP energy and switch the handedness of helical fibril filaments. Cooperative changes of these filaments cause helicity to shift down the cell axis. Interestingly, unlike other motility systems, the fibril protein and Spiroplasma MreBs can be traced back to their ancestors. The fibril protein has evolved from methylthioadenosine/S-adenosylhomocysteine (MTA/SAH) nucleosidase, which is essential for growth, and MreBs, which function as a scaffold for peptidoglycan synthesis in walled bacteria.
Collapse
Affiliation(s)
- Yuya Sasajima
- Department of Biology, Graduate School of Science, Osaka City University, Osaka, Japan
| | - Makoto Miyata
- Department of Biology, Graduate School of Science, Osaka City University, Osaka, Japan
- The OCU Advanced Research Institute for Natural Science and Technology (OCARINA), Osaka City University, Osaka, Japan
| |
Collapse
|
6
|
Roth J, Koch MD, Rohrbach A. Dynamics of a Protein Chain Motor Driving Helical Bacteria under Stress. Biophys J 2019; 114:1955-1969. [PMID: 29694872 DOI: 10.1016/j.bpj.2018.02.043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 02/27/2018] [Accepted: 02/28/2018] [Indexed: 12/21/2022] Open
Abstract
The wall-less, helical bacterial genus Spiroplasma has a unique propulsion system; it is not driven by propeller-like flagella but by a membrane-bound, cytoplasmic, linear motor that consists of a contractile chain of identical proteins spanning the entire cell length. By a coordinated spread of conformational changes of the proteins, kinks propagate in pairs along the cell body. However, the mechanisms for the initiation or delay of kinks and their coordinated spread remain unclear. Here, we show how we manipulate the initiation of kinks, their propagation velocities, and the time between two kinks for a single cell trapped in an optical line potential. By interferometric three-dimensional shape tracking, we measured the cells' deformations in response to various external stress situations. We observed a significant dependency of force generation on the cells' local ligand concentrations (likely ATP) and ligand hydrolysis, which we altered in different ways. We developed a mechanistic, mathematical model based on Kramer's rates, describing the subsequent cooperative and conformational switching of the chain's proteins. The model reproduces our experimental observations and can explain deformation characteristics even when the motor is driven to its extreme. Nature has invented a set of minimalistic mechanical driving concepts. To understand or even rebuild them, it is essential to reveal the molecular mechanisms of such protein chain motors, which need only two components-coupled proteins and ligands-to function.
Collapse
Affiliation(s)
- Julian Roth
- Department of Microsystems Engineering, University of Freiburg, Freiburg, Germany
| | - Matthias D Koch
- Department of Microsystems Engineering, University of Freiburg, Freiburg, Germany; Princeton University, Princeton, New Jersey
| | - Alexander Rohrbach
- Department of Microsystems Engineering, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
7
|
Chaturvedi SK, Ma J, Zhao H, Schuck P. Use of fluorescence-detected sedimentation velocity to study high-affinity protein interactions. Nat Protoc 2017; 12:1777-1791. [PMID: 28771239 PMCID: PMC7466938 DOI: 10.1038/nprot.2017.064] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Sedimentation velocity (SV) analytical ultracentrifugation (AUC) is a classic technique for the real-time observation of free macromolecular migration in solution driven by centrifugal force. This enables the analysis of macromolecular mass, shape, size distribution, and interactions. Although traditionally limited to determination of the sedimentation coefficient and binding affinity of proteins in the micromolar range, the implementation of modern detection and data analysis techniques has resulted in marked improvements in detection sensitivity and size resolution during the past decades. Fluorescence optical detection now permits the detection of recombinant proteins with fluorescence excitation at 488 or 561 nm at low picomolar concentrations, allowing for the study of high-affinity protein self-association and hetero-association. Compared with other popular techniques for measuring high-affinity protein-protein interactions, such as biosensing or calorimetry, the high size resolution of complexes at picomolar concentrations obtained with SV offers a distinct advantage in sensitivity and flexibility of the application. Here, we present a basic protocol for carrying out fluorescence-detected SV experiments and the determination of the size distribution and affinity of protein-antibody complexes with picomolar KD values. Using an EGFP-nanobody interaction as a model, this protocol describes sample preparation, ultracentrifugation, data acquisition, and data analysis. A variation of the protocol applying traditional absorbance or an interference optical system can be used for protein-protein interactions in the micromolar KD value range. Sedimentation experiments typically take ∼3 h of preparation and 6-12 h of run time, followed by data analysis (typically taking 1-3 h).
Collapse
Affiliation(s)
- Sumit K. Chaturvedi
- Dynamics of Macromolecular Assembly Section, Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland, U.S.A
| | - Jia Ma
- Dynamics of Macromolecular Assembly Section, Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland, U.S.A
| | - Huaying Zhao
- Dynamics of Macromolecular Assembly Section, Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland, U.S.A
| | - Peter Schuck
- Dynamics of Macromolecular Assembly Section, Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland, U.S.A
| |
Collapse
|
8
|
Abstract
As discovered over the past 25 years, the cytoskeletons of bacteria and archaea are complex systems of proteins whose central components are dynamic cytomotive filaments. They perform roles in cell division, DNA partitioning, cell shape determination and the organisation of intracellular components. The protofilament structures and polymerisation activities of various actin-like, tubulin-like and ESCRT-like proteins of prokaryotes closely resemble their eukaryotic counterparts but show greater diversity. Their activities are modulated by a wide range of accessory proteins but these do not include homologues of the motor proteins that supplement filament dynamics to aid eukaryotic cell motility. Numerous other filamentous proteins, some related to eukaryotic IF-proteins/lamins and dynamins etc, seem to perform structural roles similar to those in eukaryotes.
Collapse
Affiliation(s)
- Linda A Amos
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK.
| | - Jan Löwe
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK.
| |
Collapse
|
9
|
Variable Field Analytical Ultracentrifugation: II. Gravitational Sweep Sedimentation Velocity. Biophys J 2016; 110:103-12. [PMID: 26745414 DOI: 10.1016/j.bpj.2015.11.027] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 11/16/2015] [Accepted: 11/18/2015] [Indexed: 12/13/2022] Open
Abstract
Sedimentation velocity (SV) analytical ultracentrifugation is a classical biophysical technique for the determination of the size-distribution of macromolecules, macromolecular complexes, and nanoparticles. SV has traditionally been carried out at a constant rotor speed, which limits the range of sedimentation coefficients that can be detected in a single experiment. Recently we have introduced methods to implement experiments with variable rotor speeds, in combination with variable field solutions to the Lamm equation, with the application to expedite the approach to sedimentation equilibrium. Here, we describe the use of variable-field sedimentation analysis to increase the size-range covered in SV experiments by ∼100-fold with a quasi-continuous increase of rotor speed during the experiment. Such a gravitational-sweep sedimentation approach has previously been shown to be very effective in the study of nanoparticles with large size ranges. In the past, diffusion processes were not accounted for, thereby posing a lower limit of particle sizes and limiting the accuracy of the size distribution. In this work, we combine variable field solutions to the Lamm equation with diffusion-deconvoluted sedimentation coefficient distributions c(s), which further extend the macromolecular size range that can be observed in a single SV experiment while maintaining accuracy and resolution. In this way, approximately five orders of magnitude of sedimentation coefficients, or eight orders of magnitude of particle mass, can be probed in a single experiment. This can be useful, for example, in the study of proteins forming large assemblies, as in fibrillation process or capsid self-assembly, in studies of the interaction between very dissimilar-sized macromolecular species, or in the study of broadly distributed nanoparticles.
Collapse
|
10
|
Abstract
The spatial and temporal evolution of concentration boundaries in sedimentation velocity analytical ultracentrifugation reports on the size distribution of particles with high hydrodynamic resolution. For large particles such as large protein complexes, fibrils, viral particles, or nanoparticles, sedimentation conditions usually allow migration from diffusion to be neglected relative to sedimentation. In this case, the shape of the sedimentation boundaries of polydisperse mixtures relates directly to the underlying size-distributions. Integral and derivative methods for calculating sedimentation coefficient distributions g*(s) of large particles from experimental boundary profiles have been developed previously, and are recapitulated here in a common theoretical framework. This leads to a previously unrecognized relationship between g*(s) and the time-derivative of concentration profiles. Of closed analytical form, it is analogous to the well-known Bridgman relationship for the radial derivative. It provides a quantitative description of the effect of substituting the time-derivative by scan differences with finite time intervals, which appears as a skewed box average of the true distribution. This helps to theoretically clarify the differences between results from time-derivative method and the approach of directly fitting the integral definition of g*(s) to the entirety of experimental boundary data.
Collapse
Affiliation(s)
- Peter Schuck
- Dynamics of Macromolecular Assembly Section, Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, USA.
| |
Collapse
|
11
|
Zhang Y, Bao H, Miao F, Peng Y, Shen Y, Gu W, Meng Q, Wang W, Zhang J. Production and application of polyclonal and monoclonal antibodies against Spiroplasma eriocheiris. Sci Rep 2015; 5:17871. [PMID: 26639364 PMCID: PMC4671143 DOI: 10.1038/srep17871] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 11/06/2015] [Indexed: 11/09/2022] Open
Abstract
A new species of spiroplasma, Spiroplasma eriocheiris (S. eriocheiris), was identified as a lethal pathogen of tremor disease (TD) in Chinese mitten crab recently. In order to acquire appropriate biological and diagnostic tools for characterizing this newly discovered pathogen, 5 monoclonal antibodies (mAbs) and a polyclonal antibody (pAb) against S. eriocheiris were produced. Among the mAbs, 6F5, 7C8 and 12H5 lead to the deformation of S. eriocheiris. A peptide sequence, YMRDMQSGLPRY was identified as a mimic motif of MreB that is the cell shape determining protein of S. eriocheiris interacting with 3 mAbs. Furthermore, a double antibody sandwich enzyme-linked immunosorbent assay (DAS-ELISA) for detection of S. eriocheiris was established using the mAb and pAb we prepared. It detected as low as 0.1 μg/mL of S. eriocheiris. No cross-reaction was observed with three other common bacteria (Pseudomonas aeruginosa, Escherichia coli, and Bacillus subtilis) and the hemolymph samples of healthy Eriocheir sinensis. Collectively, our results indicated that the mAbs and pAb we prepared could be used in the analysis of S. eriocheiris membrane proteins mimotope and development of a diagnostic kit for S. eriocheiris infections.
Collapse
Affiliation(s)
- Ying Zhang
- Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Department of Microbiology and Immunology, Medical School, Southeast University, 87 Dingjiaqiao Road, Nanjing 210009, China
| | - Haixun Bao
- Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Department of Microbiology and Immunology, Medical School, Southeast University, 87 Dingjiaqiao Road, Nanjing 210009, China
| | - Fengqin Miao
- Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Department of Microbiology and Immunology, Medical School, Southeast University, 87 Dingjiaqiao Road, Nanjing 210009, China
| | - Yaqin Peng
- Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Department of Microbiology and Immunology, Medical School, Southeast University, 87 Dingjiaqiao Road, Nanjing 210009, China
| | - Yuqing Shen
- Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Department of Microbiology and Immunology, Medical School, Southeast University, 87 Dingjiaqiao Road, Nanjing 210009, China
| | - Wei Gu
- Jiangsu Key Laboratory for Biodiversity &Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Qingguo Meng
- Jiangsu Key Laboratory for Biodiversity &Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Wen Wang
- Jiangsu Key Laboratory for Biodiversity &Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Jianqiong Zhang
- Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Department of Microbiology and Immunology, Medical School, Southeast University, 87 Dingjiaqiao Road, Nanjing 210009, China
| |
Collapse
|