1
|
Gudur AK, Kale SR, Gudur RA, Bhosale SJ, More AL, Datkhile KD. Single Nucleotide Polymorphisms in APE1, hOGG1, RAD51 Genes and their Association with Radiotherapy Induced Toxicity among Head and Neck Cancer Patients. Asian Pac J Cancer Prev 2024; 25:2645-2654. [PMID: 39205561 PMCID: PMC11495438 DOI: 10.31557/apjcp.2024.25.8.2645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Radiotherapy (RT) is a crucial treatment for head and neck cancer however, it causes adverse reactions to the normal tissue and organs adjacent to target tumor. The present study was carried out to investigate possible association of single nucleotide polymorphism in DNA repair genes with toxicity effects of radiotherapy on normal tissue. METHODS Three hundred and fifty head and neck cancer patients receiving radiotherapy treatment were enrolled in this study. The adverse after effects of radiotherapy on the normal tissue in the form of skin reactions were recorded. Single nucleotide polymorphisms of APE1 (rs1130409), hOGG1 (rs1052133) and Rad51 (rs1801320, rs1801321) genes were studied by polymerase chain reaction-Restriction fragment length polymorphism (PCR-RFLP) and direct DNA sequencing methods and their association with development of severe radio-toxicity effects was evaluated logistic regression analysis. RESULTS The 172G/T polymorphism of Rad51 was 2.85 times higher and significantly associated with skin reactions (OR=2.85, 95% CI: 1.50-5.41; p=0.001) and severe oral mucositis (OR=4.96, 95% CI: 2.40-10.25; p<0.0001). These results suggested that the polymorphic nature of Rad51 is responsible for risk of radiotherapy adverse effects in HNC patients. The variant 326Cys and heterozygous 326Ser/Cys genotype of hOGG1 was significantly associated with high tumor grade (OR=3.16 95% CI: 1.66-5.99; p=0.0004, and OR=3.97 95% CI: 2.15-7.34; p=<0.0001 respectively). The homozygous variant 172TT genotype of Rad51 showed positive association with poor response of both tumor and nodes towards radiotherapy treatment (p=0.007 and p=0.022). CONCLUSIONS Interpretation of our results revealed significant association of rs1801321 SNP of Rad51 with development of adverse toxicity reactions in normal tissue of head and neck cancer patients treated with radiotherapy.
Collapse
Affiliation(s)
- Anand K Gudur
- Department of Oncology, Krishna Vishwa Vidyapeeth “Deemed to be University”, Taluka-Karad, Dist- Satara, Pin-415 539, (Maharashtra) India.
| | - Shivani R Kale
- Krishna Institute of Allied Sciences, Krishna Vishwa Vidyapeeth “Deemed to be University”, Taluka-Karad, Dist- Satara, Pin-415 539, (Maharashtra) India.
| | - Rashmi A Gudur
- Department of Oncology, Krishna Vishwa Vidyapeeth “Deemed to be University”, Taluka-Karad, Dist- Satara, Pin-415 539, (Maharashtra) India.
| | - Suresh J Bhosale
- Department of Oncology, Krishna Vishwa Vidyapeeth “Deemed to be University”, Taluka-Karad, Dist- Satara, Pin-415 539, (Maharashtra) India.
| | - Ashwini L More
- Krishna Institute of Allied Sciences, Krishna Vishwa Vidyapeeth “Deemed to be University”, Taluka-Karad, Dist- Satara, Pin-415 539, (Maharashtra) India.
| | - Kailas D Datkhile
- Krishna Institute of Allied Sciences, Krishna Vishwa Vidyapeeth “Deemed to be University”, Taluka-Karad, Dist- Satara, Pin-415 539, (Maharashtra) India.
| |
Collapse
|
2
|
Aguiar BRL, Ferreira EB, Normando AGC, Dias SDS, Guerra ENS, Reis PED. Potential Single Nucleotide Polymorphisms markers for radiation dermatitis in head and neck cancer patients: a meta-analysis. Strahlenther Onkol 2024; 200:568-582. [PMID: 38668865 DOI: 10.1007/s00066-024-02237-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 04/07/2024] [Indexed: 06/21/2024]
Abstract
PURPOSE To identify potential Single Nucleotide Polymorphisms (SNPs) of susceptibility for the development of acute radiation dermatitis in head and neck cancer patients, and also to verify the association between SNPs and the severity of RD. METHODS This systematic review was reported according to the PRISMA guideline. The proportion meta-analysis was performed to identify the prevalence of genetic markers by geographical region and radiation dermatitis severity. The meta-analysis was performed to verify the association between genetic markers and RD severity. The certainty of the evidence was assessed by GRADE. RESULTS Thirteen studies were included. The most prevalent SNPs were XRCC3 (rs861639) (36%), TGFβ1 (rs1800469) (35%), and RAD51 (rs1801321) (34%). There are prevalence studies in Europe and Asia, with a similar prevalence for all SNPs (29-40%). The prevalence was higher in patients who developed radiation dermatitis ≤2 for any subtype of genes (75-76%). No SNP showed a statistically significant association with very low certainty of evidence. CONCLUSION The most prevalent SNPs may be predictors of acute RD. The analysis of SNP before starting radiation therapy may be a promising method to predict the risk of developing radiation dermatitis and allow radiosensitive patients to have a customized treatment. This current review provides new research directions.
Collapse
Affiliation(s)
- Beatriz Regina Lima Aguiar
- Health Science Graduate Program, School of Health Sciences, University of Brasilia, Brasília, DF, Brazil
| | - Elaine Barros Ferreira
- Health Science Graduate Program, School of Health Sciences, University of Brasilia, Brasília, DF, Brazil
- Nursing Department, School of Health Sciences, University of Brasilia, Brasília, DF, Brazil
| | | | | | - Eliete Neves Silva Guerra
- Laboratory of Oral Histopathology, School of Health Sciences, University of Brasilia, Brasília, DF, Brazil
| | - Paula Elaine Diniz Reis
- Nursing Department, School of Health Sciences, University of Brasilia, Brasília, DF, Brazil.
- School of Health Sciences, Campus Darcy Ribeiro, Asa Norte, University of Brasilia, 70910-900, Brasília, DF, Brazil.
| |
Collapse
|
3
|
Pachler KS, Lauwers I, Verkaik NS, Rovituso M, van der Wal E, Mast H, Jonker BP, Sewnaik A, Hardillo JA, Keereweer S, Monserez D, Kremer B, Koppes S, van den Bosch TPP, Verduijn GM, Petit S, Sørensen BS, van Gent DC, Capala ME. Development of an Ex Vivo Functional Assay for Prediction of Irradiation Related Toxicity in Healthy Oral Mucosa Tissue. Int J Mol Sci 2024; 25:7157. [PMID: 39000262 PMCID: PMC11241643 DOI: 10.3390/ijms25137157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/21/2024] [Accepted: 06/27/2024] [Indexed: 07/16/2024] Open
Abstract
Radiotherapy in the head-and-neck area is one of the main curative treatment options. However, this comes at the cost of varying levels of normal tissue toxicity, affecting up to 80% of patients. Mucositis can cause pain, weight loss and treatment delays, leading to worse outcomes and a decreased quality of life. Therefore, there is an urgent need for an approach to predicting normal mucosal responses in patients prior to treatment. We here describe an assay to detect irradiation responses in healthy oral mucosa tissue. Mucosa specimens from the oral cavity were obtained after surgical resection, cut into thin slices, irradiated and cultured for three days. Seven samples were irradiated with X-ray, and three additional samples were irradiated with both X-ray and protons. Healthy oral mucosa tissue slices maintained normal morphology and viability for three days. We measured a dose-dependent response to X-ray irradiation and compared X-ray and proton irradiation in the same mucosa sample using standardized automated image analysis. Furthermore, increased levels of inflammation-inducing factors-major drivers of mucositis development-could be detected after irradiation. This model can be utilized for investigating mechanistic aspects of mucositis development and can be developed into an assay to predict radiation-induced toxicity in normal mucosa.
Collapse
Affiliation(s)
- Katrin S. Pachler
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands; (K.S.P.); (D.C.v.G.)
| | - Iris Lauwers
- Department of Radiotherapy, Erasmus MC Cancer Institute, 3015 GD Rotterdam, The Netherlands
| | - Nicole S. Verkaik
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands; (K.S.P.); (D.C.v.G.)
| | - Marta Rovituso
- Holland Proton Therapy Centre (HPTC), Huismansingel 4, 2629 JH Delft, The Netherlands
| | - Ernst van der Wal
- Holland Proton Therapy Centre (HPTC), Huismansingel 4, 2629 JH Delft, The Netherlands
| | - Hetty Mast
- Department of Oral and Maxillofacial Surgery, Erasmus MC Cancer Institute, 3015 GD Rotterdam, The Netherlands
| | - Brend P. Jonker
- Department of Oral and Maxillofacial Surgery, Erasmus MC Cancer Institute, 3015 GD Rotterdam, The Netherlands
| | - Aniel Sewnaik
- Department of Otorhinolaryngology and Head and Neck Surgery, Erasmus MC Cancer Institute, 3015 GD Rotterdam, The Netherlands
| | - Jose A. Hardillo
- Department of Otorhinolaryngology and Head and Neck Surgery, Erasmus MC Cancer Institute, 3015 GD Rotterdam, The Netherlands
| | - Stijn Keereweer
- Department of Otorhinolaryngology and Head and Neck Surgery, Erasmus MC Cancer Institute, 3015 GD Rotterdam, The Netherlands
| | - Dominiek Monserez
- Department of Otorhinolaryngology and Head and Neck Surgery, Erasmus MC Cancer Institute, 3015 GD Rotterdam, The Netherlands
| | - Bernd Kremer
- Department of Otorhinolaryngology and Head and Neck Surgery, Erasmus MC Cancer Institute, 3015 GD Rotterdam, The Netherlands
| | - Sjors Koppes
- Department of Pathology, Erasmus MC Cancer Institute, 3015 GD Rotterdam, The Netherlands
| | | | - Gerda M. Verduijn
- Department of Radiotherapy, Erasmus MC Cancer Institute, 3015 GD Rotterdam, The Netherlands
| | - Steven Petit
- Department of Radiotherapy, Erasmus MC Cancer Institute, 3015 GD Rotterdam, The Netherlands
| | - Brita S. Sørensen
- Department of Radiotherapy, Erasmus MC Cancer Institute, 3015 GD Rotterdam, The Netherlands
- Department of Experimental Clinical Oncology, Danish Centre for Particle Therapy, Aarhus University Hospital, 8200 Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Nordre Ringgade 1, 8000 Aarhus, Denmark
| | - Dik C. van Gent
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands; (K.S.P.); (D.C.v.G.)
| | - Marta E. Capala
- Department of Radiotherapy, Erasmus MC Cancer Institute, 3015 GD Rotterdam, The Netherlands
| |
Collapse
|
4
|
Cavalieri R, de Oliveira HF, Louvain de Souza T, Kanashiro MM. Single Nucleotide Polymorphisms as Biomarker Predictors of Oral Mucositis Severity in Head and Neck Cancer Patients Submitted to Combined Radiation Therapy and Chemotherapy: A Systematic Review. Cancers (Basel) 2024; 16:949. [PMID: 38473311 DOI: 10.3390/cancers16050949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/08/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Single Nucleotide Polymorphisms (SNPs) are the most common type of genetic variation found in an individual's DNA sequences. SNPs can occur in both coding and non-coding regions of the genome and can affect gene expression, protein function, and disease susceptibility. In this systematic review, we evaluate the potential of SNPs as biomarkers in the assessment of oral mucositis (OM) severity in head and neck cancer (HNC) patients treated with concomitant chemoradiation (CRT). The study selection process involved screening 66 articles from different platforms, and after removing duplicates and excluding articles that did not meet the eligibility criteria, 23 articles were included for full-text evaluation. Among them, genes from several pathways were analyzed. The DNA damage repair pathways had the highest number of genes studied. The most frequently analyzed gene was XRCC1. The proinflammatory cytokine pathways evaluated were TNF, with three articles, and NF-κB, with one article. Most included studies showed a potential association between certain SNPs and high-grade mucositis. We conclude that SNPs can be used as possible biomarkers for the assessment of OM intensity in HNC patients, and further research is needed to explore the potential of SNPs in personalized medicine for HNC treatment.
Collapse
Affiliation(s)
- Ronaldo Cavalieri
- Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes 28013-602, Brazil
- Centro de Radioterapia, Grupo OncoBeda, Campos dos Goytacazes 28010-140, Brazil
| | - Harley Francisco de Oliveira
- Hospital das Clínicas da Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14015-010, Brazil
| | - Thais Louvain de Souza
- Faculdade de Medicina de Campos, Campos dos Goytacazes, Rio de Janeiro 28035-581, Brazil
| | - Milton Masahiko Kanashiro
- Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes 28013-602, Brazil
| |
Collapse
|
5
|
Salama V, Geng Y, Rigert J, Fuller CD, Shete S, Moreno AC. Systematic Review of Genetic Polymorphisms Associated with Acute Pain Induced by Radiotherapy for Head and Neck Cancers. Clin Transl Radiat Oncol 2023; 43:100669. [PMID: 37954025 PMCID: PMC10634655 DOI: 10.1016/j.ctro.2023.100669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 07/10/2023] [Accepted: 08/13/2023] [Indexed: 11/14/2023] Open
Abstract
Background/objective Pain is the most common acute symptom following radiation therapy (RT) for head and neck cancer (HNC). The multifactorial origin of RT-induced pain makes it highly challenging to manage. Multiple studies were conducted to identify genetic variants associated with cancer pain, however few of them focused on RT-induced acute pain. In this review, we summarize the potential mechanisms of acute pain after RT in HNC and identify genetic variants associated with RT-induced acute pain and relevant acute toxicities. Methods A comprehensive search of Ovid Medline, EMBASE and Web of Science databases using terms including "Variants", "Polymorphisms", "Radiotherapy", "Acute pain", "Acute toxicity" published up to February 28, 2022, was performed by two reviewers. Review articles and citations were reviewed manually. The identified SNPs associated with RT-induced acute pain and toxicities were reported, and the molecular functions of the associated genes were described based on genetic annotation using The Human Gene Database; GeneCards. Results A total of 386 articles were identified electronically and 8 more articles were included after manual search. 21 articles were finally included. 32 variants in 27 genes, of which 25% in inflammatory/immune response, 20% had function in DNA damage response and repair, 20% in cell death or cell cycle, were associated with RT-inflammatory pain and acute oral mucositis or dermatitis. 4 variants in 4 genes were associated with neuropathy and neuropathic pain. 5 variants in 4 genes were associated with RT-induced mixed types of post-RT-throat/neck pain. Conclusion Different types of pain develop after RT in HNC, including inflammatory pain; neuropathic pain; nociceptive pain; and mixed oral pain. Genetic variants involved in DNA damage response and repair, cell death, inflammation and neuropathic pathways may affect pain presentation post-RT. These variants could be used for personalized pain management in HNC patients receiving RT.
Collapse
Affiliation(s)
- Vivian Salama
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yimin Geng
- Research Medical Library, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jillian Rigert
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Clifton D. Fuller
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sanjay Shete
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Amy C. Moreno
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
6
|
Butkiewicz D, Krześniak M, Gdowicz-Kłosok A, Składowski K, Rutkowski T. DNA Double-Strand Break Response and Repair Gene Polymorphisms May Influence Therapy Results and Prognosis in Head and Neck Cancer Patients. Cancers (Basel) 2023; 15:4972. [PMID: 37894339 PMCID: PMC10605140 DOI: 10.3390/cancers15204972] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/05/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Radiotherapy and cisplatin-based chemotherapy belong to the main treatment modalities for head and neck squamous cell carcinoma (HNSCC) and induce cancer cell death by generating DNA damage, including the most severe double-strand breaks (DSBs). Alterations in DSB response and repair genes may affect individual DNA repair capacity and treatment sensitivity, contributing to the therapy resistance and poor prognosis often observed in HNSCC. In this study, we investigated the association of a panel of single-nucleotide polymorphisms (SNPs) in 20 DSB signaling and repair genes with therapy results and prognosis in 505 HNSCC patients treated non-surgically with DNA damage-inducing therapies. In the multivariate analysis, there were a total of 14 variants associated with overall, locoregional recurrence-free or metastasis-free survival. Moreover, we identified 10 of these SNPs as independent predictors of therapy failure and unfavorable prognosis in the whole group or in two treatment subgroups. These were MRE11 rs2155209, XRCC5 rs828907, RAD51 rs1801321, rs12593359, LIG4 rs1805388, CHEK1 rs558351, TP53 rs1042522, ATM rs1801516, XRCC6 rs2267437 and NBN rs2735383. Only CHEK1 rs558351 remained statistically significant after correcting for multiple testing. These results suggest that specific germline variants related to DSB response and repair may be potential genetic modifiers of therapy effects and disease progression in HNSCC treated with radiotherapy and cisplatin-based chemoradiation.
Collapse
Affiliation(s)
- Dorota Butkiewicz
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, 44-102 Gliwice, Poland
| | - Małgorzata Krześniak
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, 44-102 Gliwice, Poland
| | - Agnieszka Gdowicz-Kłosok
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, 44-102 Gliwice, Poland
| | - Krzysztof Składowski
- I Radiation and Clinical Oncology Department, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, 44-102 Gliwice, Poland
| | - Tomasz Rutkowski
- I Radiation and Clinical Oncology Department, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, 44-102 Gliwice, Poland
- Radiotherapy Department, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, 44-102 Gliwice, Poland
| |
Collapse
|
7
|
Gudur AK, Gudur RA, Bhosale SJ, Kale SR, Datkhile KD. Single Nucleotide Polymorphisms in DNA Repair Genes (XRCC1, XRCC2, XRCC3) and Their Association with Radiotherapy Toxicity among Head and Neck Cancer Patients:A Study from South-Western Maharashtra. Asian Pac J Cancer Prev 2023; 24:3049-3057. [PMID: 37774056 PMCID: PMC10762732 DOI: 10.31557/apjcp.2023.24.9.3049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 09/10/2023] [Indexed: 10/01/2023] Open
Abstract
BACKGROUND The genetic polymorphisms in DNA repair genes and their correlation with normal tissue toxicity in response to radiation therapy has not been consistently proven in many of the studies done in head and neck cancers (HNC). This study was intended to investigate the association of most common single nucleotide polymorphisms of DNA repair genes with acute radiation induced toxicities such as skin reactions and oral mucositis in normal tissue from HNC patients receiving radiotherapy from South-Western Maharashtra. METHODS Two hundred HNC patients receiving radiotherapy were enrolled in this study and the radiation injuries in the form of skin reactions and oral mucositis were recorded. Three single nucleotide polymorphisms (SNPs) rs1799782, rs25489) rs25487 of XRCC1 gene, rs3218536in XRCC2 gene and rs861539 SNP of XRCC3 gene were studied by PCR-RFLP and direct DNA sequencing. Results: The univariate analysis of SNPs of XRCC1, XRCC2 and XRCC3, the obtained results verified that XRCC1 polymorphism at 194Trp of exon 6 (OR=0.69, 95% CI: 0.28-1.71; p=0.433), codon 280 at exon 9 ((OR=1.05, 95% CI: 0.42-2.63; p=0.911) and codon 399 of at exon 10(OR=1.06, 95% CI: 0.52-2.15; p=0.867) and XRCC2 polymorphism at codon 188 at exon 3 (OR=1.07, 95% CI: 0.46-2.47; p=0.866) and 241Met variant genotype of XRCC3 (OR=2.63 95% CI: 0.42-16.30; p=0.298) showed no association with degree of radiotherapy associated dermatitis or mucositis in HNC patients. CONCLUSION The findings from this study postulated that none of rs1799782, rs25489, rs25487 SNPs of XRCC1, rs3218536 SNP of XRCC2 nor rs861539 SNP of XRCC3 were associated with increased toxicity of radiotherapy in HNC patients of south-western Maharashtra. .
Collapse
Affiliation(s)
- Anand K. Gudur
- Department of Oncology, Krishna Vishwa Vidyapeeth “Deemed to be University”, Taluka-Karad, Dist- Satara, Pin-415 539, (Maharashtra) India.
| | - Rashmi A. Gudur
- Department of Oncology, Krishna Vishwa Vidyapeeth “Deemed to be University”, Taluka-Karad, Dist- Satara, Pin-415 539, (Maharashtra) India.
| | - Suresh J. Bhosale
- Department of Oncology, Krishna Vishwa Vidyapeeth “Deemed to be University”, Taluka-Karad, Dist- Satara, Pin-415 539, (Maharashtra) India.
| | - Shivani R. Kale
- Department of Molecular Biology & Genetics, Krishna Vishwa Vidyapeeth “Deemed to be University”, Taluka-Karad, Dist- Satara, Pin-415 539, (Maharashtra) India.
| | - Kailas D. Datkhile
- Department of Molecular Biology & Genetics, Krishna Vishwa Vidyapeeth “Deemed to be University”, Taluka-Karad, Dist- Satara, Pin-415 539, (Maharashtra) India.
| |
Collapse
|
8
|
Naderi E, Schack LMH, Welsh C, Sim AYL, Aguado-Barrera ME, Dudding T, Summersgil H, Martínez-Calvo L, Ong EHW, Odding Y, Varela-Pazos A, Steenbakkers RJHM, Crijns APG, Jena R, Pring M, Dennis J, Lobato-Busto R, Alsner J, Ness A, Nutting C, Thomson DJ, Gómez-Caamaño A, Eriksen JG, Thomas SJ, Bates AM, Overgaard J, Cascallar-Caneda LM, Duprez F, Barnett GC, Dorling L, Chua MLK, Vega A, West CML, Langendijk JA, Nicolaj Andreassen C, Alizadeh BZ. Meta-GWAS identifies the heritability of acute radiation-induced toxicities in head and neck cancer. Radiother Oncol 2022; 176:138-148. [PMID: 36191651 DOI: 10.1016/j.radonc.2022.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND PURPOSE We aimed to the genetic components and susceptibility variants associated with acute radiation-induced toxicities (RITs) in patients with head and neck cancer (HNC). MATERIALS AND METHODS We performed the largest meta-GWAS of seven European cohorts (n = 4,042). Patients were scored weekly during radiotherapy for acute RITs including dysphagia, mucositis, and xerostomia. We analyzed the effect of variants on the average burden (measured as area under curve, AUC) per each RIT, and standardized total average acute toxicity (STATacute) score using a multivariate linear regression. We tested suggestive variants (p < 1.0x10-5) in discovery set (three cohorts; n = 2,640) in a replication set (four cohorts; n = 1,402). We meta-analysed all cohorts to calculate RITs specific SNP-based heritability, and effect of polygenic risk scores (PRSs), and genetic correlations among RITS. RESULTS From 393 suggestive SNPs identified in discovery set; 37 were nominally significant (preplication < 0.05) in replication set, but none reached genome-wide significance (pcombined < 5 × 10-8). In-silico functional analyses identified "3'-5'-exoribonuclease activity" (FDR = 1.6e-10) for dysphagia, "inositol phosphate-mediated signalling" for mucositis (FDR = 2.20e-09), and "drug catabolic process" for STATacute (FDR = 3.57e-12) as the most enriched pathways by the RIT specific suggestive genes. The SNP-based heritability (±standard error) was 29 ± 0.08 % for dysphagia, 9 ± 0.12 % (mucositis) and 27 ± 0.09 % (STATacute). Positive genetic correlation was rg = 0.65 (p = 0.048) between dysphagia and STATacute. PRSs explained limited variation of dysphagia (3 %), mucositis (2.5 %), and STATacute (0.4 %). CONCLUSION In HNC patients, acute RITs are modestly heritable, sharing 10 % genetic susceptibility, when PRS explains < 3 % of their variance. We identified numerus suggestive SNPs, which remain to be replicated in larger studies.
Collapse
Affiliation(s)
- Elnaz Naderi
- Department of Radiation Oncology, University Medical Center Groningen, Groningen, the Netherlands; Department of Epidemiology, University Medical Center Groningen, Groningen, the Netherlands.
| | - Line M H Schack
- Department of Experimental Clinical Oncology, Aarhus University Hospital, Aarhus, Denmark; Department of Oncology, Regional Hospital West Jutland, Gødstrup, Denmark
| | - Ceilidh Welsh
- Department of Oncology, University of Cambridge, Cambridge, UK
| | - Adelene Y L Sim
- Division of Radiation Oncology, Dept of Head and Neck and Thoracic Cancers, Duke-NUS Medical School, Singapore, Singapore; Division of Medical Sciences, National Cancer Centre, Singapore
| | - Miguel E Aguado-Barrera
- Fundación Pública Galega Medicina Xenómica (FPGMX), Santiago de Compostela, Spain; Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Tom Dudding
- Bristol Dental School, University of Bristol, Bristol, UK; MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | - Holly Summersgil
- Manchester Academic Health Science Centre, The Christie NHS Foundation Trust, Manchester, UK
| | - Laura Martínez-Calvo
- Fundación Pública Galega Medicina Xenómica (FPGMX), Santiago de Compostela, Spain; Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Enya H W Ong
- Division of Medical Sciences, National Cancer Centre, Singapore
| | - Yasmin Odding
- University Hospitals Bristol and Weston, Bristol, UK
| | - Ana Varela-Pazos
- Department of Radiation Oncology, Complexo Hospitalario Universitario de Santiago, SERGAS, Santiago de Compostela, Spain
| | - Roel J H M Steenbakkers
- Department of Radiation Oncology, University Medical Center Groningen, Groningen, the Netherlands
| | - Anne P G Crijns
- Department of Radiation Oncology, University Medical Center Groningen, Groningen, the Netherlands
| | - Rajesh Jena
- Department of Oncology, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - Miranda Pring
- Bristol Dental School, University of Bristol, Bristol, UK
| | - Joe Dennis
- Centre for Cancer Genetic Epidemiology, University of Cambridge, Strangeways Research Laboratory, Cambridge, UK
| | - Ramón Lobato-Busto
- Department of Medical Physics, Complexo Hospitalario Universitario de Santiago, SERGAS, Santiago de Compostela, Spain
| | - Jan Alsner
- Department of Experimental Clinical Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - Andy Ness
- Bristol Dental School, University of Bristol, Bristol, UK
| | | | - David J Thomson
- Christie Hospital NHS Foundation Trust, Manchester, UK; Division of Cancer Sciences, University of Manchester, Manchester, United Kingdom
| | - Antonio Gómez-Caamaño
- Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Santiago de Compostela, Spain; Department of Radiation Oncology, Complexo Hospitalario Universitario de Santiago, SERGAS, Santiago de Compostela, Spain
| | - Jesper G Eriksen
- Department of Experimental Clinical Oncology, Aarhus University Hospital, Aarhus, Denmark; Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - Steve J Thomas
- Bristol Dental School, University of Bristol, Bristol, UK
| | - Amy M Bates
- Department of Oncology, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - Jens Overgaard
- Department of Experimental Clinical Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - Luis M Cascallar-Caneda
- Department of Radiation Oncology, Complexo Hospitalario Universitario de Santiago, SERGAS, Santiago de Compostela, Spain
| | - Fréderic Duprez
- Department of Radiation Oncology, Ghent University Hospital, Ghent, Belgium; Department of Human Structure and Repair, Ghent University, Ghent, Belgium
| | - Gillian C Barnett
- Department of Oncology, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - Leila Dorling
- Centre for Cancer Genetic Epidemiology, University of Cambridge, Strangeways Research Laboratory, Cambridge, UK
| | - Melvin L K Chua
- Division of Radiation Oncology, Dept of Head and Neck and Thoracic Cancers, Duke-NUS Medical School, Singapore, Singapore; Division of Radiation Oncology, National Cancer Centre, Singapore
| | - Ana Vega
- Fundación Pública Galega Medicina Xenómica (FPGMX), Santiago de Compostela, Spain; Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Catharine M L West
- Translational Radiobiology Group, Division of Cancer Sciences, University of Manchester, Manchester Academic Health Science Centre, Christie NHS Foundation Trust Hospital, Manchester, UK
| | - Johannes A Langendijk
- Department of Radiation Oncology, University Medical Center Groningen, Groningen, the Netherlands
| | - Christian Nicolaj Andreassen
- Department of Experimental Clinical Oncology, Aarhus University Hospital, Aarhus, Denmark; Division of Cancer Sciences, University of Manchester, Manchester, United Kingdom
| | - Behrooz Z Alizadeh
- Department of Epidemiology, University Medical Center Groningen, Groningen, the Netherlands.
| |
Collapse
|
9
|
Goričar K, Dugar F, Dolžan V, Marinko T. NBN, RAD51 and XRCC3 Polymorphisms as Potential Predictive Biomarkers of Adjuvant Radiotherapy Toxicity in Early HER2-Positive Breast Cancer. Cancers (Basel) 2022; 14:cancers14184365. [PMID: 36139526 PMCID: PMC9496855 DOI: 10.3390/cancers14184365] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/03/2022] [Accepted: 09/04/2022] [Indexed: 11/23/2022] Open
Abstract
Simple Summary Adjuvant radiotherapy for breast cancer patients significantly improves survival and causes side effects. It is known that the response to radiotherapy is individual, but we are not yet able to predict patients with high risk for acute or late radiotherapy adverse events. This study aimed to investigate the association between homologous recombination repair (HRR) polymorphisms and radiotherapy toxicity and thus contribute to the knowledge on potential predictive biomarkers of radiotherapy toxicity in early HER2-positive breast cancer. This study was among the first to evaluate the role of HRR genetic variability with cardiac toxicity. RAD51 polymorphisms were associated with cardiac adverse events, while XRCC3 polymorphisms were associated with skin adverse events. Our results suggest that polymorphisms in key HRR genes might be used as potential biomarkers of late treatment-related adverse events in early HER2-positive breast cancer treated with radiotherapy. Abstract Radiotherapy (RT) for breast cancer significantly impacts patient survival and causes adverse events. Double-strand breaks are the most harmful type of DNA damage associated with RT, which is repaired through homologous recombination (HRR). As genetic variability of DNA repair genes could affect response to RT, we aimed to evaluate the association of polymorphisms in HRR genes with tumor characteristics and the occurrence of RT adverse events in early HER2-positive breast cancer. Our study included 101 breast cancer patients treated with adjuvant RT and trastuzumab. All patients were genotyped for eight single nucleotide polymorphisms in NBN, RAD51 and XRCC3 using competitive allele-specific PCR. Carriers of XRCC3 rs1799794 GG genotype were less likely to have higher tumor differentiation grade (OR = 0.05, 95% CI = 0.01–0.44, p = 0.007). Carriers of RAD51 rs1801321 TT genotype were more likely to have higher NYHA class in univariable (OR = 10.0; 95% CI = 1.63–61.33; p = 0.013) and multivariable (OR = 9.27; 95% CI = 1.28–67.02; p = 0.027) analysis. Carriers of RAD51 rs12593359 GG genotype were less likely to have higher NYHA class in univariable (OR = 0.09; 95% CI = 0.01–0.79; p = 0.030) and multivariable (OR = 0.07; 95% CI = 0.01–0.81; p = 0.034) analysis. Carriers of XRCC3 rs1799794 GG genotypes experienced more skin adverse events based on LENT-SOMA scale in univariable (OR = 5.83; 95% CI = 1.22–28.00; p = 0.028) and multivariable (OR = 10.90; 95% CI = 1.61–73.72; p = 0.014) analysis. In conclusion, XRCC3 and RAD51 polymorphisms might contribute to RT adverse events in early HER2-positive breast cancer patients.
Collapse
Affiliation(s)
- Katja Goričar
- Pharmacogenetics Laboratory, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Franja Dugar
- Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Vita Dolžan
- Pharmacogenetics Laboratory, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Tanja Marinko
- Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
- Institute of Oncology Ljubljana, 1000 Ljubljana, Slovenia
- Correspondence:
| |
Collapse
|
10
|
Wang Y, Xiao F, Zhao Y, Mao CX, Yu LL, Wang LY, Xiao Q, Liu R, Li X, McLeod HL, Hu BW, Huang YL, Lv QL, Xie XX, Huang WH, Zhang W, Guo CX, Li JG, Yin JY. A two-stage genome-wide association study to identify novel genetic loci associated with acute radiotherapy toxicity in nasopharyngeal carcinoma. Mol Cancer 2022; 21:169. [PMID: 35999636 PMCID: PMC9400233 DOI: 10.1186/s12943-022-01631-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 07/25/2022] [Indexed: 11/29/2022] Open
Abstract
Background Genetic variants associated with acute side effects of radiotherapy in nasopharyngeal carcinoma (NPC) remain largely unknown. Methods We performed a two-stage genome-wide association analysis including a total of 1084 patients, where 319 individuals in the discovery stage were genotyped for 688,783 SNPs using whole genome-wide screening microarray. Significant variants were then validated in an independent cohort of 765 patients using the MassARRAY system. Gene mapping, linkage disequilibrium, genome-wide association analysis, and polygenic risk score were conducted or calculated using FUMA, LDBlockShow, PLINK, and PRSice software programs, respectively. Results Five SNPs (rs6711678, rs4848597, rs4848598, rs2091255, and rs584547) showed statistical significance after validation. Radiotherapy toxicity was more serious in mutant minor allele carriers of all five SNPs. Stratified analysis further indicated that rs6711678, rs4848597, rs4848598, and rs2091255 correlated with skin toxicity in patients of EBV positive, late stage (III and IV), receiving both concurrent chemoradiotherapy and induction/adjuvant chemotherapy, and with OR values ranging from 1.92 to 2.66. For rs584547, high occurrence of dysphagia was found in A allele carriers in both the discovery (P = 1.27 × 10− 6, OR = 1.55) and validation (P = 0.002, OR = 4.20) cohorts. Furthermore, prediction models integrating both genetic and clinical factors for skin reaction and dysphagia were established. The area under curve (AUC) value of receiver operating characteristic (ROC) curves were 0.657 (skin reaction) and 0.788 (dysphagia). Conclusions Rs6711678, rs4848597, rs4848598, and rs2091255 on chromosome 2q14.2 and rs584547 were found to be novel risk loci for skin toxicity and dysphagia in NPC patients receiving radiotherapy. Trial registration Chinese Clinical Trial Register (registration number: ChiCTR-OPC-14005257 and CTXY-140007-2). Supplementary Information The online version contains supplementary material available at 10.1186/s12943-022-01631-8.
Collapse
Affiliation(s)
- Yang Wang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410078, P. R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, P. R. China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, P. R. China.,National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, Hunan, P.R. China
| | - Fan Xiao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410078, P. R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, P. R. China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, P. R. China.,National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, Hunan, P.R. China
| | - Yi Zhao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410078, P. R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, P. R. China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, P. R. China.,National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, Hunan, P.R. China.,Department of General Practice, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, P.R. China
| | - Chen-Xue Mao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410078, P. R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, P. R. China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, P. R. China.,National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, Hunan, P.R. China
| | - Lu-Lu Yu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410078, P. R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, P. R. China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, P. R. China.,National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, Hunan, P.R. China
| | - Lei-Yun Wang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410078, P. R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, P. R. China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, P. R. China.,National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, Hunan, P.R. China
| | - Qi Xiao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410078, P. R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, P. R. China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, P. R. China.,National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, Hunan, P.R. China
| | - Rong Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410078, P. R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, P. R. China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, P. R. China.,National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, Hunan, P.R. China
| | - Xi Li
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410078, P. R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, P. R. China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, P. R. China.,National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, Hunan, P.R. China
| | - Howard L McLeod
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410078, P. R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, P. R. China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, P. R. China.,National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, Hunan, P.R. China.,Geriatric Oncology Consortium, Tampa, FL, 33612, USA.,USF Taneja College of Pharmacy, Tampa, FL, 33612, USA
| | - Bi-Wen Hu
- Center of Clinical Pharmacology, the Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, P. R. China
| | - Yu-Ling Huang
- Department of Radiation Oncology, Jiangxi Cancer Hospital of Nanchang University, Nanchang, 330029, P.R. China.,National Health Commission (NHC) Key Laboratory of Personalized Diagnosis and Treatment of Nasopharyngeal Carcinoma (Jiangxi Cancer Hospital of Nanchang University), Nanchang, 330029, P.R. China
| | - Qiao-Li Lv
- Department of Radiation Oncology, Jiangxi Cancer Hospital of Nanchang University, Nanchang, 330029, P.R. China.,National Health Commission (NHC) Key Laboratory of Personalized Diagnosis and Treatment of Nasopharyngeal Carcinoma (Jiangxi Cancer Hospital of Nanchang University), Nanchang, 330029, P.R. China
| | - Xiao-Xue Xie
- Departent of Radiotherapy, Hunan Provincial Tumor Hospital and Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, 410013, P.R. China
| | - Wei-Hua Huang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410078, P. R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, P. R. China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, P. R. China.,National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, Hunan, P.R. China
| | - Wei Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410078, P. R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, P. R. China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, P. R. China.,National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, Hunan, P.R. China
| | - Cheng-Xian Guo
- Center of Clinical Pharmacology, the Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, P. R. China.
| | - Jin-Gao Li
- Department of Radiation Oncology, Jiangxi Cancer Hospital of Nanchang University, Nanchang, 330029, P.R. China. .,National Health Commission (NHC) Key Laboratory of Personalized Diagnosis and Treatment of Nasopharyngeal Carcinoma (Jiangxi Cancer Hospital of Nanchang University), Nanchang, 330029, P.R. China.
| | - Ji-Ye Yin
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410078, P. R. China. .,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, P. R. China. .,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, P. R. China. .,National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, Hunan, P.R. China. .,Hunan Key Laboratory of Precise Diagnosis and Treatment of Gastrointestinal Tumor, Changsha, 410078, P. R. China.
| |
Collapse
|
11
|
He K, Zhang S, Pang J, Yin JC, Mu D, Wang J, Ge H, Ma J, Yang Z, Zheng X, Dong L, Zhang J, Chang P, Li L, Tang S, Bao H, Wu X, Wang X, Shao Y, Yu J, Yuan S. Genomic Profiling Reveals Novel Predictive Biomarkers for Chemo-Radiotherapy Efficacy and Thoracic Toxicity in Non-Small-Cell Lung Cancer. Front Oncol 2022; 12:928605. [PMID: 35912186 PMCID: PMC9329611 DOI: 10.3389/fonc.2022.928605] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 05/23/2022] [Indexed: 11/23/2022] Open
Abstract
Chemo-radiotherapy (CRT) remains the main treatment modality for non-small-cell lung cancer (NSCLC). However, its clinical efficacy is largely limited by individual variations in radio-sensitivity and radiotherapy-associated toxicity. There is an urgent need to identify genetic determinants that can explain patients’ likelihood to develop recurrence and radiotherapy-associated toxicity following CRT. In this study, we performed comprehensive genomic profiling, using a 474-cancer- and radiotherapy-related gene panel, on pretreatment biopsy samples from patients with unresectable stage III NSCLCs who underwent definitive CRT. Patients’ baseline clinical characteristics and genomic features, including tumor genetic, genomic and molecular pathway alterations, as well as single nucleotide polymorphisms (SNPs), were correlated with progression-free survival (PFS), overall survival (OS), and radiotherapy-associated pneumonitis and/or esophagitis development after CRT. A total of 122 patients were enrolled between 2014 and 2019, with 84 (69%) squamous cell carcinomas and 38 (31%) adenocarcinomas. Genetic analysis confirmed the association between the KEAP1-NRF2 pathway gene alterations and unfavorable survival outcome, and revealed alterations in FGFR family genes, MET, PTEN, and NOTCH2 as potential novel and independent risk factors of poor post-CRT survival. Combined analysis of such alterations led to improved stratification of the risk populations. In addition, patients with EGFR activating mutations or any oncogenic driver mutations exhibited improved OS. On the other hand, we also identified genetic markers in relation to radiotherapy-associated thoracic toxicity. SNPs in the DNA repair-associated XRCC5 (rs3835) and XRCC1 (rs25487) were associated with an increased risk of high-grade esophagitis and pneumonitis respectively. MTHFR (rs1801133) and NQO1 (rs1800566) were additional risk alleles related to higher susceptibility to pneumonitis and esophagitis overall. Moreover, through their roles in genome integrity and replicative fidelity, somatic alterations in ZNF217 and POLD1 might also serve as risk predictors of high-grade pneumonitis and esophagitis. Taken together, leveraging targeted next-generating sequencing, we identified a set of novel clinically applicable biomarkers that might enable prediction of survival outcomes and risk of radiotherapy-associated thoracic toxicities. Our findings highlight the value of pre-treatment genetic testing to better inform CRT outcomes and clinical actions in stage III unresectable NSCLCs.
Collapse
Affiliation(s)
- Kewen He
- Department of Radiation Oncology, Shandong University Cancer Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Shaotong Zhang
- Department of Ultrasound, Jinan Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Jiaohui Pang
- Geneseeq Research Institute, Nanjing Geneseeq Technology Inc., Nanjing, China
| | - Jiani C. Yin
- Geneseeq Research Institute, Nanjing Geneseeq Technology Inc., Nanjing, China
| | - Dianbin Mu
- Department of Pathology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Jun Wang
- Department of Radiation Oncology, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Hong Ge
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| | - Jie Ma
- Department of Pathology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhe Yang
- Department of Radiation Oncology, Shandong Provincial Hospital, Jinan, China
| | - Xiaoli Zheng
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| | - Lihua Dong
- Department of Radiation Oncology & Therapy, Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Jilin, China
| | - Junli Zhang
- Geneseeq Research Institute, Nanjing Geneseeq Technology Inc., Nanjing, China
| | - Pengyu Chang
- Department of Radiation Oncology & Therapy, Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Jilin, China
| | - Li Li
- Department of Radiation Oncology, Shandong University Cancer Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Shanshan Tang
- Department of Radiation Oncology, Shandong University Cancer Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Hua Bao
- Geneseeq Research Institute, Nanjing Geneseeq Technology Inc., Nanjing, China
| | - Xue Wu
- Geneseeq Research Institute, Nanjing Geneseeq Technology Inc., Nanjing, China
| | - Xiaonan Wang
- Geneseeq Research Institute, Nanjing Geneseeq Technology Inc., Nanjing, China
| | - Yang Shao
- Geneseeq Research Institute, Nanjing Geneseeq Technology Inc., Nanjing, China
- School of Public Health, Nanjing Medical University, Nanjing, China
- *Correspondence: Shuanghu Yuan, ; Jinming Yu, ; Yang Shao,
| | - Jinming Yu
- Department of Radiation Oncology, Shandong University Cancer Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
- *Correspondence: Shuanghu Yuan, ; Jinming Yu, ; Yang Shao,
| | - Shuanghu Yuan
- Department of Radiation Oncology, Shandong University Cancer Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
- *Correspondence: Shuanghu Yuan, ; Jinming Yu, ; Yang Shao,
| |
Collapse
|
12
|
Lorini L, Perri F, Vecchio S, Belgioia L, Vinches M, Brana I, Elad S, Bossi P. Confounding factors in the assessment of oral mucositis in head and neck cancer. Support Care Cancer 2022; 30:8455-8463. [PMID: 35639187 PMCID: PMC9512735 DOI: 10.1007/s00520-022-07128-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 05/09/2022] [Indexed: 11/26/2022]
Abstract
Treatment of locally advanced head and neck carcinoma not amenable for surgical resection or resected with high-risk features is usually based on (chemo-)radiation treatment. Oral mucositis represents one of the main side effects of (chemo-)radiation, with an important impact on quality of life and causing approximately 20% of early interruption of treatment, leading to a suboptimal dose administered. Treatment and prevention of oral mucositis have a central role in the therapeutic pathways of head and neck cancer patients but remains quite challenging. Although extensive research is conducted to identify interventions for the management of mucositis, very few interventions had sufficient evidence to generate an international expert consensus. This may be partially explained by confounding factors that could influence the development and assessment of oral mucositis. Little is known about the confounding factors of oral mucositis, which, if not well balanced in an experimental study, could lead to non-solid results. The current paper aims to review the main oral mucositis confounding factors related to head and neck cancer patients.
Collapse
Affiliation(s)
- Luigi Lorini
- Medical Oncology Unit, Department of Medical & Surgical Specialties, Radiological Sciences & Public Health, University of Brescia, ASST Spedali Civili, 25123, Brescia, Italy
| | - Francesco Perri
- Head and Neck Cancer Unit, Istituto Nazionale Tumori Di Napoli, IRCCS "G. Pascale", Naples, Italy
| | - Stefania Vecchio
- Medical Oncology, IRCCS San Martino, IST National Cancer Institute and University of Genova, Genoa, Italy
| | - Liliana Belgioia
- Radiation Oncology Department, Health Science Department (DISSAL), IRCCS Ospedale Policlinico San Martino, University of Genoa, Genoa, Italy
| | - Marie Vinches
- Montpellier Cancer Research Institute, Montpellier, Languedoc-Roussillon, France
| | - Irene Brana
- Department of Medical Oncology, Vall D'Hebron University Hospital, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Sharon Elad
- Oral Medicine, Eastman Institute for Oral Health, University of Rochester Medical Center, Rochester, NY, USA
| | - Paolo Bossi
- Medical Oncology Unit, Department of Medical & Surgical Specialties, Radiological Sciences & Public Health, University of Brescia, ASST Spedali Civili, 25123, Brescia, Italy.
| |
Collapse
|
13
|
Nguyen H, Sangha S, Pan M, Shin DH, Park H, Mohammed AI, Cirillo N. Oxidative Stress and Chemoradiation-Induced Oral Mucositis: A Scoping Review of In Vitro, In Vivo and Clinical Studies. Int J Mol Sci 2022; 23:4863. [PMID: 35563254 PMCID: PMC9101413 DOI: 10.3390/ijms23094863] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/21/2022] [Accepted: 04/24/2022] [Indexed: 02/06/2023] Open
Abstract
Chemoradiation-induced mucositis is a debilitating condition of the gastrointestinal tract eventuating from antineoplastic treatment. It is believed to occur primarily due to oxidative stress mechanisms, which generate Reactive Oxygen Species (ROS). The aim of this scoping review was to assess the role of oxidative stress in the development of Oral Mucositis (OM). Studies from the literature, published in MEDLINE and SCOPUS, that evaluated the oxidative stress pathways or antioxidant interventions for OM, were retrieved to elucidate the current understanding of their relationship. Studies failing inclusion criteria were excluded, and those suitable underwent data extraction, using a predefined data extraction table. Eighty-nine articles fulfilled criteria, and these were sub-stratified into models of study (in vitro, in vivo, or clinical) for evaluation. Thirty-five clinical studies evaluated antioxidant interventions on OM's severity, duration, and pain, amongst other attributes. A number of clinical studies sought to elucidate the protective or therapeutic effects of compounds that had been pre-determined to have antioxidant properties, without directly assessing oxidative stress parameters (these were deemed "indirect evidence"). Forty-seven in vivo studies assessed the capacity of various compounds to prevent OM. Findings were mostly consistent, reporting reduced OM severity associated with a reduction in ROS, malondialdehyde (MDA), myeloperoxidase (MPO), but higher glutathione (GSH) and superoxide dismutase (SOD) activity or expression. Twenty-one in vitro studies assessed potential OM therapeutic interventions. The majority demonstrated successful a reduction in ROS, and in select studies, secondary molecules were assessed to identify the mechanism. In summary, this review highlighted numerous oxidative stress pathways involved in OM pathogenesis, which may inform the development of novel therapeutic targets.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Nicola Cirillo
- Melbourne Dental School, The University of Melbourne, Carlton, VIC 3053, Australia; (H.N.); (S.S.); (M.P.); (D.H.S.); (H.P.); (A.I.M.)
| |
Collapse
|
14
|
Naderi E, Crijns APG, Steenbakkers RJHM, van den Hoek JGM, Boezen HM, Alizadeh BZ, Langendijk JA. A two-stage genome-wide association study of radiation-induced acute toxicity in head and neck cancer. J Transl Med 2021; 19:481. [PMID: 34838041 PMCID: PMC8626989 DOI: 10.1186/s12967-021-03145-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/15/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Most head and neck cancer (HNC) patients receive radiotherapy (RT) and develop toxicities. This genome-wide association study (GWAS) was designed to identify single nucleotide polymorphisms (SNPs) associated with common acute radiation-induced toxicities (RITs) in an HNC cohort. METHODS A two-stage GWAS was performed in 1279 HNC patients treated with RT and prospectively scored for mucositis, xerostomia, sticky saliva, and dysphagia. The area under the curve (AUC) was used to estimate the average load of toxicity during RT. At the discovery study, multivariate linear regression was used in 957 patients, and the top-ranking SNPs were tested in 322 independent replication cohort. Next, the discovery and the replication studies were meta-analyzed. RESULTS A region on 5q21.3 containing 16 SNPs showed genome-wide (GW) significance association at P-value < 5.0 × 10-8 with patient-rated acute xerostomia in the discovery study. The top signal was rs35542 with an adjusted effect size of 0.17*A (95% CI 0.12 to 0.23; P-value < = 3.78 × 10-9). The genome wide significant SNPs were located within three genes (EFNA5, FBXL17, and FER). In-silico functional analysis showed these genes may be involved in DNA damage response and co-expressed in minor salivary glands. We found 428 suggestive SNPs (P-value < 1.0 × 10-5) for other toxicities, taken to the replication study. Eleven of them showed a nominal association (P-value < 0.05). CONCLUSIONS This GWAS suggested novel SNPs for patient-rated acute xerostomia in HNC patients. If validated, these SNPs and their related functional pathways could lead to a predictive assay to identify sensitive patients to radiation, which may eventually allow a more individualized RT treatment.
Collapse
Affiliation(s)
- Elnaz Naderi
- Department of Radiation Oncology, University Medical Center Groningen, Hanzeplein 1, HPC; DA 30, P.O. Box 30 001, 9700 RB, Groningen, The Netherlands.
- Department of Epidemiology, University Medical Center Groningen, Groningen, The Netherlands.
| | - Anne Petra Gerarda Crijns
- Department of Radiation Oncology, University Medical Center Groningen, Hanzeplein 1, HPC; DA 30, P.O. Box 30 001, 9700 RB, Groningen, The Netherlands
| | | | - Johanna Geertruida Maria van den Hoek
- Department of Radiation Oncology, University Medical Center Groningen, Hanzeplein 1, HPC; DA 30, P.O. Box 30 001, 9700 RB, Groningen, The Netherlands
| | - Hendrika Marike Boezen
- Department of Epidemiology, University Medical Center Groningen, Groningen, The Netherlands
| | - Behrooz Ziad Alizadeh
- Department of Epidemiology, University Medical Center Groningen, Groningen, The Netherlands
| | - Johannes Albertus Langendijk
- Department of Radiation Oncology, University Medical Center Groningen, Hanzeplein 1, HPC; DA 30, P.O. Box 30 001, 9700 RB, Groningen, The Netherlands.
| |
Collapse
|
15
|
Gong L, Luo M, Sun R, Qiu L, Chen C, Luo Z. Significant Association Between XRCC1 Expression and Its rs25487 Polymorphism and Radiotherapy-Related Cancer Prognosis. Front Oncol 2021; 11:654784. [PMID: 34094945 PMCID: PMC8170393 DOI: 10.3389/fonc.2021.654784] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 03/29/2021] [Indexed: 01/26/2023] Open
Abstract
Background/Aims XRCC1 (X-ray repair cross-complementing protein 1) expression and its single nucleotide polymorphism XRCC1 rs25487 (G>A) may be related to radiotherapy-related cancer prognosis or radiation-induced side effects. However, this association is controversial. We performed a bioinformatic analysis and a meta-analysis to obtain comprehensive results. Results Sixty nine articles with 10232 patients and 17 TCGA data sets with 2705 patients were included in the analysis. We observed that high XRCC1 expression was associated with an increased risk of minor treatment response and poor overall survival, XRCC1 rs25487 was associated with reduced risk of minor treatment response in esophageal cancer and an increased risk of high-grade side effects in head and neck cancer. Conclusion The results suggest that XRCC1 expression and rs25487 polymorphism are prognostic factors for patients receiving radiotherapy-related treatment. Considering the insufficient treatment parameters provided and the various sample sizes in most of the studies, we suggest that genetic association studies related to radiation-based treatment should include more cancer types with sufficient statistical power and more detailed clinical parameters.
Collapse
Affiliation(s)
- Li Gong
- Department of Clinical Oncology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Ming Luo
- Department of Clinical Oncology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Renhuang Sun
- Department of Clinical Oncology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Li Qiu
- Department of Clinical Oncology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Chunli Chen
- Department of Clinical Oncology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Zhiguo Luo
- Department of Clinical Oncology, Taihe Hospital, Hubei University of Medicine, Shiyan, China.,Department of Pharmacology, School of Basic Medicine, Hubei University of Medicine, Shiyan, China
| |
Collapse
|
16
|
Lumniczky K, Impens N, Armengol G, Candéias S, Georgakilas AG, Hornhardt S, Martin OA, Rödel F, Schaue D. Low dose ionizing radiation effects on the immune system. ENVIRONMENT INTERNATIONAL 2021; 149:106212. [PMID: 33293042 PMCID: PMC8784945 DOI: 10.1016/j.envint.2020.106212] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/20/2020] [Accepted: 09/03/2020] [Indexed: 05/03/2023]
Abstract
Ionizing radiation interacts with the immune system in many ways with a multiplicity that mirrors the complexity of the immune system itself: namely the need to maintain a delicate balance between different compartments, cells and soluble factors that work collectively to protect, maintain, and restore tissue function in the face of severe challenges including radiation damage. The cytotoxic effects of high dose radiation are less relevant after low dose exposure, where subtle quantitative and functional effects predominate that may go unnoticed until late after exposure or after a second challenge reveals or exacerbates the effects. For example, low doses may permanently alter immune fitness and therefore accelerate immune senescence and pave the way for a wide spectrum of possible pathophysiological events, including early-onset of age-related degenerative disorders and cancer. By contrast, the so called low dose radiation therapy displays beneficial, anti-inflammatory and pain relieving properties in chronic inflammatory and degenerative diseases. In this review, epidemiological, clinical and experimental data regarding the effects of low-dose radiation on the homeostasis and functional integrity of immune cells will be discussed, as will be the role of immune-mediated mechanisms in the systemic manifestation of localized exposures such as inflammatory reactions. The central conclusion is that ionizing radiation fundamentally and durably reshapes the immune system. Further, the importance of discovery of immunological pathways for modifying radiation resilience amongst other research directions in this field is implied.
Collapse
Affiliation(s)
- Katalin Lumniczky
- National Public Health Centre, Department of Radiation Medicine, Budapest, Albert Florian u. 2-6, 1097, Hungary.
| | - Nathalie Impens
- Belgian Nuclear Research Centre, Biosciences Expert Group, Boeretang 200, 2400 Mol, Belgium.
| | - Gemma Armengol
- Unit of Biological Anthropology, Department of Animal Biology, Plant Biology and Ecology, Faculty of Biosciences, Universitat Autònoma de Barcelona, 08193-Bellaterra, Barcelona, Catalonia, Spain.
| | - Serge Candéias
- Université Grenoble-Alpes, CEA, CNRS, IRIG-LCBM, 38000 Grenoble, France.
| | - Alexandros G Georgakilas
- DNA Damage Laboratory, Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens (NTUA), Zografou 15780, Athens, Greece.
| | - Sabine Hornhardt
- Federal Office for Radiation Protection (BfS), Ingolstaedter Landstr.1, 85764 Oberschleissheim, Germany.
| | - Olga A Martin
- Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne 3052, Victoria, Australia.
| | - Franz Rödel
- Department of Radiotherapy and Oncology, University Hospital, Goethe University Frankfurt am Main, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany.
| | - Dörthe Schaue
- Department of Radiation Oncology, David Geffen School of Medicine, University of California at Los Angeles (UCLA), Los Angeles, CA 90095-1714, USA.
| |
Collapse
|
17
|
Pulito C, Cristaudo A, Porta CL, Zapperi S, Blandino G, Morrone A, Strano S. Oral mucositis: the hidden side of cancer therapy. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:210. [PMID: 33028357 PMCID: PMC7542970 DOI: 10.1186/s13046-020-01715-7] [Citation(s) in RCA: 156] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 09/21/2020] [Indexed: 02/07/2023]
Abstract
Inflammation response of epithelial mucosa to chemo- radiotherapy cytotoxic effects leads to mucositis, a painful side effect of antineoplastic treatments. About 40% of the patients treated with chemotherapy develop mucositis; this percentage rises to about 90% for head and neck cancer patients (HNC) treated with both chemo- and radiotherapy. 19% of the latter will be hospitalized and will experience a delay in antineoplastic treatment for high-grade mucositis management, resulting in a reduction of the quality of life, a worse prognosis and an increase in patient management costs. Currently, several interventions and prevention guidelines are available, but their effectiveness is uncertain. This review comprehensively describes mucositis, debating the impact of standard chemo-radiotherapy and targeted therapy on mucositis development and pointing out the limits and the benefits of current mucositis treatment strategies and assessment guidelines. Moreover, the review critically examines the feasibility of the existing biomarkers to predict patient risk of developing oral mucositis and their role in early diagnosis. Despite the expression levels of some proteins involved in the inflammation response, such as TNF-α or IL-1β, partially correlate with mucositis process, their presence does not exclude others mucositis-independent inflammation events. This strongly suggests the need to discover biomarkers that specifically feature mucositis process development. Non-coding RNAs might hold this potential.
Collapse
Affiliation(s)
- Claudio Pulito
- Oncogenomic and Epigenetic Unit, IRCCS, Regina Elena National Cancer Institute, Rome, Italy
| | - Antonio Cristaudo
- STI/HIV Unit, San Gallicano Dermatological Institute IRCCS, Rome, Italy
| | - Caterina La Porta
- Center for Complexity and Biosystems, Department of Environmental Science and Policy, University of Milan, via Celoria 26, 20133, Milano, Italy.,CNR - Consiglio Nazionale delle Ricerche, Istituto di Biofisica, via Celoria 26, 20133, Milano, Italy
| | - Stefano Zapperi
- Center for Complexity and Biosystems, Department of Physics, University of Milan, Via Celoria 16, 20133, Milano, Italy.,CNR - Consiglio Nazionale delle Ricerche, Istituto di Chimica della Materia Condensata e di Tecnologie per l'Energia, Via R. Cozzi 53, 20125, Milano, Italy
| | - Giovanni Blandino
- Oncogenomic and Epigenetic Unit, IRCCS, Regina Elena National Cancer Institute, Rome, Italy
| | - Aldo Morrone
- Scientific Director Office, San Gallicano Institute, Rome, Italy
| | - Sabrina Strano
- SAFU Laboratory, Department of Research, Advanced Diagnostic, and Technological Innovation, IRCCS, Regina Elena National Cancer Institute, Via Elio Chianesi, 53, 00144, Rome, Italy.
| |
Collapse
|
18
|
Micronuclei Formation upon Radioiodine Therapy for Well-Differentiated Thyroid Cancer: The Influence of DNA Repair Genes Variants. Genes (Basel) 2020; 11:genes11091083. [PMID: 32957448 PMCID: PMC7565468 DOI: 10.3390/genes11091083] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/07/2020] [Accepted: 09/15/2020] [Indexed: 12/13/2022] Open
Abstract
Radioiodine therapy with 131I remains the mainstay of standard treatment for well-differentiated thyroid cancer (DTC). Prognosis is good but concern exists that 131I-emitted ionizing radiation may induce double-strand breaks in extra-thyroidal tissues, increasing the risk of secondary malignancies. We, therefore, sought to evaluate the induction and 2-year persistence of micronuclei (MN) in lymphocytes from 26 131I-treated DTC patients and the potential impact of nine homologous recombination (HR), non-homologous end-joining (NHEJ), and mismatch repair (MMR) polymorphisms on MN levels. MN frequency was determined by the cytokinesis-blocked micronucleus assay while genotyping was performed through pre-designed TaqMan® Assays or conventional PCR-restriction fragment length polymorphism (RFLP). MN levels increased significantly one month after therapy and remained persistently higher than baseline for 2 years. A marked reduction in lymphocyte proliferation capacity was also apparent 2 years after therapy. MLH1 rs1799977 was associated with MN frequency (absolute or net variation) one month after therapy, in two independent groups. Significant associations were also observed for MSH3 rs26279, MSH4 rs5745325, NBN rs1805794, and tumor histotype. Overall, our results suggest that 131I therapy may pose a long-term challenge to cells other than thyrocytes and that the individual genetic profile may influence 131I sensitivity, hence its risk-benefit ratio. Further studies are warranted to confirm the potential utility of these single nucleotide polymorphisms (SNPs) as radiogenomic biomarkers in the personalization of radioiodine therapy.
Collapse
|
19
|
Prediction of mucositis risk secondary to cancer therapy: a systematic review of current evidence and call to action. Support Care Cancer 2020; 28:5059-5073. [PMID: 32592033 DOI: 10.1007/s00520-020-05579-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 06/12/2020] [Indexed: 01/25/2023]
Abstract
PURPOSE Despite advances in personalizing the efficacy of cancer therapy, our ability to identify patients at risk of severe treatment side effects and provide individualized supportive care is limited. This is particularly the case for mucositis (oral and gastrointestinal), with no comprehensive risk evaluation strategies to identify high-risk patients. We, the Multinational Association for Supportive Care in Cancer/International Society for Oral Oncology (MASCC/ISOO) Mucositis Study Group, therefore aimed to systematically review current evidence on that factors that influence mucositis risk to provide a foundation upon which future risk prediction studies can be based. METHODS We identified 11,018 papers from PubMed and Web of Science, with 197 records extracted for full review and 113 meeting final eligibility criteria. Data were then synthesized into tables to highlight the level of evidence for each risk predictor. RESULTS The strongest level of evidence supported dosimetric parameters as key predictors of mucositis risk. Genetic variants in drug-metabolizing pathways, immune signaling, and cell injury/repair mechanisms were also identified to impact mucositis risk. Factors relating to the individual were variably linked to mucositis outcomes, although female sex and smoking status showed some association with mucositis risk. CONCLUSION Mucositis risk reflects the complex interplay between the host, tumor microenvironment, and treatment specifications, yet the large majority of studies rely on hypothesis-driven, single-candidate approaches. For significant advances in the provision of personalized supportive care, coordinated research efforts with robust multiplexed approaches are strongly advised.
Collapse
|
20
|
Polymorphism of TNFRSF1 A may act as a predictor of severe radiation-induced oral mucositis and a prognosis factor in patients with head and neck cancer. Oral Surg Oral Med Oral Pathol Oral Radiol 2020; 130:283-291.e2. [PMID: 32561252 DOI: 10.1016/j.oooo.2020.05.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 05/12/2020] [Accepted: 05/16/2020] [Indexed: 12/20/2022]
Abstract
OBJECTIVE The aim of this study was to evaluate the relationship between single nucleotide polymorphism (SNP) (-135 T>C) of TNFRSF1 A and the frequency of occurrence and severity of oral mucositis (OM) in patients with head and neck cancer (HNC) treated with radiotherapy (RT). STUDY DESIGN This retrospective, cohort study included 60 patients with HNC treated with intensity-modulated radiation therapy (IMRT). TNFRSF1 A SNP analysis (-135 T>C) was performed by using molecular probes (TaqMan, ThermoFisher Scientific, Waltham, MA) in DNA isolated from peripheral blood (QIAamp DNA MiniKit; Qiagen, Germantown, MD). RESULTS CC genotype was related to 4.5-fold higher risk of grade 2 OM after the second week of RT. Similarly, CC carriers had a significantly higher risk of severe (grade 3) OM after the fourth (6-fold) and fifth (7.5-fold) weeks of RT. The CC genotype of the TNFRSF1 A gene was significantly correlated with a higher risk of shorter overall survival (OS) (> 37 months follow-up period; hazard ratio [HR] = 2.78). CONCLUSIONS SNP (-135 T>C) of the TNFRSF1 A gene may act as a predictor of OM occurrence in patients with HNC treated with IMRT. The studied SNP may also serve as a prognostic factor in such cases.
Collapse
|
21
|
Yang DW, Wang TM, Zhang JB, Li XZ, He YQ, Xiao R, Xue WQ, Zheng XH, Zhang PF, Zhang SD, Hu YZ, Shen GP, Chen M, Sun Y, Jia WH. Genome-wide association study identifies genetic susceptibility loci and pathways of radiation-induced acute oral mucositis. J Transl Med 2020; 18:224. [PMID: 32503578 PMCID: PMC7275566 DOI: 10.1186/s12967-020-02390-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 05/28/2020] [Indexed: 12/17/2022] Open
Abstract
Background Radiation-induced oral mucositis (OM) is one of the most common acute complications for head and neck cancer. Severe OM is associated with radiation treatment breaks, which harms successful tumor management. Radiogenomics studies have indicated that genetic variants are associated with adverse effects of radiotherapy. Methods A large-scale genome-wide scan was performed in 1467 nasopharyngeal carcinoma patients, including 753 treated with 2D-CRT from Genetic Architecture of the Radiotherapy Toxicity and Prognosis (GARTP) cohort and 714 treated with IMRT (192 from the GARTP and 522 newly recruited). Subgroup analysis by radiotherapy technique was further performed in the top associations. We also performed physical and regulatory mapping of the risk loci and gene set enrichment analysis of the candidate target genes. Results We identified 50 associated genomic loci and 64 genes via positional mapping, expression quantitative trait locus (eQTL) mapping, chromatin interaction mapping and gene-based analysis, and 36 of these loci were replicated in subgroup analysis. Interestingly, one of the top loci located in TNKS, a gene relevant to radiation toxicity, was associated with increased OM risk with OR = 3.72 of the lead SNP rs117157809 (95% CI 2.10–6.57; P = 6.33 × 10−6). Gene set analyses showed that the 64 candidate target genes were enriched in the biological processes of regulating telomere capping and maintenance and telomerase activity (Top P = 7.73 × 10−7). Conclusions These results enhance the biological understanding of radiotherapy toxicity. The association signals enriched in telomere function regulation implicate the potential underlying mechanism and warrant further functional investigation and potential individual radiotherapy applications.
Collapse
Affiliation(s)
- Da-Wei Yang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China.,School of Public Health, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Tong-Min Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - Jiang-Bo Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - Xi-Zhao Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - Yong-Qiao He
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - Ruowen Xiao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - Wen-Qiong Xue
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - Xiao-Hui Zheng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - Pei-Fen Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - Shao-Dan Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - Ye-Zhu Hu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - Guo-Ping Shen
- Department of Radiation Oncology, Sun Yat-sen University First Affiliated Hospital, Guangzhou, People's Republic of China
| | - Mingyuan Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China.,Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - Ying Sun
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China.,Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - Wei-Hua Jia
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China. .,School of Public Health, Sun Yat-sen University, Guangzhou, People's Republic of China. .,Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, People's Republic of China.
| |
Collapse
|
22
|
Lee E, Eum SY, Slifer SH, Martin ER, Takita C, Wright JL, Hines RB, Hu JJ. Association Between Polymorphisms in DNA Damage Repair Genes and Radiation Therapy-Induced Early Adverse Skin Reactions in a Breast Cancer Population: A Polygenic Risk Score Approach. Int J Radiat Oncol Biol Phys 2020; 106:948-957. [PMID: 32007367 DOI: 10.1016/j.ijrobp.2019.12.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 12/16/2019] [Accepted: 12/19/2019] [Indexed: 12/12/2022]
Abstract
PURPOSE Genetic variations in DNA damage repair (DDR) genes may influence radiation therapy (RT)-induced acute normal tissue toxicity in patients with breast cancer. Identifying an individual or multiple single-nucleotide polymorphisms (SNPs) associated with RT-induced early adverse skin reactions (EASR) is critical for precision medicine in radiation oncology. METHODS AND MATERIALS At the completion of RT, EASR was assessed using the Oncology Nursing Society scale (0-6) in 416 patients with breast cancer, and Oncology Nursing Society score ≥4 was considered RT-induced EASR. PLINK set-based tests and subsequent individual SNP association analyses were conducted to identify genes and SNPs associated with EASR among the 53 DDR genes and 1968 SNPs. A weighted polygenic risk score (PRS) model was constructed to ascertain the association between the joint effect of risk alleles and EASR. RESULTS The study population consisted of 264 Hispanic whites, 86 blacks or African Americans, 55 non-Hispanic whites, and 11 others. A total of 115 patients (27.6%) developed EASR. Five genes (ATM, CHEK1, ERCC2, RAD51C, and TGFB1) were significantly associated with RT-induced EASR. Nine SNPs within these 5 genes were further identified: ATM rs61915066, CHEK1 rs11220184, RAD51C rs302877, rs405684, TBFB1 rs4803455, rs2241714, and ERCC2 rs60152947, rs10404465, rs1799786. In a multivariable-adjusted PRS model, patients in a higher quartile of PRS were more likely to develop EASR compared with patients in the lowest quartile (ORq2 vs.q1 = 1.94, 95% CI, 0.86-4.39; ORq3 vs.q1 = 3.46, 95% CI, 1.57-7.63; ORq4 vs.q1 = 8.64, 95% CI, 3.92-19.02; and Ptrend < .0001). CONCLUSIONS We newly identified the associations between 9 SNPs in ATM, CHEK1, RAD51C, TGFB1, and ERCC2 and RT-induced EASR. PRS modeling showed its potential in identifying populations at risk. Multiple SNPs in DDR genes may jointly contribute to interindividual variation in RT-induced EASR. Validation in an independent external cohort is required to determine the clinical significance of these predictive biomarkers.
Collapse
Affiliation(s)
- Eunkyung Lee
- Department of Health Sciences, University of Central Florida College of Health Professions and Sciences, Orlando, Florida.
| | - Sung Y Eum
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida
| | - Susan H Slifer
- Center for Genetic Epidemiology and Statistical Genetics, John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, Florida
| | - Eden R Martin
- Dr. John T. Macdonald Department of Human Genetics, Center for Genetic Epidemiology and Statistical Genetics, John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, Florida
| | - Cristiane Takita
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida; Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, Florida
| | - Jean L Wright
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, Maryland
| | - Robert B Hines
- Department of Population Health Sciences, University of Central Florida College of Medicine, Orlando, Florida
| | - Jennifer J Hu
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida; Department of Public Health Sciences, University of Miami Miller School of Medicine, Miami, Florida.
| |
Collapse
|
23
|
Raturi V, Hojo H, Bhatt MLB, Suhel M, Wu C, Bei Y, Nakamura M, Okumura M, Zhang H, Parmar D, Badajena A, Singh R, Kumar S, Katiyar T, Gaur J. Prospective evaluation of XRCC‐1 Arg194Trp polymorphism as bio‐predictor for clinical outcome in locally advanced laryngeal cancer undergoing cisplatin‐based chemoradiation. Head Neck 2020; 42:1045-1056. [DOI: 10.1002/hed.26083] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 12/08/2019] [Accepted: 01/10/2020] [Indexed: 12/30/2022] Open
Affiliation(s)
- Vijay Raturi
- Department of Radiation Oncology King George's Medical University Lucknow India
- Division of Radiation Oncology and Particle therapy National Cancer Center Hospital East Chiba Japan
| | - Hidehiro Hojo
- Division of Radiation Oncology and Particle therapy National Cancer Center Hospital East Chiba Japan
| | - M. L. B. Bhatt
- Department of Radiation Oncology King George's Medical University Lucknow India
| | - Mohammad Suhel
- Department of Radiation Oncology King George's Medical University Lucknow India
| | - Chen‐Ta Wu
- Department of Radiation Oncology, Graduate school of medicine Keio University Japan
| | - Yanping Bei
- Division of Radiation Oncology and Particle therapy National Cancer Center Hospital East Chiba Japan
| | - Masaki Nakamura
- Division of Radiation Oncology and Particle therapy National Cancer Center Hospital East Chiba Japan
| | - Masayuki Okumura
- Division of Radiation Oncology and Particle therapy National Cancer Center Hospital East Chiba Japan
| | - Haiqin Zhang
- Division of Radiation Oncology and Particle therapy National Cancer Center Hospital East Chiba Japan
| | | | - Avinash Badajena
- Department of Radiation Oncology King George's Medical University Lucknow India
| | - Rahul Singh
- Department of Radiation Oncology King George's Medical University Lucknow India
| | - Saurabh Kumar
- Department of Radiology King George's Medical University Lucknow India
| | - Tridev Katiyar
- Indian Institute of Toxicology and Research Lucknow India
| | - Jalaj Gaur
- Department of Radiation Oncology King George's Medical University Lucknow India
| |
Collapse
|
24
|
Averbeck D, Candéias S, Chandna S, Foray N, Friedl AA, Haghdoost S, Jeggo PA, Lumniczky K, Paris F, Quintens R, Sabatier L. Establishing mechanisms affecting the individual response to ionizing radiation. Int J Radiat Biol 2020; 96:297-323. [PMID: 31852363 DOI: 10.1080/09553002.2019.1704908] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Purpose: Humans are increasingly exposed to ionizing radiation (IR). Both low (<100 mGy) and high doses can cause stochastic effects, including cancer; whereas doses above 100 mGy are needed to promote tissue or cell damage. 10-15% of radiotherapy (RT) patients suffer adverse reactions, described as displaying radiosensitivity (RS). Sensitivity to IR's stochastic effects is termed radiosusceptibility (RSu). To optimize radiation protection we need to understand the range of individual variability and underlying mechanisms. We review the potential mechanisms contributing to RS/RSu focusing on RS following RT, the most tractable RS group.Conclusions: The IR-induced DNA damage response (DDR) has been well characterized. Patients with mutations in the DDR have been identified and display marked RS but they represent only a small percentage of the RT patients with adverse reactions. We review the impacting mechanisms and additional factors influencing RS/RSu. We discuss whether RS/RSu might be genetically determined. As a recommendation, we propose that a prospective study be established to assess RS following RT. The study should detail tumor site and encompass a well-defined grading system. Predictive assays should be independently validated. Detailed analysis of the inflammatory, stress and immune responses, mitochondrial function and life style factors should be included. Existing cohorts should also be optimally exploited.
Collapse
Affiliation(s)
| | - Serge Candéias
- CEA, CNRS, LCMB, University of Grenoble Alpes, Grenoble, France
| | - Sudhir Chandna
- Division of Radiation Biosciences, Institute of Nuclear Medicine & Allied Sciences, Delhi, India
| | - Nicolas Foray
- Inserm UA8 Unit Radiations: Defense, Health and Environment, Lyon, France
| | - Anna A Friedl
- Department of Radiation Oncology, University Hospital, LMU, Munich, Germany
| | - Siamak Haghdoost
- Cimap-Laria, Advanced Resource Center for HADrontherapy in Europe (ARCHADE,), University of Caen Normandy, France.,Centre for Radiation Protection Research, Department of Molecular Bioscience, Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Penelope A Jeggo
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, UK
| | - Katalin Lumniczky
- Department of Radiation Medicine, Division of Radiobiology and Radiohygiene, National Public Health Center, Budapest, Hungary
| | | | | | | |
Collapse
|
25
|
Predicting mucositis risk associated with cytotoxic cancer treatment regimens: rationale, complexity, and challenges. Curr Opin Support Palliat Care 2019; 12:198-210. [PMID: 29547492 DOI: 10.1097/spc.0000000000000339] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
PURPOSE OF REVIEW The goals of this review are to describe the complexity of factors influencing the risk of cancer regimen-related mucosal injury (CRRMI), to evaluate the contribution of the innate immune response to CRRMI risk, to compare the concordance of genome analytics in describing mechanism and risk, and to determine if common biological pathways are noted when CRRMI is compared to a disease with a similar phenotype. RECENT FINDINGS The pathogenesis of and risk for CRRMI are complex and influenced by multiple intrinsic and extrinsic factors. It is incumbent on analyses to recognize the likelihood that the interplay and cross-talk of synergistically expressed factors is critical and that the contributing weights of these factors is not uniform from patient to patient. Genomically derived analyses imply final common pathways are implicit in phenotype expression. SUMMARY The identification of specific factors (both genomic and otherwise) which contribute to CRRMI risk represents an important opportunity to apply principles of precision medicine to the management of regimen-related toxicities.
Collapse
|
26
|
Duran G, Aguín S, Cruz R, Barros F, Giráldez JM, Bernárdez B, López-López R, Carracedo Á, Lamas MJ. Association of GSTP1 and ERCC1 polymorphisms with toxicity in locally advanced head and neck cancer platinum-based chemoradiotherapy treatment. Head Neck 2019; 41:2704-2715. [PMID: 30973677 DOI: 10.1002/hed.25754] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 02/27/2019] [Accepted: 03/12/2019] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Platinum-based chemoradiotherapy (CRT) is the standard treatment for locally advanced head and neck squamous-cell carcinomas (HNSCC), and most patients experience serious toxicities. The aim of this study was to investigate the association between candidate genes involved in radiation/platinum pathways and acute toxicity of CRT to determine the predictive value of these polymorphisms for toxicity. METHODS Thirty-six selected single nucleotide polymorphisms (SNPs) in 29 genes were genotyped in 110 patients treated with cisplatin-based CRT. DNA was obtained from blood samples, and SNP analysis was performed using a MassARRAY iPLEX Gold (Sequenom) method. RESULTS Patients with ERCC1 rs11615-C allele (P = .0066), ERCC1 rs735482-C allele (P = .0204), and ERCC4 rs1799801-C allele (P = .0286) had lower risk of grade 2-3 hematologic toxicity. In addition, the presence of G allele of GSTP1 was associated with a significantly lower risk of severe dysphagia (P = .0004). CONCLUSION Polymorphisms in ERCC1 and GSTP1 may act as prognostic factors of acute toxicity during treatment with CRT in HNSCC patients.
Collapse
Affiliation(s)
- Goretti Duran
- Pharmacy Department, University Hospital of Santiago (SERGAS), Santiago de Compostela, Spain.,Clinical Pharmacology Group, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Santiago Aguín
- Translational Medical Oncology, Health Research Institute of Santiago (IDIS), University Hospital of Santiago (SERGAS), Santiago de Compostela, Spain.,Liquid Biopsy Analysis Unit, Health Research Institute of Santiago (IDIS), University Hospital of Santiago (SERGAS), Santiago de Compostela, Spain
| | - Raquel Cruz
- Center for Biomedical Research on Rare Diseases (CIBERER), Genomics Medicine Group, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Francisco Barros
- Grupo de Medicina Xenómica, CIBERER, Fundación Pública Galega de Medicina Xenómica - SERGAS, Santiago de Compostela, Spain
| | - José María Giráldez
- Pharmacy Department, University Hospital of Santiago (SERGAS), Santiago de Compostela, Spain.,Clinical Pharmacology Group, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Beatriz Bernárdez
- Pharmacy Department, University Hospital of Santiago (SERGAS), Santiago de Compostela, Spain.,Clinical Pharmacology Group, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Rafael López-López
- Translational Medical Oncology, Health Research Institute of Santiago (IDIS), University Hospital of Santiago (SERGAS), Santiago de Compostela, Spain.,Liquid Biopsy Analysis Unit, Health Research Institute of Santiago (IDIS), University Hospital of Santiago (SERGAS), Santiago de Compostela, Spain
| | - Ángel Carracedo
- Grupo de Medicina Xenómica, CIBERER, Fundación Pública Galega de Medicina Xenómica - SERGAS, Santiago de Compostela, Spain.,Grupo de Medicina Xenómica, Universidade de Santiago de Compostela, Centro Nacional de Genotipado - Plataforma de Recursos Biomoleculares y Bioinformáticos - Instituto de Salud Carlos III (CeGen-PRB2-ISCIII), Santiago de Compostela, Spain.,Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - María Jesús Lamas
- Pharmacy Department, University Hospital of Santiago (SERGAS), Santiago de Compostela, Spain.,Clinical Pharmacology Group, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| |
Collapse
|
27
|
A review of radiation genomics: integrating patient radiation response with genomics for personalised and targeted radiation therapy. JOURNAL OF RADIOTHERAPY IN PRACTICE 2018. [DOI: 10.1017/s1460396918000547] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
AbstractBackgroundThe success of radiation therapy for cancer patients is dependent on the ability to deliver a total tumouricidal radiation dose capable of eradicating all cancer cells within the clinical target volume, however, the radiation dose tolerance of the surrounding healthy tissues becomes the main dose-limiting factor. The normal tissue adverse effects following radiotherapy are common and significantly impact the quality of life of patients. The likelihood of developing these adverse effects following radiotherapy cannot be predicted based only on the radiation treatment parameters. However, there is evidence to suggest that some common genetic variants are associated with radiotherapy response and the risk of developing adverse effects. Radiation genomics is a field that has evolved in recent years investigating the association between patient genomic data and the response to radiation therapy. This field aims to identify genetic markers that are linked to individual radiosensitivity with the potential to predict the risk of developing adverse effects due to radiotherapy using patient genomic information. It also aims to determine the relative radioresponse of patients using their genetic information for the potential prediction of patient radiation treatment response.Methods and materialsThis paper reports on a review of recent studies in the field of radiation genomics investigating the association between genomic data and patients response to radiation therapy, including the investigation of the role of genetic variants on an individual’s predisposition to enhanced radiotherapy radiosensitivity or radioresponse.ConclusionThe potential for early prediction of treatment response and patient outcome is critical in cancer patients to make decisions regarding continuation, escalation, discontinuation, and/or change in treatment options to maximise patient survival while minimising adverse effects and maintaining patients’ quality of life.
Collapse
|
28
|
Multivariable model for predicting acute oral mucositis during combined IMRT and chemotherapy for locally advanced nasopharyngeal cancer patients. Oral Oncol 2018; 86:266-272. [PMID: 30409311 DOI: 10.1016/j.oraloncology.2018.10.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 09/25/2018] [Accepted: 10/05/2018] [Indexed: 11/24/2022]
Abstract
INTRODUCTION/OBJECTIVE Oral and oropharyngeal mucositis (OM) represents amultifactorialand complexinterplayof patient-, tumor-, and treatment-related factors. We aimed to build a predictive model for acute OM for locally advanced nasopharyngeal carcinoma (NPC) patients by combining clinical and dosimetric factors. MATERIALS/METHODS A series of consecutive NPC patients treated curatively with IMRT/VMAT + chemotherapy at 70 Gy (2-2.12 Gy/fr) was considered. For each patient, clinical- tumor- and treatment-related data were retrospectively collected. oral cavity (OC) and parotid glands (PG, considered as a single organ) were selected as organs-at-risk (OARs). Acute OM was assessed according to CTCAE v4.0 at baseline and weekly during RT. Two endpoints were considered: grade ≥3 and mean grade ≥1.5. DVHs were reduced to Equivalent Uniform Dose (EUD). Dosimetric and clinical/treatment features selected via LASSO were inserted into a multivariable logistic model. Goodness of fit was evaluated through Hosmer-Lemeshow test and calibration plot. RESULTS Data were collected for 132 patients. G ≥ 3 and mean G ≥ 1.5 OM were reported in 40 patients (30%). Analyses resulted in a 3-variables model for G ≥ 3 OM, including OC EUD with n = 0.05 (OR = 1.02), PG EUD with n = 1 (OR = 1.06), BMI ≥ 30 (OR = 3.8, for obese patients), and a single variable model for mean G ≥ 1.5 OM, i.e. OC EUD with n = 1 (mean dose) (OR = 1.07). Calibration was good in both cases. CONCLUSION OC mean dose was found to impact most on OM duration (mean G ≥ 1.5), while G ≥ 3 OM was associated to a synergic effect between PG mean dose and high dose received by small OC volumes, with BMI acting as a dose-modifying factor.
Collapse
|
29
|
Zhao J, Zhi Z, Zhang M, Li Q, Li J, Wang X, Ma C. Predictive value of single nucleotide polymorphisms in XRCC1 for radiation-induced normal tissue toxicity. Onco Targets Ther 2018; 11:3901-3918. [PMID: 30013370 PMCID: PMC6039069 DOI: 10.2147/ott.s156175] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Purpose X-Ray Repair Cross Complementing 1 (XRCC1) functioning in the base excision repair pathway plays an important role in the repair of DNA single-strand breaks caused by ionizing radiation. The relationship between XRCC1 polymorphisms and the risk of radiation-induced side effects on normal tissues remains controversial. Therefore, we performed a comprehensive meta-analysis to elucidate these associations. Materials and methods A systematic literature search was carried out in PubMed, Medline (Ovid), Embase, Web of Science, Cochrane database, and the references of relevant studies. The pooled odds ratios (ORs) with corresponding 95% confidence intervals (CIs) were calculated to evaluate the strength of the association. Results A total of 40 studies including 6,682 patients were eventually identified in this meta-analysis. Pooled results suggested that rs25487 Arg399Gln polymorphism significantly increased the risk of acute radiation-induced side effects (OR=1.29, 95% CI: 1.10–1.52, P=0.002), especially acute mucositis (OR=1.91, 95% CI: 1.17–3.11, P=0.01) and acute gastrointestinal and genitourinary toxicity (OR=1.49, 95% CI: 1.04–2.11, P=0.03). Furthermore, patients who received head and neck irradiation with rs25487 Arg399Gln polymorphism were more likely to experience radiotherapy (RT)-induced side effects (OR=1.46, 95% CI: 1.12–1.90, P=0.005). However, no statistically significant correlations were identified between rs25487 polymorphism and any late side effects and other irradiation areas. Likewise, no significant associations were detected between rs25489, rs1799782, or rs3213245 polymorphism and RT-induced toxicity. Conclusion Our meta-analysis demonstrated that XRCC1 rs25487 Arg399Gln polymorphism had a significant predictive value and might predict a risk of severely acute RT-induced adverse effects, especially in acute mucositis and acute gastrointestinal and genitourinary toxicity, or in patients with head and neck irradiation. However, large-scale and well-designed studies are required to further evaluate the predictive value of XRCC1 variations on radiation-induced side effects in order to identify radiosensitive patients and predict radiotoxicity.
Collapse
Affiliation(s)
- Jing Zhao
- Department of Oncology, Hebei General Hospital, Shijiazhuang, Hebei 050051, China
| | - Zheng Zhi
- Department of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei 050200, China
| | - Ming Zhang
- Department of Oncology, Hebei General Hospital, Shijiazhuang, Hebei 050051, China
| | - Qingxia Li
- Department of Oncology, Hebei General Hospital, Shijiazhuang, Hebei 050051, China
| | - Jing Li
- Department of Clinical laboratory, Hebei General Hospital, Shijiazhuang, Hebei 050051, China
| | - Xiao Wang
- Department of Plastic Surgery, Hebei General Hospital, Shijiazhuang, Hebei 050051, China
| | - Chunling Ma
- Department of Oncology, Hebei General Hospital, Shijiazhuang, Hebei 050051, China
| |
Collapse
|
30
|
Brzozowska A, Mlak R, Homa-Mlak I, Gołębiowski P, Mazurek M, Ciesielka M, Małecka-Massalska T. Polymorphism of regulatory region of APEH gene (c.-521G>C, rs4855883) as a relevant predictive factor for radiotherapy induced oral mucositis and overall survival in head neck cancer patients. Oncotarget 2018; 9:29644-29653. [PMID: 30038710 PMCID: PMC6049874 DOI: 10.18632/oncotarget.25662] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 06/04/2018] [Indexed: 11/25/2022] Open
Abstract
Background The study purpose was to examine the correlation between SNP in the regulatory region (c.-521G>C, rs4855883) of APEH gene as well as the incidence and severity of radiotherapy (RTH) induced oral mucositis (OM) and overall survival (OS) in head and neck cancer (HNC) patients. Methods OM in 62 HNC patients subjected to irradiation was assessed using RTOG/EORTC scale. DNA was isolated from whole blood of HNC patients. Mini-sequencing method (SNaPshot PCR) was used to determine the genotype. Results The following frequency of occurrence of APEH gene was observed: CC: 37.1%, CG: 43.6% and GG: 19.3%. It was established that the presence of CC genotype reduced the risk of occurrence of grade 2 and 3 OM symptoms: 3-fold in RTH week 2 (in case of CC vs GC or GG it was: 26.8% vs 73.2% patients, respectively, OR = 0.27, 95 CI: 0.09–0.83; p = 0.0222), 6-fold in RTH week 3 (in case of CC vs GC or GG it was: 29.4% vs 70.6% patients, respectively, OR = 0.16, 95 CI: 0.04–0.67; p = 0.0125) and grade 3 OM symptoms 4-fold in RTH week 6 (in case of CC vs GC or GG it was: 19.2% vs 80.8% patients, respectively, OR = 0.23, 95 CI: 0.07–0.77; p = 0.0166). CC genotype was associated with lower OS (CC vs GG or GC: 29 months vs 38 months; HR = 2.48, 95% CI: 0.90–6.85; p = 0.0266). Conclusion CC genotype of APEH gene was correlated with the risk of more severe radiotherapy-induced OM in HNC patients and lower rates of survival.
Collapse
Affiliation(s)
- Anna Brzozowska
- Department of Oncology, Medical University of Lublin, Lublin 20-090, Poland
| | - Radosław Mlak
- Department of Human Physiology, Medical University of Lublin, Lublin 20-080, Poland
| | - Iwona Homa-Mlak
- Department of Human Physiology, Medical University of Lublin, Lublin 20-080, Poland
| | - Paweł Gołębiowski
- Department of Oncology, Medical University of Lublin, Lublin 20-090, Poland
| | - Marcin Mazurek
- Department of Human Physiology, Medical University of Lublin, Lublin 20-080, Poland
| | - Marzanna Ciesielka
- Department of Forensic Medicine, Medical University of Lublin, Lublin 20-090, Poland
| | | |
Collapse
|
31
|
Nanda SS, Gandhi AK, Rastogi M, Khurana R, Hadi R, Sahni K, Mishra SP, Srivastava AK, Bhatt MLB, Parmar D. Evaluation of XRCC1 Gene Polymorphism as a Biomarker in Head and Neck Cancer Patients Undergoing Chemoradiation Therapy. Int J Radiat Oncol Biol Phys 2018; 101:593-601. [DOI: 10.1016/j.ijrobp.2018.03.039] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Revised: 03/26/2018] [Accepted: 03/26/2018] [Indexed: 12/29/2022]
|
32
|
Tokat AO, Akbulut A, Billur D, Koca G, Bayram P, Kuru S, Karasu S, Aydogmus S, Cakmak H, Ozmert S, Korkmaz M. Montelukast attenuates radioactive I131-induced pulmonary damage on rats. Int J Radiat Biol 2018; 94:542-550. [DOI: 10.1080/09553002.2018.1466065] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Arif Osman Tokat
- Department of Thoracic Surgery, Bozok University School of Medicine, Erdogan Akdag Research and Application Hospital, Yozgat, Turkey
| | - Aylin Akbulut
- Department of Nuclear Medicine, University of Health Sciences, Ankara Training and Research Hospital, Ankara, Turkey
| | - Deniz Billur
- Department of Histology and Embryology, School of Medicine, Ankara University, Ankara, Turkey
| | - Gokhan Koca
- Department of Nuclear Medicine, University of Health Sciences, Ankara Training and Research Hospital, Ankara, Turkey
| | - Pinar Bayram
- Department of Histology and Embryology, School of Medicine, Kafkas University, Kars, Turkey
| | - Serdar Kuru
- Department of General Surgery, University of Health Sciences, Ankara Training and Research Hospital, Ankara, Turkey
| | - Sezgin Karasu
- Department of Thoracic Surgery, University of Health Sciences, Ankara Training and Research Hospital, Ankara, Turkey
| | - Suheyla Aydogmus
- Department of Obstetrics and Gynecology, University of Health Sciences, Ankara Training and Research Hospital, Ankara, Turkey
| | - Hüseyin Cakmak
- Department of Thoracic Surgery, Ankara Batikent Medicalpark Hospital, Ankara, Turkey
| | - Sengul Ozmert
- Department of Anesthesiology and Reanimation, Ankara Childrens Health and Illness Haematology Oncology Training and Research Hospital, Ankara, Turkey
| | - Meliha Korkmaz
- Department of Nuclear Medicine, University of Health Sciences, Ankara Training and Research Hospital, Ankara, Turkey
| |
Collapse
|
33
|
Rajaraman P, Hauptmann M, Bouffler S, Wojcik A. Human individual radiation sensitivity and prospects for prediction. Ann ICRP 2018; 47:126-141. [PMID: 29648458 DOI: 10.1177/0146645318764091] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In the past few decades, it has become increasingly evident that sensitivity to ionising radiation is variable. This is true for tissue reactions (deterministic effects) after high doses of radiation, for stochastic effects following moderate and possibly low doses, and conceivably also for non-cancer effects such as cardiovascular disease, the causal pathway(s) of which are not yet fully understood. A high sensitivity to deterministic effects is not necessarily correlated with a high sensitivity to stochastic effects. The concept of individual sensitivity to high and low doses of radiation has long been supported by data from patients with certain rare hereditary conditions. However, these syndromes only affect a small proportion of the general population. More relevant to the majority of the population is the notion that some part of the genetic contribution defining radiation sensitivity may follow a polygenic model, which predicts elevated risk resulting from the inheritance of many low-penetrance risk-modulating alleles. Can the different forms of individual radiation sensitivities be inferred from the reaction of cells exposed ex vivo to ionising radiation? Can they be inferred from analyses of individual genotypes? This paper reviews current evidence from studies of late adverse tissue reactions after radiotherapy in potentially sensitive groups, including data from functional assays, candidate gene approaches, and genome-wide association studies. It focuses on studies published in 2013 or later because a comprehensive review of earlier studies was published previously in a report by the UK Advisory Group on Ionising Radiation.
Collapse
Affiliation(s)
| | - M Hauptmann
- b Netherlands Cancer Institute, The Netherlands
| | | | - A Wojcik
- d Centre for Radiation Protection Research, MBW Department, Stockholm University, Sweden.,e Jan Kochanowski University, Poland
| |
Collapse
|
34
|
Beschel LM, Leu M, Reichardt SD, Rave-Fränk M, Schirmer MA, Stadelmann C, Canis M, Wolff HA, Reichardt HM. T cell abundance in blood predicts acute organ toxicity in chemoradiotherapy for head and neck cancer. Oncotarget 2018; 7:65902-65915. [PMID: 27589568 PMCID: PMC5323201 DOI: 10.18632/oncotarget.11677] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Accepted: 08/15/2016] [Indexed: 01/10/2023] Open
Abstract
Treatment of head and neck squamous cell carcinoma (HNSCC) by chemoradiotherapy (CRT) often results in high-grade acute organ toxicity (HGAOT). As these adverse effects impair the patients' quality of life and the feasibility of the planned therapy, we sought to analyze immunological parameters in tumor material and blood samples obtained from 48 HNSCC patients in order to assess the potential to predict the individual acute organ toxicity. T cells in the tumor stroma were enriched in patients developing HGAOT whereas levels of soluble factors in the plasma and gene expression in whole blood did not coincide with the occurrence of acute organ toxicity. In contrast, the frequency and absolute numbers of selected leukocyte subpopulations measured in samples of peripheral blood mononuclear cells (PBMCs) directly before the beginning of CRT were significantly different in patients with HGAOT as compared to those without. When we validated several potential markers including the abundance of T cells in a small prospective study with 16 HNSCC patients, we were able to correctly predict acute organ toxicity in up to 81% of the patients. We conclude that analysis of PBMCs by fluorescence-activated cell sorting (FACS) might be a convenient strategy to identify patients at risk of developing HGAOT caused by CRT, which might allow to adapt the treatment regimen and possibly improve disease outcome.
Collapse
Affiliation(s)
- L Milena Beschel
- Institute for Cellular and Molecular Immunology, University Medical Center, Georg-August-University Göttingen, Germany
| | - Martin Leu
- Department of Radiotherapy and Radiooncology, University Medical Center, Georg-August-University Göttingen, Germany
| | - Sybille D Reichardt
- Institute for Cellular and Molecular Immunology, University Medical Center, Georg-August-University Göttingen, Germany
| | - Margret Rave-Fränk
- Department of Radiotherapy and Radiooncology, University Medical Center, Georg-August-University Göttingen, Germany
| | - Markus A Schirmer
- Department of Radiotherapy and Radiooncology, University Medical Center, Georg-August-University Göttingen, Germany.,Institute of Clinical Pharmacology, University Medical Center, Georg-August-University Göttingen, Germany
| | - Christine Stadelmann
- Institute of Neuropathology, University Medical Center, Georg-August-University Göttingen, Germany
| | - Martin Canis
- Department of Otorhinolaryngology, Head and Neck Surgery, University Medical Center, Georg-August-University Göttingen, Germany
| | - Hendrik A Wolff
- University Medical Center, Georg-August-University Göttingen, Germany.,Present address: Strahlentherapie Radiologie München, Germany
| | - Holger M Reichardt
- Institute for Cellular and Molecular Immunology, University Medical Center, Georg-August-University Göttingen, Germany
| |
Collapse
|
35
|
Identifying novel genes and biological processes relevant to the development of cancer therapy-induced mucositis: An informative gene network analysis. PLoS One 2017; 12:e0180396. [PMID: 28678827 PMCID: PMC5498049 DOI: 10.1371/journal.pone.0180396] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 05/30/2017] [Indexed: 12/20/2022] Open
Abstract
Mucositis is a complex, dose-limiting toxicity of chemotherapy or radiotherapy that leads to painful mouth ulcers, difficulty eating or swallowing, gastrointestinal distress, and reduced quality of life for patients with cancer. Mucositis is most common for those undergoing high-dose chemotherapy and hematopoietic stem cell transplantation and for those being treated for malignancies of the head and neck. Treatment and management of mucositis remain challenging. It is expected that multiple genes are involved in the formation, severity, and persistence of mucositis. We used Ingenuity Pathway Analysis (IPA), a novel network-based approach that integrates complex intracellular and intercellular interactions involved in diseases, to systematically explore the molecular complexity of mucositis. As a first step, we searched the literature to identify genes that harbor or are close to the genetic variants significantly associated with mucositis. Our literature review identified 27 candidate genes, of which ERCC1, XRCC1, and MTHFR were the most frequently studied for mucositis. On the basis of this 27-gene list, we used IPA to generate gene networks for mucositis. The most biologically significant novel molecules identified through IPA analyses included TP53, CTNNB1, MYC, RB1, P38 MAPK, and EP300. Additionally, uracil degradation II (reductive) and thymine degradation pathways (p = 1.06-08) were most significant. Finally, utilizing 66 SNPs within the 8 most connected IPA-derived candidate molecules, we conducted a genetic association study for oral mucositis in the head and neck cancer patients who were treated using chemotherapy and/or radiation therapy (186 head and neck cancer patients with oral mucositis vs. 699 head and neck cancer patients without oral mucositis). The top ranked gene identified through this association analysis was RB1 (rs2227311, p-value = 0.034, odds ratio = 0.67). In conclusion, gene network analysis identified novel molecules and biological processes, including pathways related to inflammation and oxidative stress, that are relevant to mucositis development, thus providing the basis for future studies to improve the management and treatment of mucositis in patients with cancer.
Collapse
|
36
|
Normando AGC, Rocha CL, de Toledo IP, de Souza Figueiredo PT, dos Reis PED, De Luca Canto G, Guerra ENS. Biomarkers in the assessment of oral mucositis in head and neck cancer patients: a systematic review and meta-analysis. Support Care Cancer 2017. [DOI: 10.1007/s00520-017-3783-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
37
|
Le Z, Niu X, Chen Y, Ou X, Zhao G, Liu Q, Tu W, Hu C, Kong L, Liu Y. Predictive single nucleotide polymorphism markers for acute oral mucositis in patients with nasopharyngeal carcinoma treated with radiotherapy. Oncotarget 2017; 8:63026-63037. [PMID: 28968968 PMCID: PMC5609900 DOI: 10.18632/oncotarget.18450] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 05/22/2017] [Indexed: 01/11/2023] Open
Abstract
The aim of this study was to investigate the association between the susceptibility of severe oral mucositis (OM) in Chinese nasopharyngeal carcinoma (NPC) patients treated with radiotherapy and single nucleotide polymorphisms (SNPs) across the whole genome. SNPs were screened in a total of 24 patients with NPC and an additional 6 were subjected to mRNA expression analysis. Patients were subdivided into CTC 0-2 (CTC toxicity grade 0, 1, and 2) and CTC 3+ (CTC toxicity grade 3 and above) groups according to their CTC (common toxicity criteria) scores. The GTEx dataset was used to performed eQTL analyses and in-vitro functional assays were performed for eQTL-associated genes. Our data identified 7 functional SNPs associated with the development of OM. We observed that rs11081899-A, located in the 5′-UTR of the ZNF24 gene, was significantly correlated with a higher risk of severe mucositis (OR = 14.631, 95% CI = 2.61-105.46, p = 1.2 × 10−4), and positively associated with ZNF24 mRNA expression (p = 4.1 × 10−6) from GTEx dataset. In addition, high ZNF24 mRNA expression was associated with severe OM in patients with NPC (p = 0.02). Further functional assays revealed that ZNF24 knockdown reduced p65 expression and suppressed TNF-α-induced NF-κB activation and pro-inflammatory cytokines release. These findings suggested that rs11081899-A may be a genetic susceptibility factor for radiation-induced OM in patients with NPC, although its value in clinical application needs to be further verified in a large cohort. Also, we suggested that downregulation of ZNF24 may attenuate the development of mucositis by suppressing NF-κB activation.
Collapse
Affiliation(s)
- Ziyu Le
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai 200032, P. R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P. R. China
| | - Xiaoshuang Niu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai 200032, P. R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P. R. China
| | - Ying Chen
- Department of Radiation Oncology, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai 201620, P. R. China
| | - Xiaomin Ou
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai 200032, P. R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P. R. China
| | - Guoqi Zhao
- Department of Radiation Oncology, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai 201620, P. R. China
| | - Qi Liu
- Department of Radiation Oncology, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai 201620, P. R. China
| | - Wenzhi Tu
- Department of Radiation Oncology, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai 201620, P. R. China
| | - Chaosu Hu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai 200032, P. R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P. R. China
| | - Lin Kong
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai 200032, P. R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P. R. China
| | - Yong Liu
- Cancer Research Institute, Fudan University Shanghai Cancer Center, Fudan University, Shanghai 200032, P. R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P. R. China
| |
Collapse
|
38
|
Brzozowska A, Powrózek T, Homa-Mlak I, Mlak R, Ciesielka M, Gołębiowski P, Małecka-Massalska T. Polymorphism of Promoter Region of TNFRSF1A Gene (-610 T > G) as a Novel Predictive Factor for Radiotherapy Induced Oral Mucositis in HNC Patients. Pathol Oncol Res 2017; 24:135-143. [PMID: 28401452 PMCID: PMC5736772 DOI: 10.1007/s12253-017-0227-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 04/03/2017] [Indexed: 11/24/2022]
Abstract
Every year, about 650 thousand new cases of Head and Neck Cancer (HNC) are diagnosed globally. Apart from surgery, radiotherapy (RTH), chemotherapy (CHT) or its combination is used in the treatment of HNC. One of the most frequent complications and, at the same time, limitations of RTH is oral mucositis (OM). Proinflammatory cytokines (including TNF-α) play a key role in the development of OM. Genetic alterations, i.e. single nucleotide polymorphisms (SNPs) within genes encoding for receptors for TNF (ie. TNFRSF1A) may change their function. The aim of this study was to investigate relationship between a polymorphism of TNFRSF1A and occurrence and severity of acute reaction after RTH for HNC patients. Data from 58 HNC patients (stages I-IV) were analyzed. All of them were irradiated using IMRT technique with doses 50-70Gy. Oral mucositis (OM) was evaluated according to RTOG/EORTC guidelines. DNA from HNC patients were isolated from whole blood and genotypes were determined by sequencing method. Patients with TT or GT genotype demonstrated higher risk of manifestation of grade 3 OM in 5th week of RTH (p=0.041; OR=9.240; 95% CI: 1.101–77.581) compared to GG carriers. Similarly, high risk of grade 3 OM in patients with T allele presence was noted in 6th week (p=0.030; OR=10.50; 95%CI:1.257–87.690) and in 7th week (p=0.008; OR=5.625; 95% CI: 1.584–19.975) of treatment compared to patients with GG homozygote. Our results indicate an association between SNP of TNFRSF1A (rs4149570) gene and risk of more severe OM related to radiation therapy for HNC patients.
Collapse
Affiliation(s)
- Anna Brzozowska
- Department of Oncology, Medical University of Lublin, Jaczewskiego 7, 20-090, Lublin, Poland.
| | - Tomasz Powrózek
- Department of Human Physiology, Medical University of Lublin, Radziwiłłowska 11, 20-080, Lublin, Poland
| | - Iwona Homa-Mlak
- Department of Human Physiology, Medical University of Lublin, Radziwiłłowska 11, 20-080, Lublin, Poland
| | - Radosław Mlak
- Department of Human Physiology, Medical University of Lublin, Radziwiłłowska 11, 20-080, Lublin, Poland
| | - Marzanna Ciesielka
- Department of Forensic Medicine, Medical University of Lublin, Jaczewskiego 8, 20-090, Lublin, Poland
| | - Paweł Gołębiowski
- Department of Oncology, Medical University of Lublin, Jaczewskiego 7, 20-090, Lublin, Poland
| | - Teresa Małecka-Massalska
- Department of Human Physiology, Medical University of Lublin, Radziwiłłowska 11, 20-080, Lublin, Poland
| |
Collapse
|
39
|
Zhu XX, Yang XJ, Chao YL, Zheng HM, Sheng HF, Liu HY, He Y, Zhou HW. The Potential Effect of Oral Microbiota in the Prediction of Mucositis During Radiotherapy for Nasopharyngeal Carcinoma. EBioMedicine 2017; 18:23-31. [PMID: 28216066 PMCID: PMC5405060 DOI: 10.1016/j.ebiom.2017.02.002] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 01/16/2017] [Accepted: 02/03/2017] [Indexed: 12/17/2022] Open
Abstract
Background Oral mucositis is probably the most debilitating complication that can arise in treating a patient with head and neck cancer. Little is known about the impacts of oral microbiota on the initiation and progression of mucositis. Methods Based on 16S rRNA gene sequencing, dynamic changes in oral bacterial profile as well as correlations between the severity of mucositis and bacterial shifts during radiotherapy were investigated. Findings Our results revealed that bacterial community structure altered progressively during radiation therapy, in parallel with a marked increase in the relative abundance of some Gram-negative bacteria. Patients who eventually developed severe mucositis harbored a significantly lower bacterial alpha diversity and higher abundance of Actinobacillus during the phase of erythema – patchy mucositis. Accordingly, a random forest model for predicting exacerbation of mucositis was generated, which achieved a high predictive accuracy (AUC) of 0.89. Interpretation Oral microbiota changes correlate with the progression and aggravation of radiotherapy-induced mucositis in patients with nasopharyngeal carcinoma. Microbiota-based strategies can be used for the early prediction and prevention of the incidence of severe mucositis during radiotherapy. The oral microbiota of NPC patients are different to that of healthy persons. The biodiversity of oral microbiota changed significantly as mucositis progressed during radiotherapy. Oral microbiota represents a potential strategy for predicting the aggravation of severe mucositis during radiotherapy.
Oral or oropharyngeal mucositis is the most common side effect of radiation therapy for head and neck cancers. In this prospective cohort study, we found that changes in an oral microbial community correlated with the progression and aggravation of radiotherapy-induced mucositis in the patients with nasopharyngeal carcinoma; and patients who eventually developed severe mucositis transiently harbored a notably higher proportion of Actinobacillus during a mild phase of mucositis, which may potentially play a role in the aggravation of severe mucosal lesions. Moreover, our findings also showed that microbiota-based strategies can be used for the early prediction of the incidence of severe mucositis during radiotherapy.
Collapse
Affiliation(s)
- Xiao-Xia Zhu
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Xiao-Jun Yang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Yi-Lan Chao
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Hui-Min Zheng
- State Key Laboratory of Organ Failure Research, Division of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Hua-Fang Sheng
- State Key Laboratory of Organ Failure Research, Division of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Hai-Yue Liu
- State Key Laboratory of Organ Failure Research, Division of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Yan He
- State Key Laboratory of Organ Failure Research, Division of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Hong-Wei Zhou
- State Key Laboratory of Organ Failure Research, Division of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China.
| |
Collapse
|
40
|
Cirincione R, Di Maggio FM, Forte GI, Minafra L, Bravatà V, Castiglia L, Cavalieri V, Borasi G, Russo G, Lio D, Messa C, Gilardi MC, Cammarata FP. High-Intensity Focused Ultrasound- and Radiation Therapy-Induced Immuno-Modulation: Comparison and Potential Opportunities. ULTRASOUND IN MEDICINE & BIOLOGY 2017; 43:398-411. [PMID: 27780661 DOI: 10.1016/j.ultrasmedbio.2016.09.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 09/20/2016] [Accepted: 09/21/2016] [Indexed: 05/12/2023]
Abstract
In recent years, high-intensity focused ultrasound (HIFU) has emerged as a new and promising non-invasive and non-ionizing ablative technique for the treatment of localized solid tumors. Extensive pre-clinical and clinical studies have evidenced that, in addition to direct destruction of the primary tumor, HIFU-thermoablation may elicit long-term systemic host anti-tumor immunity. In particular, an important consequence of HIFU treatment includes the release of tumor-associated antigens (TAAs), the secretion of immuno-suppressing factors by cancer cells and the induction of cytotoxic T lymphocyte (CTL) activity. Radiation therapy (RT) is the main treatment modality used for many types of tumors and about 50% of all cancer patients receive RT, often used in combination with surgery and chemotherapy. It is well known that RT can modulate anti-tumor immune responses, modifying micro-environment and stimulating inflammatory factors that can greatly affect cell invasion, bystander effects, radiation tissue complications (such as fibrosis), genomic instability and thus, intrinsic cellular radio-sensitivity. To date, various combined therapeutic strategies (such as immuno-therapy) have been performed in order to enhance RT success in treating locally advanced and recurrent tumors. Recent works suggested the combined use of HIFU and RT treatments to increase the tumor cell radio-sensitivity, in order to synergize the effects reaching the maximum results with minimal doses of ionizing radiation (IR). Here, we highlight the opposite immuno-modulation roles of RT and HIFU, providing scientific reasons to test, by experimental approaches, the use of HIFU immune-stimulatory capacity to improve tumor radio-sensitivity, to reduce the RT induced inflammatory response and to decrease the dose-correlated side effects in normal tissues.
Collapse
Affiliation(s)
| | - Federica Maria Di Maggio
- IBFM CNR, Cefalù, Palermo, Italy; Department of Pathobiology and Medical Biotechnologies, University of Palermo, Palermo, Italy
| | | | | | - Valentina Bravatà
- IBFM CNR, Cefalù, Palermo, Italy; Department of Pathobiology and Medical Biotechnologies, University of Palermo, Palermo, Italy
| | | | - Vincenzo Cavalieri
- Laboratory of Molecular Biology and Functional Genomics, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy
| | | | | | - Domenico Lio
- Department of Pathobiology and Medical Biotechnologies, University of Palermo, Palermo, Italy
| | - Cristina Messa
- IBFM CNR, Cefalù, Palermo, Italy; Department of Health Sciences, Tecnomed Foundation, University of Milano-Bicocca, Milan, Italy; Nuclear Medicine Center, San Gerardo Hospital, Monza, Italy
| | - Maria Carla Gilardi
- IBFM CNR, Cefalù, Palermo, Italy; Department of Health Sciences, Tecnomed Foundation, University of Milano-Bicocca, Milan, Italy; Nuclear Medicine, San Raffaele Scientific Institute, Milan, Italy
| | | |
Collapse
|
41
|
Genetic Variants in CD44 and MAT1A Confer Susceptibility to Acute Skin Reaction in Breast Cancer Patients Undergoing Radiation Therapy. Int J Radiat Oncol Biol Phys 2016; 97:118-127. [PMID: 27816361 DOI: 10.1016/j.ijrobp.2016.09.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 07/09/2016] [Accepted: 09/14/2016] [Indexed: 11/23/2022]
Abstract
PURPOSE Heterogeneity in radiation therapy (RT)-induced normal tissue toxicity is observed in 10% of cancer patients, limiting the therapeutic outcomes. In addition to treatment-related factors, normal tissue adverse reactions also manifest from genetic alterations in distinct pathways majorly involving DNA damage-repair genes, inflammatory cytokine genes, cell cycle regulation, and antioxidant response. Therefore, the common sequence variants in these radioresponsive genes might modify the severity of normal tissue toxicity, and the identification of the same could have clinical relevance as a predictive biomarker. METHODS AND MATERIALS The present study was conducted in a cohort of patients with breast cancer to evaluate the possible associations between genetic variants in radioresponsive genes described previously and the risk of developing RT-induced acute skin adverse reactions. We tested 22 genetic variants reported in 18 genes (ie, NFE2L2, OGG1, NEIL3, RAD17, PTTG1, REV3L, ALAD, CD44, RAD9A, TGFβR3, MAD2L2, MAP3K7, MAT1A, RPS6KB2, ZNF830, SH3GL1, BAX, and XRCC1) using TaqMan assay-based real-time polymerase chain reaction. At the end of RT, the severity of skin damage was scored, and the subjects were dichotomized as nonoverresponders (Radiation Therapy Oncology Group grade <2) and overresponders (Radiation Therapy Oncology Group grade ≥2) for analysis. RESULTS Of the 22 single nucleotide polymorphisms studied, the rs8193 polymorphism lying in the micro-RNA binding site of 3'-UTR of CD44 was significantly (P=.0270) associated with RT-induced adverse skin reactions. Generalized multifactor dimensionality reduction analysis showed significant (P=.0107) gene-gene interactions between MAT1A and CD44. Furthermore, an increase in the total number of risk alleles was associated with increasing occurrence of overresponses (P=.0302). CONCLUSIONS The genetic polymorphisms in radioresponsive genes act as genetic modifiers of acute normal tissue toxicity outcomes after RT by acting individually (rs8193), by gene-gene interactions (MAT1A and CD44), and/or by the additive effects of risk alleles.
Collapse
|
42
|
Batar B, Guven G, Eroz S, Bese NS, Guven M. Decreased DNA repair gene XRCC1 expression is associated with radiotherapy-induced acute side effects in breast cancer patients. Gene 2016; 582:33-7. [DOI: 10.1016/j.gene.2016.01.040] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 01/25/2016] [Accepted: 01/25/2016] [Indexed: 12/11/2022]
|
43
|
Beyond mean pharyngeal constrictor dose for beam path toxicity in non-target swallowing muscles: Dose-volume correlates of chronic radiation-associated dysphagia (RAD) after oropharyngeal intensity modulated radiotherapy. Radiother Oncol 2016; 118:304-14. [PMID: 26897515 DOI: 10.1016/j.radonc.2016.01.019] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 01/09/2016] [Accepted: 01/11/2016] [Indexed: 10/22/2022]
Abstract
PURPOSE/OBJECTIVE(S) We sought to identify swallowing muscle dose-response thresholds associated with chronic radiation-associated dysphagia (RAD) after IMRT for oropharyngeal cancer. MATERIALS/METHODS T1-4 N0-3 M0 oropharyngeal cancer patients who received definitive IMRT and systemic therapy were examined. Chronic RAD was coded as any of the following ⩾12months post-IMRT: videofluoroscopy/endoscopy detected aspiration or stricture, gastrostomy tube and/or aspiration pneumonia. DICOM-RT plan data were autosegmented using a custom region-of-interest (ROI) library and included inferior, middle and superior constrictors (IPC, MPC, and SPC), medial and lateral pterygoids (MPM, LPM), anterior and posterior digastrics (ADM, PDM), intrinsic tongue muscles (ITM), mylo/geniohyoid complex (MHM), genioglossus (GGM), masseter (MM), buccinator (BM), palatoglossus (PGM), and cricopharyngeus (CPM), with ROI dose-volume histograms (DVHs) calculated. Recursive partitioning analysis (RPA) was used to identify dose-volume effects associated with chronic-RAD, for use in a multivariate (MV) model. RESULTS Of 300 patients, 34 (11%) had chronic-RAD. RPA showed DVH-derived MHM V69 (i.e. the volume receiving⩾69Gy), GGM V35, ADM V60, MPC V49, and SPC V70 were associated with chronic-RAD. A model including age in addition to MHM V69 as continuous variables was optimal among tested MV models (AUC 0.835). CONCLUSION In addition to SPCs, dose to MHM should be monitored and constrained, especially in older patients (>62-years), when feasible.
Collapse
|
44
|
Peterson DE, Boers-Doets CB, Bensadoun RJ, Herrstedt J. Management of oral and gastrointestinal mucosal injury: ESMO Clinical Practice Guidelines for diagnosis, treatment, and follow-up. Ann Oncol 2015; 26 Suppl 5:v139-51. [PMID: 26142468 DOI: 10.1093/annonc/mdv202] [Citation(s) in RCA: 136] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- D E Peterson
- Department of Oral Health and Diagnostic Sciences, School of Dental Medicine, Program in Head and Neck Cancer and Oral Oncology Program, Neag Comprehensive Cancer Center, UConn Health, Farmington, USA
| | - C B Boers-Doets
- Department of Clinical Oncology, Leiden University Medical Center, Leiden and IMPAQTT, Wormer, The Netherlands
| | | | - J Herrstedt
- Department of Oncology, Odense University Hospital, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
45
|
Di Maggio FM, Minafra L, Forte GI, Cammarata FP, Lio D, Messa C, Gilardi MC, Bravatà V. Portrait of inflammatory response to ionizing radiation treatment. J Inflamm (Lond) 2015; 12:14. [PMID: 25705130 PMCID: PMC4336767 DOI: 10.1186/s12950-015-0058-3] [Citation(s) in RCA: 186] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 01/29/2015] [Indexed: 01/05/2023] Open
Abstract
Ionizing radiation (IR) activates both pro-and anti-proliferative signal pathways producing an imbalance in cell fate decision. IR is able to regulate several genes and factors involved in cell-cycle progression, survival and/or cell death, DNA repair and inflammation modulating an intracellular radiation-dependent response. Radiation therapy can modulate anti-tumour immune responses, modifying tumour and its microenvironment. In this review, we report how IR could stimulate inflammatory factors to affect cell fate via multiple pathways, describing their roles on gene expression regulation, fibrosis and invasive processes. Understanding the complex relationship between IR, inflammation and immune responses in cancer, opens up new avenues for radiation research and therapy in order to optimize and personalize radiation therapy treatment for each patient.
Collapse
Affiliation(s)
- Federica Maria Di Maggio
- />Department of Pathobiology and Medical and Forensic Biotechnologies, University of Palermo, Palermo, Italy
- />IBFM CNR – LATO, Contrada Pietrapollastra Pisciotto, Cefalù, PA Italy
| | - Luigi Minafra
- />IBFM CNR – LATO, Contrada Pietrapollastra Pisciotto, Cefalù, PA Italy
| | - Giusi Irma Forte
- />IBFM CNR – LATO, Contrada Pietrapollastra Pisciotto, Cefalù, PA Italy
| | | | - Domenico Lio
- />Department of Pathobiology and Medical and Forensic Biotechnologies, University of Palermo, Palermo, Italy
| | - Cristina Messa
- />IBFM CNR – LATO, Contrada Pietrapollastra Pisciotto, Cefalù, PA Italy
- />Department of Health Sciences, Tecnomed Foundation, University of Milano-Bicocca, Milan, Italy
- />Nuclear Medicine Center, San Gerardo Hospital, Monza, Italy
| | - Maria Carla Gilardi
- />IBFM CNR – LATO, Contrada Pietrapollastra Pisciotto, Cefalù, PA Italy
- />Department of Health Sciences, Tecnomed Foundation, University of Milano-Bicocca, Milan, Italy
- />Nuclear Medicine, San Raffaele Scientific Institute, Milan, Italy
| | - Valentina Bravatà
- />IBFM CNR – LATO, Contrada Pietrapollastra Pisciotto, Cefalù, PA Italy
| |
Collapse
|
46
|
Guo Z, Shu Y, Zhou H, Zhang W, Wang H. Radiogenomics helps to achieve personalized therapy by evaluating patient responses to radiation treatment. Carcinogenesis 2015; 36:307-17. [PMID: 25604391 DOI: 10.1093/carcin/bgv007] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Radiogenomics is the whole genome application of radiogenetics, which focuses on uncovering the underlying genetic causes of individual variation in sensitivity to radiation. There is a growing consensus that radiosensitivity is a complex, inherited polygenic trait, dependent on the interaction of many genes involved in multiple cell processes. An understanding of the genes involved in processes such as DNA damage response and oxidative stress response, has evolved toward examination of how genetic variants, most often, single nucleotide polymorphisms (SNPs), may influence interindividual radioresponse. Many experimental approaches, such as candidate SNP association studies, genome-wide association studies and massively parallel sequencing are being proposed to address these questions. We present a review focusing on recent advances in association studies of SNPs to radiotherapy response and discuss challenges and opportunities for further studies. We also highlight the clinical perspective of radiogenomics in the future of personalized treatment in radiation oncology.
Collapse
Affiliation(s)
- Zhen Guo
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University and Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha 410008, P.R. China
| | - Yan Shu
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD 21201, USA and
| | - Honghao Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University and Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha 410008, P.R. China
| | - Wei Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University and Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha 410008, P.R. China;
| | - Hui Wang
- Department of Radiation Oncology, Hunan Provincial Tumor Hospital & Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha 410013, P.R. China
| |
Collapse
|