1
|
Yang L, Ma D, Liu S, Zou L. The DHODH inhibitor teriflunomide impedes cell proliferation and enhances chemosensitivity to daunorubicin (DNR) in T-cell acute lymphoblastic leukemia. Ann Hematol 2024:10.1007/s00277-024-05998-0. [PMID: 39377943 DOI: 10.1007/s00277-024-05998-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/05/2024] [Indexed: 10/09/2024]
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematological tumor that requires novel treatment strategies, especially for relapsed/refractory cases. Dihydroorotate dehydrogenase (DHODH), a key enzyme in the de novo pyrimidine synthesis pathway, has been identified as a potential target for tumors. Besides, Teriflunomide (TRF) is a DHODH inhibitor with anticancer effects; however, its role in T-ALL remains poorly understood. Here, we investigated the potential anticancer effects of TRF on T-ALL cells, and the results showed that TRF inhibited cell proliferation, caused S-phase cell cycle arrest, and promoted apoptosis of T-ALL (MOLT4 and JURKAT) cell lines. In addition, TRF reduced the infiltration capacity of T-ALL cells in T-ALL xenograft mice while up-regulating the expression of P53 and BTG2. The BTG2 knockdown significantly attenuated the inhibitory effect of TRF on cellular growth and suppressed the TRF-mediated elevated expression of P53 in T-ALL cells. Moreover, combined treatment with TRF and daunorubicin (DNR) significantly reduced cell viability and promoted apoptosis in DNR-resistant T-ALL cells. Our study provides valuable insights into the critical role of TRF in treating T-ALL while increasing the sensitivity of DNR-resistant T-ALL cells to DNR.
Collapse
Affiliation(s)
- Li Yang
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Center for Clinical Molecular Laboratory Medicine of Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Deyu Ma
- Center for Clinical Molecular Laboratory Medicine of Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
- National Clinical Research Center for Child Health and Disorders (Chongqing), Chongqing, 400014, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, 400014, China
| | - Shan Liu
- Center for Clinical Molecular Laboratory Medicine of Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
- National Clinical Research Center for Child Health and Disorders (Chongqing), Chongqing, 400014, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, 400014, China
| | - Lin Zou
- Center for Clinical Molecular Laboratory Medicine of Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.
- Clinical Research Unit, Children's Hospital of Shanghai Jiao Tong University, 355 Luding Rd, Putuo District, Shanghai, 200062, China.
- Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200062, China.
| |
Collapse
|
2
|
Schmidt KT, Chau CH, Strope JD, Huitema ADR, Sissung TM, Price DK, Figg WD. Antitumor Activity of NLG207 (Formerly CRLX101) in Combination with Enzalutamide in Preclinical Prostate Cancer Models. Mol Cancer Ther 2021; 20:915-924. [PMID: 33632874 PMCID: PMC8102325 DOI: 10.1158/1535-7163.mct-20-0228] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 06/06/2020] [Accepted: 02/11/2021] [Indexed: 11/16/2022]
Abstract
Effective treatments for patients with metastatic castration-resistant prostate cancer following disease progression on enzalutamide are currently an unmet clinical need. Simultaneous inhibition of the hypoxia-inducible factor (HIF)-1α and androgen receptor (AR) pathways has been previously shown to overcome enzalutamide resistance in vitro Combination treatment with NLG207, a nanoparticle-drug conjugate of camptothecin and inhibitor of HIF-1α, and enzalutamide was evaluated in preclinical prostate cancer models of enzalutamide resistance. The effect of NLG207 and enzalutamide on average tumor volume and tumor re-growth after 3 weeks of treatment was evaluated in vivo using the subcutaneous 22Rv1 xenograft and castrated subcutaneous VCaP xenograft models. Correlative assessments of antitumor activity were evaluated in vitro using cell proliferation and qPCR assays. NLG207 8 mg/kg alone and in combination with enzalutamide reduced average tumor volume by 93% after 3 weeks of treatment (P < 0.05) in comparison with vehicle control in the subcutaneous 22Rv1 xenograft model. Notably, the addition of NLG207 also enhanced the efficacy of enzalutamide alone in the castrated subcutaneous VCaP xenograft model, decreasing the median rate of tumor growth by 51% (P = 0.0001) in comparison with enzalutamide alone. In vitro assessments of cell proliferation and gene expression further demonstrated antitumor activity via AR-HIF-1α crosstalk inhibition. Combination treatment with NLG207 and enzalutamide was shown to be effective in preclinical prostate cancer models of enzalutamide resistance. Clinical investigation of this treatment combination is ongoing (NCT03531827).
Collapse
Affiliation(s)
- Keith T Schmidt
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Cindy H Chau
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Jonathan D Strope
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Alwin D R Huitema
- Department Pharmacy and Pharmacology, Netherlands Cancer Institute, Amsterdam, The Netherlands
- Department of Clinical Pharmacy, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Tristan M Sissung
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Douglas K Price
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - William D Figg
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|
3
|
Shi J, Li J, Xu Z, Chen L, Luo R, Zhang C, Gao F, Zhang J, Fu C. Celastrol: A Review of Useful Strategies Overcoming its Limitation in Anticancer Application. Front Pharmacol 2020; 11:558741. [PMID: 33364939 PMCID: PMC7751759 DOI: 10.3389/fphar.2020.558741] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 10/01/2020] [Indexed: 12/12/2022] Open
Abstract
Celastrol, a natural bioactive ingredient derived from Tripterygium wilfordii Hook F, exhibits significant broad-spectrum anticancer activities for the treatment of a variety of cancers including liver cancer, breast cancer, prostate tumor, multiple myeloma, glioma, etc. However, the poor water stability, low bioavailability, narrow therapeutic window, and undesired side effects greatly limit its clinical application. To address this issue, some strategies were employed to improve the anticancer efficacy and reduce the side-effects of celastrol. The present review comprehensively focuses on the various challenges associated with the anticancer efficiency and drug delivery of celastrol, and the useful approaches including combination therapy, structural derivatives and nano/micro-systems development. The specific advantages for the use of celastrol mediated by these strategies are presented. Moreover, the challenges and future research directions are also discussed. Based on this review, it would provide a reference to develop a natural anticancer compound for cancer treatment.
Collapse
Affiliation(s)
- Jinfeng Shi
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiaxin Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ziyi Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Liang Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ruifeng Luo
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chen Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fei Gao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jinming Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chaomei Fu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
4
|
Yuniati L, Scheijen B, van der Meer LT, van Leeuwen FN. Tumor suppressors BTG1 and BTG2: Beyond growth control. J Cell Physiol 2018; 234:5379-5389. [PMID: 30350856 PMCID: PMC6587536 DOI: 10.1002/jcp.27407] [Citation(s) in RCA: 135] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 08/22/2018] [Indexed: 01/21/2023]
Abstract
Since the identification of B‐cell translocation gene 1 (BTG1) and BTG2 as antiproliferation genes more than two decades ago, their protein products have been implicated in a variety of cellular processes including cell division, DNA repair, transcriptional regulation and messenger RNA stability. In addition to affecting differentiation during development and in the adult, BTG proteins play an important role in maintaining homeostasis under conditions of cellular stress. Genomic profiling of B‐cell leukemia and lymphoma has put BTG1 and BTG2 in the spotlight, since both genes are frequently deleted or mutated in these malignancies, pointing towards a role as tumor suppressors. Moreover, in solid tumors, reduced expression of BTG1 or BTG2 is often correlated with malignant cell behavior and poor treatment outcome. Recent studies have uncovered novel roles for BTG1 and BTG2 in genotoxic and integrated stress responses, as well as during hematopoiesis. This review summarizes what is currently known about the roles of BTG1 and BTG2 in these and other cellular processes. In addition, we will highlight the molecular mechanisms and biological consequences of BTG1 and BTG2 deregulation during cancer progression and elaborate on the potential clinical implications of these findings.
Collapse
Affiliation(s)
- Laurensia Yuniati
- Laboratory of Pediatric Oncology, Radboud Institute for Molecular Life Science, Radboud University Medical Center, Nijmegen, The Netherlands.,Hubrecht Institute-KNAW, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Blanca Scheijen
- Laboratory of Pediatric Oncology, Radboud Institute for Molecular Life Science, Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Pathology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Laurens T van der Meer
- Laboratory of Pediatric Oncology, Radboud Institute for Molecular Life Science, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Frank N van Leeuwen
- Laboratory of Pediatric Oncology, Radboud Institute for Molecular Life Science, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
5
|
Tsui KH, Chiang KC, Lin YH, Chang KS, Feng TH, Juang HH. BTG2 is a tumor suppressor gene upregulated by p53 and PTEN in human bladder carcinoma cells. Cancer Med 2017; 7:184-195. [PMID: 29239139 PMCID: PMC5773943 DOI: 10.1002/cam4.1263] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 09/30/2017] [Accepted: 10/26/2017] [Indexed: 12/11/2022] Open
Abstract
Although widely deemed as a tumor suppressor gene, the role of B-cell translocation gene 2 (BTG2) in bladder cancer is still inconclusive. We investigated the role and regulatory mechanism of BTG2 in bladder cancer. BTG2 expression in human bladder tissues was determined by RT-qPCR and immunoblotting assays. Expressions of BTG2 and PTEN in bladder carcinoma cells were determined by immunoblotting, RT-qPCR, or reporter assays. The 3 H-thymidine incorporation assay, flow cytometry, and the xenograft animal model were used to determine the cell growth. BTG2 expression was lower in human bladder cancer tissues than normal bladder tissues. Highly differentiated bladder cancer cells, RT4, expressed higher BTG2 than the less-differentiated bladder cancer cells, HT1376 and T24. Overexpression of BTG2 in T24 cells inhibited cell growth in vitro and in vivo. Camptothecin and doxorubicin treatments in RT-4 cells or transient overexpression of p53 into p53-mutant HT1376 cells induced p53 and BTG2 expression. Further reporter assays with site-mutation of p53 response element from GGGAAAGTCC to GGAGTCC within BTG2 promoter area showed that p53-induced BTG2 gene expression was dependent on the p53 response element. Ectopic PTEN overexpression in T24 cells blocked the Akt signal pathway which attenuated cell growth via upregualtion of BTG2 gene expression, while reverse effect was found in PTEN-knockdown RT-4 cells. PTEN activity inhibitor (VO-OHpic) treatment decreased BTG2 expression in RT-4 and PTEN-overexpressed T24 cells. Our results suggested that BTG2 functioned as a bladder cancer tumor suppressor gene, and was induced by p53 and PTEN. Modulation of BTG2 expression seems a promising way to treat human bladder cancer.
Collapse
Affiliation(s)
- Ke-Hung Tsui
- Department of Urology, Chang Gung Memorial Hospital-Linkou, Kwei-Shan, Tao-Yuan, Taiwan
| | - Kun-Chun Chiang
- Zebrafish center, Department of General Surgery, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Yu-Hsiang Lin
- Department of Urology, Chang Gung Memorial Hospital-Linkou, Kwei-Shan, Tao-Yuan, Taiwan.,Graduate Institute of Clinical Medical Science, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan
| | - Kang-Shuo Chang
- Department of Anatomy, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan
| | - Tsui-Hsia Feng
- School of Nursing, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan
| | - Horng-Heng Juang
- Department of Urology, Chang Gung Memorial Hospital-Linkou, Kwei-Shan, Tao-Yuan, Taiwan.,Department of Anatomy, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan
| |
Collapse
|
6
|
Chiang KC, Yeh TS, Huang CC, Chang YC, Juang HH, Cheng CT, Pang JHS, Hsu JT, Takano M, Chen TC, Kittaka A, Hsiao M, Yeh CN. MART-10 represses cholangiocarcinoma cell growth and high vitamin D receptor expression indicates better prognosis for cholangiocarcinoma. Sci Rep 2017; 7:43773. [PMID: 28256614 PMCID: PMC5335655 DOI: 10.1038/srep43773] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 01/30/2017] [Indexed: 12/14/2022] Open
Abstract
Cholangiocarcinoma (CCA) is a devastating disease due to no effective treatments available. Since the non-mineral functions of vitamin D emerges, 1α,25(OH)2D3, the active form of vitamin D, has been applied in anti-cancer researches. In this study, we demonstrated that both the 1α,25(OH)2D3 analog, MART-10, and 1α,25(OH)2D3 possessed anti-growth effect on human CCA cells with MART-10 much more potent than 1α,25(OH)2D3. The growth inhibition of both drugs were mediated by induction of G0/G1 cell cycle arrest through upregulation of p27 and downregulation of CDK4, CDK6, and cyclin D3. Human neutrophil gelatinase associated lipocalin (NGAL) was found to be involved in 1α,25(OH)2D3 and MART-10 meditated growth inhibition for CCA as knockdown of NGAL decreased Ki-67 expression in SNU308 cells and rendered SNU308 cells less responsive to 1α,25(OH)2D3 and MART-10 treatment. Vitamin D receptor (VDR) knockdown partly abolished MART-10-induced inhibition of NGAL and cell growth in SNU308 cells. The xenograft animal study demonstrated MART-10 could effectively repressed CCA growth in vivo without inducing obvious side effects. The IHC examination of human CCA specimen for VDR revealed that higher VDR expression was linked with better prognosis. Collectively, our results suggest that MART-10 could be a promising regimen for CCA treatment.
Collapse
Affiliation(s)
- Kun-Chun Chiang
- General Surgery Department, Chang Gung Memorial Hospital, Chang Gung University, Keelung, R.O.C, Taiwan.,Director of Zebrafish center of Keelung Chang Gung Memorial Hospital, R.O.C, Taiwan
| | - Ta-Sen Yeh
- General Surgery Department and Liver research center, Chang Gung Memorial Hospital, Chang Gung University, Kwei-Shan, Taoyuan, R.O.C, Taiwan
| | - Cheng-Cheng Huang
- Department of Pathology, Chang Gung Memorial Hospital, 222, Mai-Chin Road, Keelung, R.O.C, Taiwan
| | - Yu-Chan Chang
- Genomics Research Center, Academia Sinica, Taipei, R.O.C, Taiwan
| | - Horng-Heng Juang
- Department of Anatomy, College of Medicine, Chang Gung University, Kwei-Shan, Taoyuan, 333, R.O.C, Taiwan
| | - Chi-Tung Cheng
- General Surgery Department and Liver research center, Chang Gung Memorial Hospital, Chang Gung University, Kwei-Shan, Taoyuan, R.O.C, Taiwan
| | - Jong-Hwei S Pang
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Kwei-Shan, Taoyuan, R.O.C, Taiwan
| | - Jun-Te Hsu
- General Surgery Department and Liver research center, Chang Gung Memorial Hospital, Chang Gung University, Kwei-Shan, Taoyuan, R.O.C, Taiwan
| | - Masashi Takano
- Faculty of Pharmaceutical Sciences, Teikyo University, Sagamihara, Kanagawa, 252-5195, Japan
| | - Tai C Chen
- Boston University School of Medicine, M-1022, 715 Albany Street, Boston, MA 02118, USA
| | - Atsushi Kittaka
- Faculty of Pharmaceutical Sciences, Teikyo University, Sagamihara, Kanagawa, 252-5195, Japan
| | - Michael Hsiao
- Genomics Research Center, Academia Sinica, Taipei, R.O.C, Taiwan
| | - Chun-Nan Yeh
- General Surgery Department and Liver research center, Chang Gung Memorial Hospital, Chang Gung University, Kwei-Shan, Taoyuan, R.O.C, Taiwan
| |
Collapse
|
7
|
Chiang KC, Yeh CN, Huang CC, Yeh TS, S Pang JH, Hsu JT, Chen LW, Kuo SF, Kittaka A, Chen TC, Juang HH. 25(OH)D Is Effective to Repress Human Cholangiocarcinoma Cell Growth through the Conversion of 25(OH)D to 1α,25(OH)₂D₃. Int J Mol Sci 2016; 17:ijms17081326. [PMID: 27529229 PMCID: PMC5000723 DOI: 10.3390/ijms17081326] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Revised: 08/04/2016] [Accepted: 08/09/2016] [Indexed: 12/31/2022] Open
Abstract
Cholangiocarcinoma (CCA) is a devastating disease without effective treatments. 1α,25(OH)2D3, the active form of Vitamin D, has emerged as a new anti-cancer regimen. However, the side effect of hypercalcemia impedes its systemic administration. 25(OH)D is biologically inert and needs hydroxylation by CYP27B1 to form 1α,25(OH)2D3, which is originally believed to only take place in kidneys. Recently, the extra-renal expression of CYP27B1 has been identified and in vitro conversion of 25(OH)D to 1α,25(OH)2D3 has been found in some cancer cells with CYP27B1 expression. In this study, CYP27B1 expression was demonstrated in CCA cells and human CCA specimens. 25(OH)D effectively represses SNU308 cells growth, which was strengthened or attenuated as CYP27B1 overexpression or knockdown. Lipocalcin-2 (LCN2) was also found to be repressed by 25(OH)D. After treatment with 800 ng/mL 25(OH)D, the intracellular 1α,25(OH)2D3 concentration was higher in SNU308 cells with CYP27B1 overexpression than wild type SNU308 cells. In a xenograft animal experiment, 25(OH)D, at a dose of 6 μg/kg or 20 μg/kg, significantly inhibited SNU308 cells’ growth without inducing obvious side effects. Collectively, our results indicated that SNU308 cells were able to convert 25(OH)D to 1α,25(OH)2D3 and 25(OH)D CYP27B1 gene therapy could be deemed as a promising therapeutic direction for CCA.
Collapse
Affiliation(s)
- Kun-Chun Chiang
- General Surgery Department and Zebrafish Center, Chang Gung Memorial Hospital, Chang Gung University, Keelung 204, Taiwan.
| | - Chun-Nan Yeh
- General Surgery Department, Chang Gung Memorial Hospital, Chang Gung University, Kwei-Shan, Taoyuan 244, Taiwan.
| | - Cheng-Cheng Huang
- Pathology Department, Chang Gung Memorial Hospital, Chang Gung University, Keelung 204, Taiwan.
| | - Ta-Sen Yeh
- General Surgery Department, Chang Gung Memorial Hospital, Chang Gung University, Kwei-Shan, Taoyuan 244, Taiwan.
| | - Jong-Hwei S Pang
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Kwei-Shan, Taoyuan 244, Taiwan.
| | - Jun-Te Hsu
- General Surgery Department, Chang Gung Memorial Hospital, Chang Gung University, Kwei-Shan, Taoyuan 244, Taiwan.
| | - Li-Wei Chen
- Department of Gastroenterology, Chang Gung Memorial Hospital, Chang Gung University, Keelung 204, Taiwan.
| | - Sheng-Fong Kuo
- Department of Endocrinology and Metabolism, Chang Gung Memorial Hospital, Chang Gung University, Keelung 204, Taiwan.
| | - Atsushi Kittaka
- Faculty of Pharmaceutical Sciences, Teikyo University, 2-11-1 Kaga, Itabashi, Tokyo 173-8605, Japan.
| | - Tai C Chen
- Endocrine core lab, boston University School of Medicine, Boston, MA 02118, USA.
| | - Horng-Heng Juang
- Department of Anatomy, College of Medicine, Chang Gung University, Kwei-Shan, Taoyuan 244, Taiwan.
| |
Collapse
|
8
|
Tsui KH, Lin YH, Chung LC, Chuang ST, Feng TH, Chiang KC, Chang PL, Yeh CJ, Juang HH. Prostate-derived ets factor represses tumorigenesis and modulates epithelial-to-mesenchymal transition in bladder carcinoma cells. Cancer Lett 2016; 375:142-151. [PMID: 26965996 DOI: 10.1016/j.canlet.2016.02.056] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 02/27/2016] [Accepted: 02/29/2016] [Indexed: 12/27/2022]
Abstract
Prostate-derived Ets (E-twenty six) factor (PDEF), an epithelium-specific member of the Ets family of transcription factors, has been shown to play a role in suppressing the development of many epithelium-derived cancers such as prostate and breast cancer. It is not clear, however, whether PDEF is involved in the development or progression of bladder cancer. In a comparison between normal urothelium and bladder tumor tissue, we identified significant decreases of PDEF in the tumor tissue. Further, the immunohistochemistry assays indicated a significantly higher immunostaining of PDEF in low-grade bladder tumors. Additionally, the highly differentiated transitional-cell bladder carcinoma RT-4 cells expressed significantly more PDEF levels than the bladder carcinoma HT1376 and the T24 cells. Ectopic overexpression of PDEF attenuated proliferation, invasion, and tumorigenesis of bladder carcinoma cells in vitro and in vivo. PDEF enhanced the expression levels of mammary serine protease inhibitor (MASPIN), N-myc downstream regulated gene 1 (NDRG1), KAI1, and B-cell translocation gene 2 (BTG2). PDEF modulated epithelial-mesenchymal-transition (EMT) by upregulating E-cadherin expression and downregulating the expression of N-cadherin, SNAIL, SLUG, and vimentin, leading to lower migration and invasion abilities of bladder carcinoma cells. Filamentous actin (F-actin) polarization and remodeling were observed in PDEF-knockdown RT-4 cells. Our results suggest that PDEF gene expression is associated with the extent of bladder neoplasia and PDEF modulated the expressions of EMT-related genes. The induction of BTG2, NDRG1, MASPIN, and KAI1 gene expressions by PDEF may explain the inhibitory functions of PDEF on the proliferation, invasion, and tumorigenesis in bladder carcinoma cells.
Collapse
Affiliation(s)
- Ke-Hung Tsui
- Department of Urology, Chang Gung Memorial Hospital, Kwei-Shan, Tao-Yuan, Taiwan; Department of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan
| | - Yu-Hsiang Lin
- Department of Urology, Chang Gung Memorial Hospital, Kwei-Shan, Tao-Yuan, Taiwan; Graduate Institute of Clinical Medical Science, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan
| | - Li-Chuan Chung
- Department of Anatomy, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan
| | - Sung-Ting Chuang
- Department of Anatomy, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan
| | - Tsui-Hsia Feng
- School of Nursing, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan
| | - Kun-Chun Chiang
- Zebafish Center, General Surgery Department, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Phei-Lang Chang
- Department of Urology, Chang Gung Memorial Hospital, Kwei-Shan, Tao-Yuan, Taiwan; Department of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan
| | - Chi-Ju Yeh
- Department of Pathology, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan
| | - Horng-Heng Juang
- Department of Urology, Chang Gung Memorial Hospital, Kwei-Shan, Tao-Yuan, Taiwan; Department of Anatomy, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan.
| |
Collapse
|
9
|
Mao QQ, Lin YW, Chen H, Yang K, Kong DB, Jiang H. Monitoring of prostate cancer growth and metastasis using a PSA luciferase report plasmid in a mouse model. ASIAN PAC J TROP MED 2014; 7:879-83. [PMID: 25441987 DOI: 10.1016/s1995-7645(14)60153-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2014] [Revised: 09/10/2014] [Accepted: 10/15/2014] [Indexed: 01/10/2023] Open
Abstract
OBJECTIVE To construct a PSA luciferase report plasmid and monitor the growth and metastasis of prostate cancer after emasculation in SCID mice. METHODS PSA promoter sequence and luciferase gene were amplified by PCR and subsequently inserted into pZsGreen1-1 vector to construct pPSA-FL-Luc vector. LNCaP cells that were stably transfected with pPSA-FL-Luc were used to establish a SCID mouse xenograft model. Then, the growth and metastasis of prostate cancer were monitored via living imaging. RESULTS We successfully constructed a PSA luciferase plasmid, pPSA-FL-Luc. DHT enhanced luciferase activity in a concentration-dependent manner in 293T cells with pPSA-FL-Luc transfection. Prostate cancer SCID mouse model was established with pPSA-FL-Luc transfected LNCaP cells. In tumor bearing mice with or without emasculation, pPSA-FL-Luc plasmid was applied to monitored tumor growth and metastasis based on bioluminescence imaging. CONCLUSIONS We construct a pPSA-FL-Luc plasmid, which stably expresses luciferase and can be applied to monitor tumor development in a prostate SCID mouse model.
Collapse
Affiliation(s)
- Qi-Qi Mao
- Department of Urology, the First Affiliated Hospital of Zhejiang University Medical College, Hangzhou, 310003, China
| | - Yi-Wei Lin
- Department of Urology, the First Affiliated Hospital of Zhejiang University Medical College, Hangzhou, 310003, China
| | - Hong Chen
- Department of Urology, the First Affiliated Hospital of Zhejiang University Medical College, Hangzhou, 310003, China
| | - Kai Yang
- Department of Urology, the First Affiliated Hospital of Zhejiang University Medical College, Hangzhou, 310003, China
| | - De-Bo Kong
- Department of Urology, the First Affiliated Hospital of Zhejiang University Medical College, Hangzhou, 310003, China
| | - Hai Jiang
- Department of Urology, the First Affiliated Hospital of Zhejiang University Medical College, Hangzhou, 310003, China.
| |
Collapse
|
10
|
Chiang KC, Tsui KH, Chung LC, Yeh CN, Feng TH, Chen WT, Chang PL, Chiang HY, Juang HH. Cisplatin modulates B-cell translocation gene 2 to attenuate cell proliferation of prostate carcinoma cells in both p53-dependent and p53-independent pathways. Sci Rep 2014; 4:5511. [PMID: 24981574 PMCID: PMC4076686 DOI: 10.1038/srep05511] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 06/11/2014] [Indexed: 12/29/2022] Open
Abstract
Cisplatin is a widely used anti-cancer drug. The B-cell translocation gene 2 (BTG2) is involved in the cell cycle transition regulation. We evaluated the cisplatin effects on prostate cancer cell proliferation and the expressions of BTG2, p53, androgen receptor (AR) and prostate specific antigen (PSA) in prostate carcinoma, p53 wild-type LNCaP or p53-null PC-3, cells. Cisplatin treatments attenuated cell prostate cancer cell growth through inducing Go/G1 cell cycle arrest in lower concentration and apoptosis at higher dosage. Cisplatin treatments enhanced p53 and BTG2 expression, repressed AR and PSA expression, and blocked the activation of androgen on the PSA secretion in LNCaP cells. BTG2 knockdown in LNCaP cells attenuated cisplatin-mediated growth inhibition. Cisplatin enhanced BTG2 gene expression dependent on the DNA fragment located within -173 to -82 upstream of BTG2 translation initiation site in prostate cancer cells. Mutation of the p53 response element from GGGCAGAGCCC to GGGCACC or mutation of the NFκB response element from GGAAAGTCC to GGAAAGGAA by site-directed mutagenesis abolished the stimulation of cisplatin on the BTG2 promoter activity in LNCaP or PC-3 cells, respectively. Our results indicated that cisplatin attenuates prostate cancer cell proliferation partly mediated by upregulation of BTG2 through the p53-dependent pathway or p53-independent NFκB pathway.
Collapse
Affiliation(s)
- Kun-Chun Chiang
- Department of General Surgery, Chang Gung Memorial Hospital, Keelung, Taiwan, ROC
- These authors contributed equally to this work
| | - Ke-Hung Tsui
- Department of Urology, Chang Gung Memorial Hospital, Kwei-Shan, Tao-Yuan, Taiwan, ROC
- These authors contributed equally to this work
| | - Li-Chuan Chung
- Department of Anatomy, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan, ROC
| | - Chun-Nan Yeh
- Department of General Surgery, Chang Gung Memorial Hospital, Kwei-Shan, Tao-Yuan, Taiwan, ROC
| | - Tsui-Hsia Feng
- School of Nursing, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan, ROC
| | - Wen-Tsung Chen
- National Kaohsiung University of Hospitality and Tourism, Hsiao-Kang, Kaohsiung Taiwan R.O.C
| | - Phei-Lang Chang
- Department of Urology, Chang Gung Memorial Hospital, Kwei-Shan, Tao-Yuan, Taiwan, ROC
| | - Hou-Yu Chiang
- Department of Anatomy, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan, ROC
| | - Horng-Heng Juang
- Department of Anatomy, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan, ROC
| |
Collapse
|