1
|
Mora-Gutiérrez A, Guevara J, Rubio C, Calvillo-Velasco M, Silva-Adaya D, Retana-Márquez S, Espinosa B, Martínez-Valenzuela C, Rubio-Osornio M. Clothianidin and Thiacloprid Mixture Administration Induces Degenerative Damage in the Dentate Gyrus and Alteration in Short-Term Memory in Rats. J Toxicol 2021; 2021:9983201. [PMID: 34858496 PMCID: PMC8632432 DOI: 10.1155/2021/9983201] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 11/09/2021] [Indexed: 11/20/2022] Open
Abstract
Neonicotinoids are pesticides that act as agonists of nicotinic receptors for acetylcholine in insects' central nervous system (CNS). Chronic exposure to neonicotinoids in humans is related to autism, memory loss, and finger tremor. In this article, we evaluate the effect of subchronic oral administration of two neonicotinoids in the same mixture: clothianidin and thiacloprid. Decreasing doses of both pesticides were administered to rats starting from the lethal dose 50 (LD50) reported by the manufacturer. Our results indicate that the administration of three doses of decreasing amounts of LD50 (5/10, 4/10, and 3/10 LD50) resulted in 100% death in all cases. Ten administration times of 2/10 LD50 of the mixture caused only 20% of death cases after twenty-seven days, which was determined as a subchronic administration scheme. The animals administered 2/10 LD50 showed behavioral alterations after the first and second administration. Electrographic studies showed abnormal discharge patterns in the CNS. 72 h after the tenth dose, learning and memory tests were performed in the Morris water maze. Our results revealed significant decreases in permanence at the quadrant and the number of crosses (P=0.0447, P=0.0193, respectively), which represent alterations in the short-term memory test, but there were no significant changes in a long-term memory test. Likewise, the brains of these animals showed tissue architecture loss, nucleosomal retraction, and a significant increase in the pycnosis of the granular neurons of the dentate gyrus analyzed at 72 h after the last dose (P=0.0125). Toxic effects and cognitive deterioration that have been found in communities living near contaminated areas are probably related to the agricultural use of neonicotinoids.
Collapse
Affiliation(s)
- Alejandra Mora-Gutiérrez
- Departamento de Neuroquímica, Instituto Nacional de Neurología y Neurocirugía, Ciudad de México 14269, Mexico
| | - Jorge Guevara
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Carmen Rubio
- Departamento de Neurofisiología, Instituto Nacional de Neurología y Neurocirugía, Ciudad de México 14269, Mexico
| | - Minerva Calvillo-Velasco
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Instituto Nacional de Neurología y Neurocirugía, 14269 Ciudad de México, Mexico
| | - Daniela Silva-Adaya
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Instituto Nacional de Neurología y Neurocirugía, 14269 Ciudad de México, Mexico
| | - Socorro Retana-Márquez
- Departamento de Biología de la Reproducción, Laboratorio R012, Universidad Autónoma Metropolitana, Unidad Iztapalapa, Ciudad de México 09340, Mexico
| | - Blanca Espinosa
- Departamento de Bioquímica, Instituto Nacional de Enfermedades Respiratorias, ICV, Ciudad de México 14080, Mexico
| | | | - Moisés Rubio-Osornio
- Departamento de Neuroquímica, Instituto Nacional de Neurología y Neurocirugía, Ciudad de México 14269, Mexico
| |
Collapse
|
2
|
Süß P, Rothe T, Hoffmann A, Schlachetzki JCM, Winkler J. The Joint-Brain Axis: Insights From Rheumatoid Arthritis on the Crosstalk Between Chronic Peripheral Inflammation and the Brain. Front Immunol 2020; 11:612104. [PMID: 33362800 PMCID: PMC7758283 DOI: 10.3389/fimmu.2020.612104] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 11/10/2020] [Indexed: 12/27/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory disease characterized by erosive polyarthritis. Beyond joint pathology, RA is associated with neuropsychiatric comorbidity including depression, anxiety, and an increased risk to develop neurodegenerative diseases in later life. Studies investigating the central nervous system (CNS) in preclinical models of RA have leveraged the understanding of the intimate crosstalk between peripheral and central immune responses. This mini review summarizes the current knowledge of CNS comorbidity in RA patients and known underlying cellular mechanisms. We focus on the differential regulation of CNS myeloid and glial cells in different mouse models of RA reflecting different patterns of peripheral immune activation. Moreover, we address CNS responses to anti-inflammatory treatment in human RA patients and mice. Finally, to illustrate the bidirectional communication between the CNS and chronic peripheral inflammation, we present the current knowledge about the impact of the CNS on arthritis. A comprehensive understanding of the crosstalk between the CNS and chronic peripheral inflammation will help to identify RA patients at risk of developing CNS comorbidity, setting the path for future therapeutic approaches in both RA and neuropsychiatric diseases.
Collapse
Affiliation(s)
- Patrick Süß
- Department of Molecular Neurology, Friedrich-Alexander-University Erlangen-Nürnberg, University Hospital Erlangen, Erlangen, Germany.,Department of Neurology, Friedrich-Alexander-University Erlangen-Nürnberg, University Hospital Erlangen, Erlangen, Germany
| | - Tobias Rothe
- Department of Internal Medicine 3, Friedrich-Alexander-University Erlangen-Nürnberg, University Hospital Erlangen, Erlangen, Germany
| | - Alana Hoffmann
- Department of Molecular Neurology, Friedrich-Alexander-University Erlangen-Nürnberg, University Hospital Erlangen, Erlangen, Germany
| | - Johannes C M Schlachetzki
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Jürgen Winkler
- Department of Molecular Neurology, Friedrich-Alexander-University Erlangen-Nürnberg, University Hospital Erlangen, Erlangen, Germany
| |
Collapse
|
3
|
Pain-related behaviors associated with persistence of mechanical hyperalgesia after antigen-induced arthritis in rats. Pain 2020; 161:1571-1583. [DOI: 10.1097/j.pain.0000000000001852] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
4
|
Sánchez-Vidaña DI, Po KKT, Fung TKH, Chow JKW, Lau WKW, So PK, Lau BWM, Tsang HWH. Lavender essential oil ameliorates depression-like behavior and increases neurogenesis and dendritic complexity in rats. Neurosci Lett 2019; 701:180-192. [PMID: 30825591 DOI: 10.1016/j.neulet.2019.02.042] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 02/11/2019] [Accepted: 02/26/2019] [Indexed: 02/05/2023]
Abstract
Depression is a major health issue that causes severe societal economic and health burden. Aromatherapy, a practice that uses essential oils for preventive and therapeutic purposes, represents a promising therapeutic alternative for the alleviation of depressive symptoms. Lavender essential oil (LEO) has been the focus of clinical studies due to its positive effect on mood. An animal model of chronic administration of high dose corticosterone to induce depression- and anxiety-like behavior and reduced neurogenesis was used to explore the biological changes brought by aromatherapy. Twenty-four adult male Sprague Dawley rats were randomly assigned into four groups: Control, corticosterone (Cort) group with high dose of corticosterone, LEO group with daily exposure to LEO by inhalation, and LEO + Cort. At the end of the 14-day treatment period, behavioral tests were carried out. Serum samples were collected 2-3 days after the 14-day period treatment and before perfusion to carry out biochemical analyses to measure BDNF, corticosterone and oxytocin. After perfusion, brains were collected for immunohistochemical analysis to detect BrdU and DCX positive cells in the hippocampus and subventricular zone. Results showed that treatment with LEO ameliorated the depression-like behavior induced by the chronic administration of corticosterone as observed in the LEO + Cort group. Cort treatment reduced the number of BrdU positive cells in the hippocampus and the subventricular zone. Treatment with LEO prevented the corticosterone-induced reduction in the number of BrdU positive cells (LEO + Cort group) demonstrating the neurogenic effect of LEO under high corticosterone conditions. Chronic administration of high dose of corticosterone significantly reduced the dendritic complexity of immature neurons. On the contrary, treatment with LEO increased dendritic complexity of immature neurons under high corticosterone conditions (LEO + Cort group). The improved neurogenesis and dendritic complexity observed in the LEO + Cort group demonstrated a clear restorative effect of LEO under high corticosterone conditions. However, 2-3 days after the treatment, the levels of BDNF were upregulated in the LEO and LEO + Cort groups. Furthermore, the concentration of oxytocin in serum, 2-3 days after the treatment, showed to be upregulated in the LEO group alone. The present study has provided evidence of the biological effect of LEO on neuroplasticity and neurogenesis. Also, this study contributes to the understanding of the mechanism of action of LEO in an animal model where depression- and anxiety-like behavior and reduced neurogenesis were induced by high corticosterone administration.
Collapse
Affiliation(s)
| | - Kevin Kai-Ting Po
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, China
| | - Timothy Kai-Hang Fung
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, China
| | - Jason Ka-Wing Chow
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, China
| | - Way Kwok-Wai Lau
- Department of Special Education and Counselling, The Education University of Hong Kong, Hong Kong, China
| | - Pui-Kin So
- University Research Facility in Life Sciences, The Hong Kong Polytechnic University, Hong Kong, China
| | - Benson Wui-Man Lau
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, China.
| | - Hector Wing-Hong Tsang
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, China
| |
Collapse
|
5
|
Frey O, Hückel M, Gajda M, Petrow PK, Bräuer R. Induction of chronic destructive arthritis in SCID mice by arthritogenic fibroblast-like synoviocytes derived from mice with antigen-induced arthritis. Arthritis Res Ther 2018; 20:261. [PMID: 30466479 PMCID: PMC6251107 DOI: 10.1186/s13075-018-1720-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 09/11/2018] [Indexed: 01/15/2023] Open
Abstract
Background Fibroblast-like synoviocytes (FLSs) from patients with rheumatoid arthritis (RA) are autonomously activated to maintain inflammation and joint destruction in co-transplantation models. To elucidate inducing mechanisms involved in this altered behavior, the arthritogenic potential of FLSs from murine antigen-induced arthritis (AIA) were investigated in a transfer model. Methods FLSs were isolated, expanded in vitro, and transferred into knee joint cavities of severe combined immunodeficient (SCID) mice. Their arthritogenic capacity was assessed by monitoring joint swelling and evaluation of histological parameters 70 to 100 days after transfer. Results FLSs from AIA mice were able to transfer arthritis into recipient SCID mice. FLS transfer induced a chronic arthritis with recruitment of inflammatory cells and marked cartilage destruction. Long-lasting inflammation was not required for imprinting of arthritogenicity in FLSs since cells isolated from acute arthritic joints were fully competent to transfer arthritis. We also observed arthritogenic potential in FLSs isolated from contralateral non-arthritic joints in our monoarticular arthritis model. Conclusions We show that the transformation of FLSs into arthritogenic cells occurs early in arthritis development. This challenges current hypotheses on the role of these cells in arthritis pathogenesis and opens up the way for further mechanistic studies.
Collapse
Affiliation(s)
- Oliver Frey
- Institute of Pathology, University Hospital, Jena, Germany. .,Institute of Clinical Chemistry and Laboratory Medicine, University Hospital, Am Klinikum 1, D-07743, Jena, Germany. .,Present address: Institute of Medical Diagnostics, Berlin, Germany.
| | - Marion Hückel
- Institute of Pathology, University Hospital, Jena, Germany
| | | | - Peter K Petrow
- Institute of Pathology, University Hospital, Jena, Germany
| | - Rolf Bräuer
- Institute of Pathology, University Hospital, Jena, Germany
| |
Collapse
|
6
|
Schaible HG, Chang HD, Grässel S, Haibel H, Hess A, Kamradt T, Radbruch A, Schett G, Stein C, Straub RH. [Research consortium Neuroimmunology and pain in the research network musculoskeletal diseases]. Z Rheumatol 2018; 77:24-30. [PMID: 29654392 DOI: 10.1007/s00393-018-0459-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
BACKGROUND The research consortium Neuroimmunology and Pain (Neuroimpa) explores the importance of the relationships between the immune system and the nervous system in musculoskeletal diseases for the generation of pain and for the course of fracture healing and arthritis. MATERIAL AND METHODS The spectrum of methods includes analyses at the single cell level, in vivo models of arthritis and fracture healing, imaging studies on brain function in animals and humans and analysis of data from patients. RESULTS Proinflammatory cytokines significantly contribute to the generation of joint pain through neuronal cytokine receptors. Immune cells release opioid peptides which activate opioid receptors at peripheral nociceptors and thereby evoke hypoalgesia. The formation of new bone after fractures is significantly supported by the nervous system. The sympathetic nervous system promotes the development of immune-mediated arthritis. The studies show a significant analgesic potential of the neutralization of proinflammatory cytokines and of opioids which selectively inhibit peripheral neurons. Furthermore, they show that the modulation of neuronal mechanisms can beneficially influence the course of musculoskeletal diseases. DISCUSSION Interventions in the interactions between the immune system and the nervous system hold a great therapeutic potential for the treatment of musculoskeletal diseases and pain.
Collapse
Affiliation(s)
- H-G Schaible
- Institut für Physiologie 1/Neurophysiologie, Universitätsklinikum Jena, Friedrich Schiller Universität Jena, Teichgraben 8, 07743, Jena, Deutschland.
| | - H-D Chang
- Deutsches Rheuma-Forschungszentrum Berlin, ein Institut der Leibniz-Gemeinschaft, Berlin, Deutschland
| | - S Grässel
- Klinik und Poliklinik für Orthopädie, Experimentelle Orthopädie, Universitätsklinikum Regensburg, Regensburg, Deutschland
| | - H Haibel
- Abteilung für Rheumatologie, Charité Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Deutschland
| | - A Hess
- Institut für Pharmakologie, Universitätsklinikum Erlangen-Nürnberg, Erlangen, Deutschland
| | - T Kamradt
- Institut für Immunologie, Universitätsklinikum Jena, Friedrich Schiller Universität Jena, Jena, Deutschland
| | - A Radbruch
- Deutsches Rheuma-Forschungszentrum Berlin, ein Institut der Leibniz-Gemeinschaft, Berlin, Deutschland
| | - G Schett
- Klinik für Innere Medizin, Universitätsklinikum Erlangen-Nürnberg, Erlangen, Deutschland
| | - C Stein
- Klinik für Anästhesie, Charité Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Deutschland
| | - R H Straub
- Klinik für Innere Medizin 1, Universitätsklinikum Regensburg, Regensburg, Deutschland
| |
Collapse
|
7
|
Segond von Banchet G, König C, Patzer J, Eitner A, Leuchtweis J, Ebbinghaus M, Boettger MK, Schaible HG. Long-Lasting Activation of the Transcription Factor CREB in Sensory Neurons by Interleukin-1β During Antigen-Induced Arthritis in Rats: A Mechanism of Persistent Arthritis Pain? Arthritis Rheumatol 2016; 68:532-41. [PMID: 26473326 DOI: 10.1002/art.39445] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 09/17/2015] [Indexed: 12/14/2022]
Abstract
OBJECTIVE In spite of successful treatment of immune-mediated arthritis, many patients still experience pain. We undertook this study to investigate whether antigen-induced arthritis (AIA) in rats triggers neuronal changes in sensory neurons that outlast the inflammatory process. METHODS We induced unilateral AIA in the knee joint and assessed in sensory neurons the expression of CREB, a transcription factor that regulates genes involved in neuronal plasticity. We tested whether neutralization of the effects of tumor necrosis factor (TNF) by etanercept or infliximab or neutralization of the effects of interleukin-1β (IL-1β) by anakinra influences the up-regulation of phospho-CREB, and we studied the up-regulation of phospho-CREB by IL-1β and TNF in cultured dorsal root ganglion (DRG) neurons. RESULTS Unilateral AIA caused bilateral up-regulation of phospho-CREB in lumbar DRG neurons. While inflammation and pain subsided within 21 days, the up-regulation of phospho-CREB still persisted on day 42. At this time point mechanical hyperalgesia at the knee reappeared in the absence of swelling. TNF neutralization during AIA significantly reduced pain-related behavior but did not prevent phospho-CREB up-regulation. In contrast, anakinra, which only reduced thermal hyperalgesia, prevented phospho-CREB up-regulation, suggesting a role of IL-1β in this process. In cultured DRG neurons the application of IL-1β significantly enhanced phospho-CREB. CONCLUSION Immune-mediated arthritis causes neuroplastic changes in sensory neurons that outlast the inflammatory phase. Such changes may facilitate the persistence or recurrence of pain after remission of arthritis. IL-1β is an important trigger in this process, although its neutralization barely reduced mechanical hyperalgesia during inflammation.
Collapse
Affiliation(s)
| | - Christian König
- Jena University Hospital and Friedrich Schiller University of Jena, Jena, Germany
| | - Jessica Patzer
- Jena University Hospital and Friedrich Schiller University of Jena, Jena, Germany
| | - Annett Eitner
- Jena University Hospital and Friedrich Schiller University of Jena, Jena, Germany
| | - Johannes Leuchtweis
- Jena University Hospital and Friedrich Schiller University of Jena, Jena, Germany
| | - Matthias Ebbinghaus
- Jena University Hospital and Friedrich Schiller University of Jena, Jena, Germany
| | - Michael K Boettger
- Jena University Hospital and Friedrich Schiller University of Jena, Jena, Germany
| | - Hans-Georg Schaible
- Jena University Hospital and Friedrich Schiller University of Jena, Jena, Germany
| |
Collapse
|
8
|
Yao ZH, Kang X, Yang L, Niu Y, Lu Y, Nie L. PBA regulates neurogenesis and cognition dysfunction after repeated electroconvulsive shock in a rat model. Psychiatry Res 2015; 230:331-40. [PMID: 26381183 DOI: 10.1016/j.psychres.2015.09.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 09/01/2015] [Accepted: 09/07/2015] [Indexed: 12/23/2022]
Abstract
Electroconvulsive therapy (ECT) was widely used to treat the refractory depression. But ECT led to the cognitive deficits plaguing the depression patients. The underlying mechanisms of the cognitive deficits remain elusive. Repeated electroconvulsive shock (rECS) was used to simulate ECT and explore the mechanisms of ECT during the animal studies. Previous studies showed rECS could lead to neurogenesis and cognitive impairment. But it was well known that neurogenesis could improve the cognition. So these suggested that the mechanism of the cognitive deficit after rECS was very complex. In present study, we explored the probable mechanisms of the cognitive deficit after rECS from neurogenesis aspect. We found the cognitive deficit was reversible and neurogenesis could bring a long-term beneficial effect on cognition. Astrogliosis and NR1 down-regulation probably participated in the reversible cognitive deficits after rECS. Phenylbutyric acid (PBA), generally as an agent to investigate the roles of histone acetylation, could prevent the reversible cognitive dysfunction, but PBA could diminish the long-term effect of enhanced cognition by rECS. These suggested that ECT could possibly bring the long-term beneficial cognitive effect by regulating neurogenesis.
Collapse
Affiliation(s)
- Zhao-Hui Yao
- Department of Geriatrics, Renmin Hospital of Wuhan University, #238 Jiefang Road, Wuhan 430060, China; Department of Pathophysiology, Key Laboratory of Neurological Diseases of Education Committee of China, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Xiang Kang
- Department of Pathophysiology, Key Laboratory of Neurological Diseases of Education Committee of China, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liu Yang
- Department of Pathophysiology, Key Laboratory of Neurological Diseases of Education Committee of China, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi Niu
- Department of Pathophysiology, Key Laboratory of Neurological Diseases of Education Committee of China, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ye Lu
- Department of Pathophysiology, Key Laboratory of Neurological Diseases of Education Committee of China, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Nie
- Department of Geriatrics, Renmin Hospital of Wuhan University, #238 Jiefang Road, Wuhan 430060, China
| |
Collapse
|
9
|
Süß P, Kalinichenko L, Baum W, Reichel M, Kornhuber J, Loskarn S, Ettle B, Distler JHW, Schett G, Winkler J, Müller CP, Schlachetzki JCM. Hippocampal structure and function are maintained despite severe innate peripheral inflammation. Brain Behav Immun 2015; 49:156-70. [PMID: 26074461 DOI: 10.1016/j.bbi.2015.05.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 05/15/2015] [Accepted: 05/16/2015] [Indexed: 11/17/2022] Open
Abstract
Chronic peripheral inflammation mediated by cytokines such as TNFα, IL-1β, and IL-6 is associated with psychiatric disorders like depression and anxiety. However, it remains elusive which distinct type of peripheral inflammation triggers neuroinflammation and affects hippocampal plasticity resulting in depressive-like behavior. We hypothesized that chronic peripheral inflammation in the human TNF-α transgenic (TNFtg) mouse model of rheumatoid arthritis spreads into the central nervous system and induces depressive state manifested in specific behavioral pattern and impaired adult hippocampal neurogenesis. TNFtg mice showed severe erosive arthritis with increased IL-1β and IL-6 expression in tarsal joints with highly elevated human TNF-α levels in the serum. Intriguingly, IL-1β and IL-6 mRNA levels were not altered in the hippocampus of TNFtg mice. In contrast to the pronounced monocytosis in joints and spleen of TNFtg mice, signs of hippocampal microgliosis or astrocytosis were lacking. Furthermore, locomotion was impaired, but there was no locomotion-independent depressive behavior in TNFtg mice. Proliferation and maturation of hippocampal neural precursor cells as well as survival of newly generated neurons were preserved in the dentate gyrus of TNFtg mice despite reduced motor activity and peripheral inflammatory signature. We conclude that peripheral inflammation in TNFtg mice is mediated by chronic activation of the innate immune system. However, severe peripheral inflammation, though impairing locomotor activity, does not elicit depressive-like behavior. These structural and functional findings indicate the maintenance of hippocampal immunity, cellular plasticity, and behavior despite peripheral innate inflammation.
Collapse
Affiliation(s)
- Patrick Süß
- Department of Molecular Neurology, Friedrich-Alexander-University Erlangen-Nürnberg, University Hospital Erlangen, Schwabachanlage 6, 91054 Erlangen, Germany
| | - Liubov Kalinichenko
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-University Erlangen-Nürnberg, University Hospital Erlangen, Schwabachanlage 6, 91054 Erlangen, Germany
| | - Wolfgang Baum
- Department of Internal Medicine 3, Friedrich-Alexander-University Erlangen-Nürnberg, University Hospital Erlangen, Ulmenweg 18, 91054 Erlangen, Germany
| | - Martin Reichel
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-University Erlangen-Nürnberg, University Hospital Erlangen, Schwabachanlage 6, 91054 Erlangen, Germany
| | - Johannes Kornhuber
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-University Erlangen-Nürnberg, University Hospital Erlangen, Schwabachanlage 6, 91054 Erlangen, Germany
| | - Sandra Loskarn
- Department of Molecular Neurology, Friedrich-Alexander-University Erlangen-Nürnberg, University Hospital Erlangen, Schwabachanlage 6, 91054 Erlangen, Germany
| | - Benjamin Ettle
- Department of Molecular Neurology, Friedrich-Alexander-University Erlangen-Nürnberg, University Hospital Erlangen, Schwabachanlage 6, 91054 Erlangen, Germany
| | - Jörg H W Distler
- Department of Internal Medicine 3, Friedrich-Alexander-University Erlangen-Nürnberg, University Hospital Erlangen, Ulmenweg 18, 91054 Erlangen, Germany
| | - Georg Schett
- Department of Internal Medicine 3, Friedrich-Alexander-University Erlangen-Nürnberg, University Hospital Erlangen, Ulmenweg 18, 91054 Erlangen, Germany
| | - Jürgen Winkler
- Department of Molecular Neurology, Friedrich-Alexander-University Erlangen-Nürnberg, University Hospital Erlangen, Schwabachanlage 6, 91054 Erlangen, Germany
| | - Christian P Müller
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-University Erlangen-Nürnberg, University Hospital Erlangen, Schwabachanlage 6, 91054 Erlangen, Germany
| | - Johannes C M Schlachetzki
- Department of Molecular Neurology, Friedrich-Alexander-University Erlangen-Nürnberg, University Hospital Erlangen, Schwabachanlage 6, 91054 Erlangen, Germany.
| |
Collapse
|