1
|
Morfino P, Aimo A, Franzini M, Vergaro G, Castiglione V, Panichella G, Limongelli G, Emdin M. Pathophysiology of Cardiac Amyloidosis. Heart Fail Clin 2024; 20:261-270. [PMID: 38844297 DOI: 10.1016/j.hfc.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/09/2024]
Abstract
Amyloidosis refers to a heterogeneous group of disorders sharing common pathophysiological mechanisms characterized by the extracellular accumulation of fibrillar deposits consisting of the aggregation of misfolded proteins. Cardiac amyloidosis (CA), usually caused by deposition of misfolded transthyretin or immunoglobulin light chains, is an increasingly recognized cause of heart failure burdened by a poor prognosis. CA manifests with a restrictive cardiomyopathy which progressively leads to biventricular thickening, diastolic and then systolic dysfunction, arrhythmias, and valvular disease. The pathophysiology of CA is multifactorial and includes increased oxidative stress, mitochondrial damage, apoptosis, impaired metabolism, and modifications of intracellular calcium balance.
Collapse
Affiliation(s)
| | - Alberto Aimo
- Fondazione Toscana Gabriele Monasterio, via G. Moruzzi 1, 56124, Pisa, Italy; Health Science Interdisciplinary Center, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Maria Franzini
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa, Italy
| | - Giuseppe Vergaro
- Fondazione Toscana Gabriele Monasterio, via G. Moruzzi 1, 56124, Pisa, Italy; Health Science Interdisciplinary Center, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Vincenzo Castiglione
- Fondazione Toscana Gabriele Monasterio, via G. Moruzzi 1, 56124, Pisa, Italy; Health Science Interdisciplinary Center, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Giorgia Panichella
- Department of Clinical and Experimental Medicine, Careggi University Hospital, Florence, Italy
| | - Giuseppe Limongelli
- Inherited and Rare Cardiovascular Disease Unit, Department of Translational Medical Sciences, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Michele Emdin
- Scuola Superiore Sant'Anna, Pisa, Italy; Fondazione Toscana Gabriele Monasterio, via G. Moruzzi 1, 56124, Pisa, Italy.
| |
Collapse
|
2
|
Pandit E, Das L, Das AK, Dolui S, Saha S, Pal U, Mondal A, Chowdhury J, Biswas SC, Maiti NC. Single point mutations at the S129 residue of α-synuclein and their effect on structure, aggregation, and neurotoxicity. Front Chem 2023; 11:1145877. [PMID: 37304685 PMCID: PMC10250651 DOI: 10.3389/fchem.2023.1145877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 05/10/2023] [Indexed: 06/13/2023] Open
Abstract
Parkinson's disease is an age-related neurological disorder, and the pathology of the disease is linked to different types of aggregates of α-synuclein or alpha-synuclein (aS), which is an intrinsically disordered protein. The C-terminal domain (residues 96-140) of the protein is highly fluctuating and possesses random/disordered coil conformation. Thus, the region plays a significant role in the protein's solubility and stability by an interaction with other parts of the protein. In the current investigation, we examined the structure and aggregation behavior of two artificial single point mutations at a C-terminal residue at position 129 that represent a serine residue in the wild-type human aS (wt aS). Circular Dichroism (CD) and Raman spectroscopy were performed to analyse the secondary structure of the mutated proteins and compare it to the wt aS. Thioflavin T assay and atomic force microscopy imaging helped in understanding the aggregation kinetics and type of aggregates formed. Finally, the cytotoxicity assay gave an idea about the toxicity of the aggregates formed at different stages of incubation due to mutations. Compared to wt aS, the mutants S129A and S129W imparted structural stability and showed enhanced propensity toward the α-helical secondary structure. CD analysis showed proclivity of the mutant proteins toward α-helical conformation. The enhancement of α-helical propensity lengthened the lag phase of fibril formation. The growth rate of β-sheet-rich fibrillation was also reduced. Cytotoxicity tests on SH-SY5Y neuronal cell lines established that the S129A and S129W mutants and their aggregates were potentially less toxic than wt aS. The average survivability rate was ∼40% for cells treated with oligomers (presumably formed after 24 h of incubation of the freshly prepared monomeric protein solution) produced from wt aS and ∼80% for cells treated with oligomers obtained from mutant proteins. The relative structural stability with α-helical propensity of the mutants could be a plausible reason for their slow rate of oligomerization and fibrillation, and this was also the possible reason for reduced toxicity to neuronal cells.
Collapse
Affiliation(s)
- Esha Pandit
- Structural Biology and Bioinformatics Division, Indian Institute of Chemical Biology, Council of Scientific and Industrial Research, Kolkata, India
| | - Lopamudra Das
- Structural Biology and Bioinformatics Division, Indian Institute of Chemical Biology, Council of Scientific and Industrial Research, Kolkata, India
| | - Anoy Kumar Das
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Sandip Dolui
- Structural Biology and Bioinformatics Division, Indian Institute of Chemical Biology, Council of Scientific and Industrial Research, Kolkata, India
| | - Saumen Saha
- Structural Biology and Bioinformatics Division, Indian Institute of Chemical Biology, Council of Scientific and Industrial Research, Kolkata, India
| | - Uttam Pal
- Structural Biology and Bioinformatics Division, Indian Institute of Chemical Biology, Council of Scientific and Industrial Research, Kolkata, India
| | - Animesh Mondal
- Structural Biology and Bioinformatics Division, Indian Institute of Chemical Biology, Council of Scientific and Industrial Research, Kolkata, India
| | | | - Subhas C. Biswas
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Nakul C. Maiti
- Structural Biology and Bioinformatics Division, Indian Institute of Chemical Biology, Council of Scientific and Industrial Research, Kolkata, India
| |
Collapse
|
3
|
Morfino P, Aimo A, Vergaro G, Sanguinetti C, Castiglione V, Franzini M, Perrone MA, Emdin M. Transthyretin Stabilizers and Seeding Inhibitors as Therapies for Amyloid Transthyretin Cardiomyopathy. Pharmaceutics 2023; 15:pharmaceutics15041129. [PMID: 37111614 PMCID: PMC10143494 DOI: 10.3390/pharmaceutics15041129] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 03/15/2023] [Accepted: 03/30/2023] [Indexed: 04/07/2023] Open
Abstract
Transthyretin (TTR) amyloid cardiomyopathy (ATTR-CM) is a progressive and increasingly recognized cause of heart failure which is associated with high mortality and morbidity. ATTR-CM is characterized by the misfolding of TTR monomers and their deposition within the myocardium as amyloid fibrils. The standard of care for ATTR-CM consists of TTR-stabilizing ligands, such as tafamidis, which aim at maintaining the native structure of TTR tetramers, thus preventing amyloid aggregation. However, their efficacy in advanced-staged disease and after long-term treatment is still a source of concern, suggesting the existence of other pathogenetic factors. Indeed, pre-formed fibrils present in the tissue can further accelerate amyloid aggregation in a self-propagating process known as “amyloid seeding”. The inhibition of amyloidogenesis through TTR stabilizers combined with anti-seeding peptides may represent a novel strategy with additional benefits over current therapies. Finally, the role of stabilizing ligands needs to be reassessed in view of the promising results derived from trials which have evaluated alternative strategies, such as TTR silencers and immunological amyloid disruptors.
Collapse
Affiliation(s)
- Paolo Morfino
- Interdisciplinary Center for Health Sciences, Scuola Superiore Sant’Anna, 56127 Pisa, Italy
| | - Alberto Aimo
- Interdisciplinary Center for Health Sciences, Scuola Superiore Sant’Anna, 56127 Pisa, Italy
- Cardiology Division, Fondazione Toscana Gabriele Monasterio, 56124 Pisa, Italy
| | - Giuseppe Vergaro
- Interdisciplinary Center for Health Sciences, Scuola Superiore Sant’Anna, 56127 Pisa, Italy
- Cardiology Division, Fondazione Toscana Gabriele Monasterio, 56124 Pisa, Italy
| | - Chiara Sanguinetti
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
| | - Vincenzo Castiglione
- Interdisciplinary Center for Health Sciences, Scuola Superiore Sant’Anna, 56127 Pisa, Italy
- Cardiology Division, Fondazione Toscana Gabriele Monasterio, 56124 Pisa, Italy
| | - Maria Franzini
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
| | - Marco Alfonso Perrone
- Division of Cardiology and CardioLab, Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Michele Emdin
- Interdisciplinary Center for Health Sciences, Scuola Superiore Sant’Anna, 56127 Pisa, Italy
- Cardiology Division, Fondazione Toscana Gabriele Monasterio, 56124 Pisa, Italy
| |
Collapse
|
4
|
Abstract
Although long noncoding RNAs (lncRNAs) are generally expressed at low levels, emerging evidence has revealed that many play important roles in gene regulation by a variety of mechanisms as they engage with proteins. Given that the abundance of proteins often greatly exceeds that of their interacting lncRNAs, quantification of the relative abundance, or even the exact stoichiometry in some cases, within lncRNA-protein complexes is helpful for understanding of the mechanism(s) of action of lncRNAs. We discuss methods used to examine lncRNA and protein expression at the single cell, subcellular, and suborganelle levels, the average and local lncRNA concentration in cells, as well as how lncRNAs can modulate the functions of their interacting proteins even at a low stoichiometric concentration.
Collapse
Affiliation(s)
- Man Wu
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Liang-Zhong Yang
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ling-Ling Chen
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| |
Collapse
|
5
|
Candelise N, Scaricamazza S, Salvatori I, Ferri A, Valle C, Manganelli V, Garofalo T, Sorice M, Misasi R. Protein Aggregation Landscape in Neurodegenerative Diseases: Clinical Relevance and Future Applications. Int J Mol Sci 2021; 22:ijms22116016. [PMID: 34199513 PMCID: PMC8199687 DOI: 10.3390/ijms22116016] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 05/28/2021] [Accepted: 05/29/2021] [Indexed: 12/13/2022] Open
Abstract
Intrinsic disorder is a natural feature of polypeptide chains, resulting in the lack of a defined three-dimensional structure. Conformational changes in intrinsically disordered regions of a protein lead to unstable β-sheet enriched intermediates, which are stabilized by intermolecular interactions with other β-sheet enriched molecules, producing stable proteinaceous aggregates. Upon misfolding, several pathways may be undertaken depending on the composition of the amino acidic string and the surrounding environment, leading to different structures. Accumulating evidence is suggesting that the conformational state of a protein may initiate signalling pathways involved both in pathology and physiology. In this review, we will summarize the heterogeneity of structures that are produced from intrinsically disordered protein domains and highlight the routes that lead to the formation of physiological liquid droplets as well as pathogenic aggregates. The most common proteins found in aggregates in neurodegenerative diseases and their structural variability will be addressed. We will further evaluate the clinical relevance and future applications of the study of the structural heterogeneity of protein aggregates, which may aid the understanding of the phenotypic diversity observed in neurodegenerative disorders.
Collapse
Affiliation(s)
- Niccolò Candelise
- Fondazione Santa Lucia IRCCS, c/o CERC, 00143 Rome, Italy; (S.S.); (I.S.); (A.F.); (C.V.)
- Institute of Translational Pharmacology, National Research Council, 00133 Rome, Italy
- Correspondence: ; Tel.: +39-338-891-2668
| | - Silvia Scaricamazza
- Fondazione Santa Lucia IRCCS, c/o CERC, 00143 Rome, Italy; (S.S.); (I.S.); (A.F.); (C.V.)
| | - Illari Salvatori
- Fondazione Santa Lucia IRCCS, c/o CERC, 00143 Rome, Italy; (S.S.); (I.S.); (A.F.); (C.V.)
- Department of Experimental Medicine, University of Rome “La Sapienza”, 00161 Rome, Italy; (V.M.); (T.G.); (M.S.); (R.M.)
| | - Alberto Ferri
- Fondazione Santa Lucia IRCCS, c/o CERC, 00143 Rome, Italy; (S.S.); (I.S.); (A.F.); (C.V.)
- Institute of Translational Pharmacology, National Research Council, 00133 Rome, Italy
| | - Cristiana Valle
- Fondazione Santa Lucia IRCCS, c/o CERC, 00143 Rome, Italy; (S.S.); (I.S.); (A.F.); (C.V.)
- Institute of Translational Pharmacology, National Research Council, 00133 Rome, Italy
| | - Valeria Manganelli
- Department of Experimental Medicine, University of Rome “La Sapienza”, 00161 Rome, Italy; (V.M.); (T.G.); (M.S.); (R.M.)
| | - Tina Garofalo
- Department of Experimental Medicine, University of Rome “La Sapienza”, 00161 Rome, Italy; (V.M.); (T.G.); (M.S.); (R.M.)
| | - Maurizio Sorice
- Department of Experimental Medicine, University of Rome “La Sapienza”, 00161 Rome, Italy; (V.M.); (T.G.); (M.S.); (R.M.)
| | - Roberta Misasi
- Department of Experimental Medicine, University of Rome “La Sapienza”, 00161 Rome, Italy; (V.M.); (T.G.); (M.S.); (R.M.)
| |
Collapse
|
6
|
Sen S, Dey A, Chowdhury S, Maulik U, Chattopadhyay K. Understanding the evolutionary trend of intrinsically structural disorders in cancer relevant proteins as probed by Shannon entropy scoring and structure network analysis. BMC Bioinformatics 2019; 19:549. [PMID: 30717651 PMCID: PMC7394331 DOI: 10.1186/s12859-018-2552-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 11/30/2018] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Malignant diseases have become a threat for health care system. A panoply of biological processes is involved as the cause of these diseases. In order to unveil the mechanistic details of these diseased states, we analyzed protein families relevant to these diseases. RESULTS Our present study pivots around four apparently unrelated cancer types among which two are commonly occurring viz. Prostate Cancer, Breast Cancer and two relatively less frequent viz. Acute Lymphoblastic Leukemia and Lymphoma. Eight protein families were found to have implications for these cancer types. Our results strikingly reveal that some of the proteins with implications in the cancerous cellular states were showing the structural organization disparate from the signature of the family it constitutes. The sequences were further mapped onto respective structures and compared with the entropic profile. The structures reveal that entropic scores were able to reveal the inherent structural bias of these proteins with quantitative precision, otherwise unseen from other analysis. Subsequently, the betweenness centrality scoring of each residue from the structure network models was resorted to explore the changes in dependencies on residue owing to structural disorder. CONCLUSION These observations help to obtain the mechanistic changes resulting from the structural orchestration of protein structures. Finally, the hydropathy indexes were obtained to validate the sequence space observations using Shannon entropy and in-turn establishing the compatibility.
Collapse
Affiliation(s)
- Sagnik Sen
- Department of Computer Science and Engineering, Jadavpur University, Kolkata, 700032 India
| | - Ashmita Dey
- Department of Computer Science and Engineering, Jadavpur University, Kolkata, 700032 India
| | - Sourav Chowdhury
- CSIR-Indian Institute of Chemical Biology, Raja S.C. Mullick Road, Kolkata, 700032 India
| | - Ujjwal Maulik
- Department of Computer Science and Engineering, Jadavpur University, Kolkata, 700032 India
| | - Krishnananda Chattopadhyay
- Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts, 02138 USA
| |
Collapse
|
7
|
Choura M, Rebaï A. The disordered charged biased proteins in the human diseasome. Interdiscip Sci 2019; 12:44-49. [PMID: 30635905 DOI: 10.1007/s12539-019-00315-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 12/31/2018] [Accepted: 01/02/2019] [Indexed: 01/17/2023]
Abstract
Intrinsically disordered proteins (IDPs) are often involved in diseases and have been shown to be promising targets for drug development. Here, we focus on the human disordered charged biased proteins (HDCBPs). We have investigated the association of the HDCBPs with diseases by integrating various sources that cover public sources of gene-disease associations and intensive literature mining. The results indicate that 95% of HDCBPs are associated with multiple diseases, including mainly various cancers, nervous, endocrine, immune, hematological, and respiratory systems diseases. Our data show that the HDCBP-disease network constructed by integrating different levels of data together may improve our understanding of these complex diseases. Moreover, we present the top-ranked proteins that might be potential markers for diagnostic and drug targets.
Collapse
Affiliation(s)
- Mouna Choura
- Laboratory of Plant Protection and Improvement, Center of Biotechnology of Sfax, University of Sfax, Route Sidi Mansour, PO Box 1177, 3018, Sfax, Tunisia.
| | - Ahmed Rebaï
- Molecular and Cellular Diagnosis Processes, Centre of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
| |
Collapse
|
8
|
Jansens KJA, Rombouts I, Grootaert C, Brijs K, Van Camp J, Van der Meeren P, Rousseau F, Schymkowitz J, Delcour JA. Rational Design of Amyloid-Like Fibrillary Structures for Tailoring Food Protein Techno-Functionality and Their Potential Health Implications. Compr Rev Food Sci Food Saf 2018; 18:84-105. [PMID: 33337021 DOI: 10.1111/1541-4337.12404] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 10/02/2018] [Accepted: 10/03/2018] [Indexed: 12/30/2022]
Abstract
To control and enhance protein functionality is a major challenge for food scientists. In this context, research on food protein fibril formation, especially amyloid fibril formation, holds much promise. We here first provide a concise overview of conditions, which affect amyloid formation in food proteins. Particular attention is directed towards amyloid core regions because these sequences promote ordered aggregation. Better understanding of this process will be key to tailor the fibril formation process. Especially seeding, that is, adding preformed protein fibrils to protein solutions to accelerate fibril formation holds promise to tailor aggregation and fibril techno-functionality. Some studies have already indicated that food protein fibrillation indeed improves their techno-functionality. However, much more research is necessary to establish whether protein fibrils are useful in complex food systems and whether and to what extent they resist food processing unit operations. In this review the effect of amyloid formation on gelation, interfacial properties, foaming, and emulsification is discussed. Despite their prevalent role as functional structures, amyloids also receive a lot of attention due to their association with protein deposition diseases, prompting us to thoroughly investigate the potential health impact of amyloid-like aggregates in food. A literature review on the effect of the different stages of the human digestive process on amyloid toxicity leads us to conclude that food-derived amyloid fibrils (even those with potential pathogenic properties) very likely have minimal impact on human health. Nevertheless, prior to wide-spread application of the technology, it is highly advisable to further verify the lack of toxicity of food-derived amyloid fibrils.
Collapse
Affiliation(s)
- Koen J A Jansens
- Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Kasteelpark Arenberg 20, B-3001, Leuven, Belgium
| | - Ine Rombouts
- Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Kasteelpark Arenberg 20, B-3001, Leuven, Belgium
| | - Charlotte Grootaert
- Laboratory of Food Chemistry and Human Nutrition, Ghent Univ., Coupure Links 653, B-9000, Ghent, Belgium
| | - Kristof Brijs
- Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Kasteelpark Arenberg 20, B-3001, Leuven, Belgium
| | - John Van Camp
- Laboratory of Food Chemistry and Human Nutrition, Ghent Univ., Coupure Links 653, B-9000, Ghent, Belgium
| | - Paul Van der Meeren
- Particle and Interfacial Technology Group, Ghent Univ., Coupure Links 653, B- 9000, Ghent, Belgium
| | - Frederic Rousseau
- Switch Laboratory, VIB, B-3000 Leuven, Belgium. Authors Rousseau and Schymkowitz are also with Dept. of Cellular and Molecular Medicine, KU Leuven, B-3000, Leuven, Belgium
| | - Joost Schymkowitz
- Switch Laboratory, VIB, B-3000 Leuven, Belgium. Authors Rousseau and Schymkowitz are also with Dept. of Cellular and Molecular Medicine, KU Leuven, B-3000, Leuven, Belgium
| | - Jan A Delcour
- Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Kasteelpark Arenberg 20, B-3001, Leuven, Belgium
| |
Collapse
|
9
|
Sarnataro D. Attempt to Untangle the Prion-Like Misfolding Mechanism for Neurodegenerative Diseases. Int J Mol Sci 2018; 19:ijms19103081. [PMID: 30304819 PMCID: PMC6213118 DOI: 10.3390/ijms19103081] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 10/01/2018] [Accepted: 10/05/2018] [Indexed: 12/15/2022] Open
Abstract
The misfolding and aggregation of proteins is the neuropathological hallmark for numerous diseases including Alzheimer's disease, Parkinson's disease, and prion diseases. It is believed that misfolded and abnormal β-sheets forms of wild-type proteins are the vectors of these diseases by acting as seeds for the aggregation of endogenous proteins. Cellular prion protein (PrPC) is a glycosyl-phosphatidyl-inositol (GPI) anchored glycoprotein that is able to misfold to a pathogenic isoform PrPSc, the causative agent of prion diseases which present as sporadic, dominantly inherited and transmissible infectious disorders. Increasing evidence highlights the importance of prion-like seeding as a mechanism for pathological spread in Alzheimer's disease and Tauopathy, as well as other neurodegenerative disorders. Here, we report the latest findings on the mechanisms controlling protein folding, focusing on the ER (Endoplasmic Reticulum) quality control of GPI-anchored proteins and describe the "prion-like" properties of amyloid-β and tau assemblies. Furthermore, we highlight the importance of pathogenic assemblies interaction with protein and lipid membrane components and their implications in both prion and Alzheimer's diseases.
Collapse
Affiliation(s)
- Daniela Sarnataro
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, School of Medicine, Via S. Pansini 5, 80131 Naples, Italy.
| |
Collapse
|
10
|
Ghosh DK, Roy A, Ranjan A. Disordered Nanostructure in Huntingtin Interacting Protein K Acts as a Stabilizing Switch To Prevent Protein Aggregation. Biochemistry 2018; 57:2009-2023. [DOI: 10.1021/acs.biochem.7b00776] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Debasish Kumar Ghosh
- Computational and Functional Genomics Group, Centre for DNA Fingerprinting and Diagnostics, Nampally, Hyderabad 500001, India
- Graduate Studies, Manipal University, Manipal, Karnataka 576104, India
| | - Ajit Roy
- Computational and Functional Genomics Group, Centre for DNA Fingerprinting and Diagnostics, Nampally, Hyderabad 500001, India
| | - Akash Ranjan
- Computational and Functional Genomics Group, Centre for DNA Fingerprinting and Diagnostics, Nampally, Hyderabad 500001, India
| |
Collapse
|
11
|
Nizhnikov AA, Antonets KS, Bondarev SA, Inge-Vechtomov SG, Derkatch IL. Prions, amyloids, and RNA: Pieces of a puzzle. Prion 2017; 10:182-206. [PMID: 27248002 DOI: 10.1080/19336896.2016.1181253] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Amyloids are protein aggregates consisting of fibrils rich in β-sheets. Growth of amyloid fibrils occurs by the addition of protein molecules to the tip of an aggregate with a concurrent change of a conformation. Thus, amyloids are self-propagating protein conformations. In certain cases these conformations are transmissible / infectious; they are known as prions. Initially, amyloids were discovered as pathological extracellular deposits occurring in different tissues and organs. To date, amyloids and prions have been associated with over 30 incurable diseases in humans and animals. However, a number of recent studies demonstrate that amyloids are also functionally involved in a variety of biological processes, from biofilm formation by bacteria, to long-term memory in animals. Interestingly, amyloid-forming proteins are highly overrepresented among cellular factors engaged in all stages of mRNA life cycle: from transcription and translation, to storage and degradation. Here we review rapidly accumulating data on functional and pathogenic amyloids associated with mRNA processing, and discuss possible significance of prion and amyloid networks in the modulation of key cellular functions.
Collapse
Affiliation(s)
- Anton A Nizhnikov
- a Dept. of Genetics and Biotechnology , St. Petersburg State University , St. Petersburg , Russia.,b Vavilov Institute of General Genetics of the Russian Academy of Sciences, St. Petersburg Branch , St. Petersburg , Russia.,c All-Russia Research Institute for Agricultural Microbiology , St. Petersburg , Russia
| | - Kirill S Antonets
- a Dept. of Genetics and Biotechnology , St. Petersburg State University , St. Petersburg , Russia.,b Vavilov Institute of General Genetics of the Russian Academy of Sciences, St. Petersburg Branch , St. Petersburg , Russia
| | - Stanislav A Bondarev
- a Dept. of Genetics and Biotechnology , St. Petersburg State University , St. Petersburg , Russia
| | - Sergey G Inge-Vechtomov
- a Dept. of Genetics and Biotechnology , St. Petersburg State University , St. Petersburg , Russia.,b Vavilov Institute of General Genetics of the Russian Academy of Sciences, St. Petersburg Branch , St. Petersburg , Russia
| | - Irina L Derkatch
- d Department of Neuroscience , College of Physicians and Surgeons of Columbia University, Columbia University , New York , NY , USA
| |
Collapse
|
12
|
Antonets KS, Nizhnikov AA. Predicting Amyloidogenic Proteins in the Proteomes of Plants. Int J Mol Sci 2017; 18:ijms18102155. [PMID: 29035294 PMCID: PMC5666836 DOI: 10.3390/ijms18102155] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 10/12/2017] [Accepted: 10/13/2017] [Indexed: 12/21/2022] Open
Abstract
Amyloids are protein fibrils with characteristic spatial structure. Though amyloids were long perceived to be pathogens that cause dozens of incurable pathologies in humans and mammals, it is currently clear that amyloids also represent a functionally important form of protein structure implicated in a variety of biological processes in organisms ranging from archaea and bacteria to fungi and animals. Despite their social significance, plants remain the most poorly studied group of organisms in the field of amyloid biology. To date, amyloid properties have only been demonstrated in vitro or in heterologous systems for a small number of plant proteins. Here, for the first time, we performed a comprehensive analysis of the distribution of potentially amyloidogenic proteins in the proteomes of approximately 70 species of land plants using the Waltz and SARP (Sequence Analysis based on the Ranking of Probabilities) bioinformatic algorithms. We analyzed more than 2.9 million protein sequences and found that potentially amyloidogenic proteins are abundant in plant proteomes. We found that such proteins are overrepresented among membrane as well as DNA- and RNA-binding proteins of plants. Moreover, seed storage and defense proteins of most plant species are rich in amyloidogenic regions. Taken together, our data demonstrate the diversity of potentially amyloidogenic proteins in plant proteomes and suggest biological processes where formation of amyloids might be functionally important.
Collapse
Affiliation(s)
- Kirill S Antonets
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology, 196608 Podbelskogo sh., 3, Pushkin, St. Petersburg 196608, Russia.
- Department of Genetics and Biotechnology, St. Petersburg State University, 199034 Universitetskaya nab., 7/9, St. Petersburg 199034, Russia.
| | - Anton A Nizhnikov
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology, 196608 Podbelskogo sh., 3, Pushkin, St. Petersburg 196608, Russia.
- Department of Genetics and Biotechnology, St. Petersburg State University, 199034 Universitetskaya nab., 7/9, St. Petersburg 199034, Russia.
| |
Collapse
|
13
|
Abstract
A considerable interest has been put in the identification of biased regions in proteins. These regions are frequently associated with a structural role in the cell and particularly with protein disorder. Here, we have investigated the intrinsically disordered regions (IDRs) in the human charged biased proteins identified in our earlier work. We found that 65% of charged biased proteins contained significant IDRs involved particularly in DNA and RNA binding. Also, we have observed that these proteins are well conserved in metazoans and more particularly in mammalian. In addition, the IDRs are located largely in N-terminal, C-terminal sequence flanking the functional domains (FD) and slightly less in (FD) itself. Our work also supports the association between protein disorder and protein-protein/DNA interaction. An example will be described.
Collapse
Affiliation(s)
- Mouna Choura
- a Laboratory of Plant Protection and Improvement, Center of Biotechnology of Sfax, University of Sfax , Sfax , Tunisia
| | - Ahmed Rebaï
- b Molecular and Cellular Diagnosis Processes , Centre of Biotechnology of Sfax, University of Sfax , Sfax , Tunisia
| |
Collapse
|
14
|
Insights into Unfolded Proteins from the Intrinsic ϕ/ψ Propensities of the AAXAA Host-Guest Series. Biophys J 2016; 110:348-361. [PMID: 26789758 DOI: 10.1016/j.bpj.2015.12.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 11/04/2015] [Accepted: 12/08/2015] [Indexed: 01/21/2023] Open
Abstract
Various host-guest peptide series are used by experimentalists as reference conformational states. One such use is as a baseline for random-coil NMR chemical shifts. Comparison to this random-coil baseline, through secondary chemical shifts, is used to infer protein secondary structure. The use of these random-coil data sets rests on the perception that the reference chemical shifts arise from states where there is little or no conformational bias. However, there is growing evidence that the conformational composition of natively and nonnatively unfolded proteins fail to approach anything that can be construed as random coil. Here, we use molecular dynamics simulations of an alanine-based host-guest peptide series (AAXAA) as a model of unfolded and denatured states to examine the intrinsic propensities of the amino acids. We produced ensembles that are in good agreement with the experimental NMR chemical shifts and confirm that the sampling of the 20 natural amino acids in this peptide series is be far from random. Preferences toward certain regions of conformational space were both present and dependent upon the environment when compared under conditions typically used to denature proteins, i.e., thermal and chemical denaturation. Moreover, the simulations allowed us to examine the conformational makeup of the underlying ensembles giving rise to the ensemble-averaged chemical shifts. We present these data as an intrinsic backbone propensity library that forms part of our Structural Library of Intrinsic Residue Propensities to inform model building, to aid in interpretation of experiment, and for structure prediction of natively and nonnatively unfolded states.
Collapse
|
15
|
Marasco D, Scognamiglio PL. Identification of inhibitors of biological interactions involving intrinsically disordered proteins. Int J Mol Sci 2015; 16:7394-412. [PMID: 25849651 PMCID: PMC4425024 DOI: 10.3390/ijms16047394] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Revised: 03/01/2015] [Accepted: 03/06/2015] [Indexed: 11/16/2022] Open
Abstract
Protein-protein interactions involving disordered partners have unique features and represent prominent targets in drug discovery processes. Intrinsically Disordered Proteins (IDPs) are involved in cellular regulation, signaling and control: they bind to multiple partners and these high-specificity/low-affinity interactions play crucial roles in many human diseases. Disordered regions, terminal tails and flexible linkers are particularly abundant in DNA-binding proteins and play crucial roles in the affinity and specificity of DNA recognizing processes. Protein complexes involving IDPs are short-lived and typically involve short amino acid stretches bearing few "hot spots", thus the identification of molecules able to modulate them can produce important lead compounds: in this scenario peptides and/or peptidomimetics, deriving from structure-based, combinatorial or protein dissection approaches, can play a key role as hit compounds. Here, we propose a panoramic review of the structural features of IDPs and how they regulate molecular recognition mechanisms focusing attention on recently reported drug-design strategies in the field of IDPs.
Collapse
Affiliation(s)
- Daniela Marasco
- Department of Pharmacy, Centro Interuniversitario di Ricerca sui Peptidi Bioattivi (CIRPEB), University of Naples "Federico II", DFM-Scarl, 80134 Naples, Italy.
| | - Pasqualina Liana Scognamiglio
- Department of Pharmacy, Centro Interuniversitario di Ricerca sui Peptidi Bioattivi (CIRPEB), University of Naples "Federico II", DFM-Scarl, 80134 Naples, Italy.
| |
Collapse
|
16
|
Zacharogianni M, Aguilera-Gomez A, Veenendaal T, Smout J, Rabouille C. A stress assembly that confers cell viability by preserving ERES components during amino-acid starvation. eLife 2014; 3. [PMID: 25386913 PMCID: PMC4270098 DOI: 10.7554/elife.04132] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 11/10/2014] [Indexed: 11/29/2022] Open
Abstract
Nutritional restriction leads to protein translation attenuation that results in the storage and degradation of free mRNAs in cytoplasmic assemblies. In this study, we show in Drosophila S2 cells that amino-acid starvation also leads to the inhibition of another major anabolic pathway, the protein transport through the secretory pathway, and to the formation of a novel reversible non-membrane bound stress assembly, the Sec body that incorporates components of the ER exit sites. Sec body formation does not depend on membrane traffic in the early secretory pathway, yet requires both Sec23 and Sec24AB. Sec bodies have liquid droplet-like properties, and they act as a protective reservoir for ERES components to rebuild a functional secretory pathway after re-addition of amino-acids acting as a part of a survival mechanism. Taken together, we propose that the formation of these structures is a novel stress response mechanism to provide cell viability during and after nutrient stress. DOI:http://dx.doi.org/10.7554/eLife.04132.001 Proteins are needed by living cells to perform vital tasks and are made from building blocks called amino-acids. However, if a cell is starved of amino-acids, protein assembly comes to a halt, and if cells are deprived of amino acids for a long time, the cell may die. To survive short periods of amino-acid starvation, the cell has developed many protective mechanisms. For example, it can start to break down existing proteins, allowing the cell to scavenge and reuse the amino-acids to make other proteins that are more important for short-term survival. The cell may also temporarily halt certain processes: for example, newly constructed proteins may no longer be transported from the cell structure where they are made—called the endoplasmic reticulum—to their final destinations in the cell. However, the protein transport apparatus is also made of proteins and needs to be protected from being broken down so that once starvation ends, the cell can more quickly return to normal working order. Zacharogianni et al. identify a strategy cells use to store and protect part of their protein transport apparatus during times of stress. Starving fruit fly cells of amino-acids causes the cells to form protective stress assemblies incorporating the proteins associated with the ‘exit sites’ that release proteins from the endoplasmic reticulum. These assemblies are called Sec bodies, and when amino-acid starvation ends, these bodies release the exit site components unharmed. This allows the cell to quickly resume protein transport and so speeds the cell's recovery. If the Sec bodies do not form, the cells are more likely to die during amino-acid starvation. The Sec bodies are distinct from previously identified stress assemblies that form in the cell during stress, but they share features with them, such as being liquid droplets. Some of these assemblies have been linked to degenerative diseases like amyotrophic lateral sclerosis (ALS). Further research will be necessary to determine if there are any similar harmful side effects associated with the formation of Sec bodies. DOI:http://dx.doi.org/10.7554/eLife.04132.002
Collapse
Affiliation(s)
| | | | - Tineke Veenendaal
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, Utrecht, Netherlands
| | - Jan Smout
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, Utrecht, Netherlands
| | - Catherine Rabouille
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, Utrecht, Netherlands
| |
Collapse
|