1
|
Gosu V, Sasidharan S, Saudagar P, Lee HK, Shin D. Computational Insights into the Structural Dynamics of MDA5 Variants Associated with Aicardi-Goutières Syndrome and Singleton-Merten Syndrome. Biomolecules 2021; 11:biom11081251. [PMID: 34439917 PMCID: PMC8393256 DOI: 10.3390/biom11081251] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/15/2021] [Accepted: 08/16/2021] [Indexed: 11/26/2022] Open
Abstract
Melanoma differentiation-associated protein 5 (MDA5) is a crucial RIG-I-like receptor RNA helicase enzyme encoded by IFIH1 in humans. Single nucleotide polymorphisms in the IFIH1 results in fatal genetic disorders such as Aicardi–Goutières syndrome and Singleton–Merten syndrome, and in increased risk of type I diabetes in humans. In this study, we chose four different amino acid substitutions of the MDA5 protein responsible for genetic disorders: MDA5L372F, MDA5A452T, MDA5R779H, and MDA5R822Q and analyzed their structural and functional relationships using molecular dynamic simulations. Our results suggest that the mutated complexes are relatively more stable than the wild-type MDA5. The radius of gyration, interaction energies, and intra-hydrogen bond analysis indicated the stability of mutated complexes over the wild type, especially MDA5L372F and MDA5R822Q. The dominant motions exhibited by the wild-type and mutant complexes varied significantly. Moreover, the betweenness centrality of the wild-type and mutant complexes showed shared residues for intra-signal propagation. The observed results indicate that the mutations lead to a gain of function, as reported in previous studies, due to increased interaction energies and stability between RNA and MDA5 in mutated complexes. These findings are expected to deepen our understanding of MDA5 variants and may assist in the development of relevant therapeutics against the disorders.
Collapse
Affiliation(s)
- Vijayakumar Gosu
- Department of Animal Biotechnology, Jeonbuk National University, Jeonju 54896, Korea;
| | - Santanu Sasidharan
- Department of Biotechnology, National Institute of Technology, Warangal 506004, Telangana, India; (S.S.); (P.S.)
| | - Prakash Saudagar
- Department of Biotechnology, National Institute of Technology, Warangal 506004, Telangana, India; (S.S.); (P.S.)
| | - Hak-Kyo Lee
- Department of Animal Biotechnology, Jeonbuk National University, Jeonju 54896, Korea;
- Department of Agricultural Convergence Technology, Jeonbuk National University, Jeonju 54896, Korea
- Correspondence: (H.L.); (D.S.)
| | - Donghyun Shin
- Department of Agricultural Convergence Technology, Jeonbuk National University, Jeonju 54896, Korea
- Correspondence: (H.L.); (D.S.)
| |
Collapse
|
2
|
Vats A, Gautam D, Maharana J, Singh Chera J, Kumar S, Rout PK, Werling D, De S. Poly I:C stimulation in-vitro as a marker for an antiviral response in different cell types generated from Buffalo (Bubalus bubalis). Mol Immunol 2020; 121:136-143. [PMID: 32200171 DOI: 10.1016/j.molimm.2020.03.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 02/06/2020] [Accepted: 03/09/2020] [Indexed: 01/17/2023]
Abstract
The innate immune system is activated upon virus invasion of a host cell by recognizing viral component, such as dsRNA through specific receptors, resulting in the production of type- I IFNs, which confer an antiviral state within the invaded as well as surrounding cells. In the present study, fibroblast, monocyte and macrophage cells derived from water Buffalo (Bubalus bubalis) were exposed to a synthetic dsRNA analogue, poly I:C to mimic viral invasion in each cell type. Recognition of poly I:C through cytosolic helicase receptors RIG-I and MDA5 molecule lead to the activation of the RLR pathway, subsequently activating the MAVS-IRF3/7 cascade and the production of antiviral effector molecule like IFNβ and ISGs. Within the different cell types, we identified variability in RLR receptor and IFNβ expression after poly I:C administration. Fibroblasts responded quickly and strongly with IFNβ production, followed by macrophages and monocytes. Despite absolute expression variability among different cell types the expression trend of RLRs pathway genes were similar. Length of poly I:C molecule also influence IFNβ expression in response of RLR pathway. Short (LMW) poly I:C induce stronger IFN-β expression in myeloid (macrophage and monocyte) cells. In contrast long (HMW) poly I:C preferably elicit higher IFNβ expression in non-myeloid (fibroblast) cell. Therefore, MDA5 and RIG-1 plays an indispensable role in eliciting antiviral response in non- immune (fibroblast) host cell. Thus, stimulation of RLR pathway with suitable and potentially cell-type specific agonist molecules successfully elicit antiviral state in the host animal, with fibroblasts conferring a stronger antiviral state compared with the monocytes and macrophages.
Collapse
Affiliation(s)
- Ashutosh Vats
- Animal Genomics Lab., Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| | - Devika Gautam
- Animal Genomics Lab., Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| | - Jitendra Maharana
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Jatinder Singh Chera
- Animal Genomics Lab., Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| | - Sushil Kumar
- Animal Genomics Lab., Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| | - Pramod K Rout
- ICAR-Central Institute for Research on Goats, Mathura, Uttar Pradesh, India
| | - Dirk Werling
- The Royal Veterinary College, University of London, Hawkshead Lane, North Mymms, Hatfield, AL9 7TA, UK
| | - Sachinandan De
- Animal Genomics Lab., Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal, Haryana, India.
| |
Collapse
|
3
|
Diversity, Antimicrobial Action and Structure-Activity Relationship of Buffalo Cathelicidins. PLoS One 2015; 10:e0144741. [PMID: 26675301 PMCID: PMC4684500 DOI: 10.1371/journal.pone.0144741] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 11/22/2015] [Indexed: 02/07/2023] Open
Abstract
Cathelicidins are an ancient class of antimicrobial peptides (AMPs) with broad spectrum bactericidal activities. In this study, we investigated the diversity and biological activity of cathelicidins of buffalo, a species known for its disease resistance. A series of new homologs of cathelicidin4 (CATHL4), which were structurally diverse in their antimicrobial domain, was identified in buffalo. AMPs of newly identified buffalo CATHL4s (buCATHL4s) displayed potent antimicrobial activity against selected Gram positive (G+) and Gram negative (G-) bacteria. These peptides were prompt to disrupt the membrane integrity of bacteria and induced specific changes such as blebing, budding, and pore like structure formation on bacterial membrane. The peptides assumed different secondary structure conformations in aqueous and membrane-mimicking environments. Simulation studies suggested that the amphipathic design of buCATHL4 was crucial for water permeation following membrane disruption. A great diversity, broad-spectrum antimicrobial action, and ability to induce an inflammatory response indicated the pleiotropic role of cathelicidins in innate immunity of buffalo. This study suggests short buffalo cathelicidin peptides with potent bactericidal properties and low cytotoxicity have potential translational applications for the development of novel antibiotics and antimicrobial peptidomimetics.
Collapse
|
4
|
Comparative genomic analysis of buffalo (Bubalus bubalis) NOD1 and NOD2 receptors and their functional role in in-vitro cellular immune response. PLoS One 2015; 10:e0119178. [PMID: 25786158 PMCID: PMC4365024 DOI: 10.1371/journal.pone.0119178] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 01/10/2015] [Indexed: 11/24/2022] Open
Abstract
Nucleotide binding and oligomerization domain (NOD)-like receptors (NLRs) are innate immune receptors that recognize bacterial cell wall components and initiate host immune response. Structure and function of NLRs have been well studied in human and mice, but little information exists on genetic composition and role of these receptors in innate immune system of water buffalo—a species known for its exceptional disease resistance. Here, a comparative study on the functional domains of NOD1 and NOD2 was performed across different species. The NOD mediated in-vitro cellular responses were studied in buffalo peripheral blood mononuclear cells, resident macrophages, mammary epithelial, and fibroblast cells. Buffalo NOD1 (buNOD1) and buNOD2 showed conserved domain architectures as found in other mammals. The domains of buNOD1 and buNOD2 showed analogy in secondary and tertiary conformations. Constitutive expressions of NODs were ubiquitous in different tissues. Following treatment with NOD agonists, peripheral lymphocytes showed an IFN-γ response along-with production of pro-inflammatory cytokines. Alveolar macrophages and mammary epithelial cells showed NOD mediated in-vitro immune response through NF-κB dependent pathway. Fibroblasts showed pro-inflammatory cytokine response following agonist treatment. Our study demonstrates that both immune and non-immune cells could generate NOD-mediated responses to pathogens though the type and magnitude of response depend on the cell types. The structural basis of ligand recognition by buffalo NODs and knowledge of immune response by different cell types could be useful for development of non-infective innate immune modulators and next generation anti-inflammatory compounds.
Collapse
|
5
|
Kemp MW. Preterm birth, intrauterine infection, and fetal inflammation. Front Immunol 2014; 5:574. [PMID: 25520716 PMCID: PMC4249583 DOI: 10.3389/fimmu.2014.00574] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Accepted: 10/27/2014] [Indexed: 01/07/2023] Open
Abstract
Preterm birth (PTB) (delivery before 37 weeks’ gestation) is a leading cause of neonatal death and disease in industrialized and developing countries alike. Infection (most notably in high-risk deliveries occurring before 28 weeks’ gestation) is hypothesized to initiate an intrauterine inflammatory response that plays a key role in the premature initiation of labor as well as a host of the pathologies associated with prematurity. As such, a better understanding of intrauterine inflammation in pregnancy is critical to our understanding of preterm labor and fetal injury, as well as on-going efforts to prevent PTB. Focusing on the fetal innate immune system responses to intrauterine infection, the present paper will review clinical and experimental studies to discuss the capacity for a fetal contribution to the intrauterine inflammation associated with PTB. Evidence from experimental studies to suggest that the fetus has the capacity to elicit a pro-inflammatory response to intrauterine infection is highlighted, with reference to the contribution of the lung, skin, and gastrointestinal tract. The paper will conclude that pathological intrauterine inflammation is a complex process that is modified by multiple factors including time, type of agonist, host genetics, and tissue.
Collapse
Affiliation(s)
- Matthew W Kemp
- School of Women's and Infants' Health, The University of Western Australia , Perth, WA , Australia
| |
Collapse
|