1
|
Hyaluronic acid hydrogels support to generate integrated bone formation through endochondral ossification in vivo using mesenchymal stem cells. PLoS One 2023; 18:e0281345. [PMID: 36730328 PMCID: PMC9894498 DOI: 10.1371/journal.pone.0281345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 01/20/2023] [Indexed: 02/03/2023] Open
Abstract
Engineered cartilage tissue from differentiated mesenchymal stem cells (MSCs) can generate bone in vivo through endochondral ossification (ECO). This ECO-mediated approach has the potential to circumvent the severe problems associated with conventional MSC-based bone tissue engineering techniques that lack mechanisms to induce angiogenesis. Hyaluronic acid (HA) is a key component in the cartilage extracellular matrix. However, the ECO-supporting properties of HA remain largely unclear. This study aimed to compare the ability of HA and collagen hydrogels to support in vitro differentiation of MSC-based hypertrophic cartilage tissues and to promote endochondral bone formation in vivo. Following the chondrogenic and hypertrophic differentiation in vitro, both HA and collagen constructs accumulated sulfated glycosaminoglycan (sGAG) and type 1, type II, and type X collagen. However, HA hydrogels exhibited a more uniform distribution of sGAG, type 1 collagen, type X collagen, and osteocalcin proteins; in addition, the cells embedded in the hydrogels had more rounded cell morphologies than those in the collagen constructs. At week 5 of in vitro culture, two to three constructs were implanted into a subcutaneous pocket in nude mice and harvested after 4 and 8 weeks. Both HA and collagen constructs promoted endochondral bone formation with vascularization and bone marrow development; however, the HA constructs fused to form integrated bone tissues and the bone marrow developed along the space between the two adhered grafts in all implanted pockets (n = 5). In the collagen constructs, the integration was observed in 40% of the pockets (n = 5). Microcomputer CT analysis revealed that the bone volume of HA constructs was larger than that of collagen constructs. In conclusion, compared to collagen hydrogels, HA hydrogels had superior potential to generate integrated bone with vascularization and bone marrow development. This study provides valuable insights for applying ECO-mediated bone tissue engineering approaches for the repair of critical-sized bone defects.
Collapse
|
2
|
Pitacco P, Sadowska JM, O'Brien FJ, Kelly DJ. 3D bioprinting of cartilaginous templates for large bone defect healing. Acta Biomater 2023; 156:61-74. [PMID: 35907556 DOI: 10.1016/j.actbio.2022.07.037] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 07/18/2022] [Accepted: 07/21/2022] [Indexed: 01/18/2023]
Abstract
Damaged or diseased bone can be treated using autografts or a range of different bone grafting biomaterials, however limitations with such approaches has motivated increased interest in developmentally inspired bone tissue engineering (BTE) strategies that seek to recapitulate the process of endochondral ossification (EO) as a means of regenerating critically sized defects. The clinical translation of such strategies will require the engineering of scaled-up, geometrically defined hypertrophic cartilage grafts that can be rapidly vascularised and remodelled into bone in mechanically challenging defect environments. The goal of this study was to 3D bioprint mechanically reinforced cartilaginous templates and to assess their capacity to regenerate critically sized femoral bone defects. Human mesenchymal stem/stromal cells (hMSCs) were incorporated into fibrin based bioinks and bioprinted into polycaprolactone (PCL) frameworks to produce mechanically reinforced constructs. Chondrogenic priming of such hMSC laden constructs was required to support robust vascularisation and graft mineralisation in vivo following their subcutaneous implantation into nude mice. With a view towards maximising their potential to support endochondral bone regeneration, we next explored different in vitro culture regimes to produce chondrogenic and early hypertrophic engineered grafts. Following their implantation into femoral bone defects within transiently immunosuppressed rats, such bioprinted constructs were rapidly remodelled into bone in vivo, with early hypertrophic constructs supporting higher levels of vascularisation and bone formation compared to the chondrogenic constructs. Such early hypertrophic bioprinted constructs also supported higher levels of vascularisation and spatially distinct patterns of new formation compared to BMP-2 loaded collagen scaffolds (here used as a positive control). In conclusion, this study demonstrates that fibrin based bioinks support chondrogenesis of hMSCs in vitro, which enables the bioprinting of mechanically reinforced hypertrophic cartilaginous templates capable of supporting large bone defect regeneration. These results support the use of 3D bioprinting as a strategy to scale-up the engineering of developmentally inspired templates for BTE. STATEMENT OF SIGNIFICANCE: Despite the promise of developmentally inspired tissue engineering strategies for bone regeneration, there are still challenges that need to be addressed to enable clinical translation. This work reports the development and assessment (in vitro and in vivo) of a 3D bioprinting strategy to engineer mechanically-reinforced cartilaginous templates for large bone defect regeneration using human MSCs. Using distinct in vitro priming protocols, it was possible to generate cartilage grafts with altered phenotypes. More hypertrophic grafts, engineered in vitro using TGF-β3 and BMP-2, supported higher levels of blood vessel infiltration and accelerated bone regeneration in vivo. This study also identifies some of the advantages and disadvantages of such endochondral bone TE strategies over the direct delivery of BMP-2 from collagen-based scaffolds.
Collapse
Affiliation(s)
- Pierluca Pitacco
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland; Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland.
| | - Joanna M Sadowska
- Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin, Ireland; Tissue Engineering Research Group, Dept. of Anatomy & Regenerative Medicine Royal College of Surgeons in Ireland, Ireland.
| | - Fergal J O'Brien
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland; Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin, Ireland; Tissue Engineering Research Group, Dept. of Anatomy & Regenerative Medicine Royal College of Surgeons in Ireland, Ireland.
| | - Daniel J Kelly
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland; Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland; Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin, Ireland; Tissue Engineering Research Group, Dept. of Anatomy & Regenerative Medicine Royal College of Surgeons in Ireland, Ireland.
| |
Collapse
|
3
|
Iimori Y, Morioka M, Koyamatsu S, Tsumaki N. Implantation of Human-Induced Pluripotent Stem Cell-Derived Cartilage in Bone Defects of Mice. Tissue Eng Part A 2021; 27:1355-1367. [PMID: 33567995 DOI: 10.1089/ten.tea.2020.0346] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Although bone has an innate capacity for repair, clinical situations such as comminuted fracture, open fracture, or the surgical resection of bone tumors produce critical-sized bone defects that exceed the capacity and require external intervention. Initiating endochondral ossification (EO) by the implantation of a cartilaginous template into the bone defect is a relatively new approach to cure critical-sized bone defects. The combination of chondrogenically primed mesenchymal stromal/stem cells and artificial scaffolds has been the most extensively studied approach for inducing endochondral bone formation in bone defects. In this study, we prepared cartilage (human-induced pluripotent stem [hiPS]-Cart) from hiPS cells (hiPSCs) in a scaffoldless manner and implanted hiPS-Cart into 3.5 mm large defects created in the femurs of immunodeficient mice to examine the repair capacity. For the control, nothing was implanted into the defects. The implantation of hiPS-Cart significantly induced more new bone in the defect compared with the control. Culture periods for the chondrogenic differentiation of hiPSCs significantly affected the speed of bone induction, with less time resulting in faster bone formation. Histological analysis revealed that hiPS-Cart induced new bone formation in a manner resembling EO of the secondary ossification center, with the cartilage canal, which extended from the periphery to the center of hiPS-Cart, initially forming in unmineralized cartilage, followed by chondrocyte hypertrophy at the center. In the newly formed bone, the majority of osteocytes, osteoblasts, and adipocytes expressed human nuclear antigen (HNA), suggesting that these types of cells mainly derived from the perichondrium of hiPS-Cart. Osteoclasts and blood vessel cells did not express HNA and thus were mouse. Finally, integration between the newly formed bone and mouse femur was attained substantially. Although hiPS-Cart induced new bone that filled bone defects, the newly formed bone, which is a hybrid of human and mouse, had not remodeled to mature bone within the observation period of this study (28 weeks).
Collapse
Affiliation(s)
- Yuki Iimori
- Cell Induction and Regulation Field, Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan.,Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Miho Morioka
- Cell Induction and Regulation Field, Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Saeko Koyamatsu
- Cell Induction and Regulation Field, Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Noriyuki Tsumaki
- Cell Induction and Regulation Field, Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| |
Collapse
|
4
|
Effects of Macro-/Micro-Channels on Vascularization and Immune Response of Tissue Engineering Scaffolds. Cells 2021; 10:cells10061514. [PMID: 34208449 PMCID: PMC8235743 DOI: 10.3390/cells10061514] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 06/10/2021] [Accepted: 06/11/2021] [Indexed: 01/07/2023] Open
Abstract
Although the use of porous scaffolds in tissue engineering has been relatively successful, there are still many limitations that need to be addressed, such as low vascularization, low oxygen and nutrient levels, and immune-induced inflammation. As a result, the current porous scaffolds are insufficient when treating large defects. This paper analyzed scientific research pertaining to the effects of macro-/micro-channels on the cell recruitment, vascularization, and immune response of tissue engineering scaffolds. Most of the studies contained either cell culturing experimentation or experimentation on small animals such as rats and mice. The sacrificial template method, template casting method, and 3D printing method were the most common methods in the fabrication of channeled scaffolds. Some studies combine the sacrificial and 3D printing methods to design and create their scaffold with channels. The overall results from these studies showed that the incorporation of channels within scaffolds greatly increased vascularization, reduced immune response, and was much more beneficial for cell and growth factor recruitment compared with control groups that contained no channels. More research on the effect of micro-/macro-channels on vascularization or immune response in animal models is necessary in the future in order to achieve clinical translation.
Collapse
|
5
|
Fu R, Liu C, Yan Y, Li Q, Huang RL. Bone defect reconstruction via endochondral ossification: A developmental engineering strategy. J Tissue Eng 2021; 12:20417314211004211. [PMID: 33868628 PMCID: PMC8020769 DOI: 10.1177/20417314211004211] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 02/05/2023] Open
Abstract
Traditional bone tissue engineering (BTE) strategies induce direct bone-like matrix formation by mimicking the embryological process of intramembranous ossification. However, the clinical translation of these clinical strategies for bone repair is hampered by limited vascularization and poor bone regeneration after implantation in vivo. An alternative strategy for overcoming these drawbacks is engineering cartilaginous constructs by recapitulating the embryonic processes of endochondral ossification (ECO); these constructs have shown a unique ability to survive under hypoxic conditions as well as induce neovascularization and ossification. Such developmentally engineered constructs can act as transient biomimetic templates to facilitate bone regeneration in critical-sized defects. This review introduces the concept and mechanism of developmental BTE, explores the routes of endochondral bone graft engineering, highlights the current state of the art in large bone defect reconstruction via ECO-based strategies, and offers perspectives on the challenges and future directions of translating current knowledge from the bench to the bedside.
Collapse
Affiliation(s)
- Rao Fu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chuanqi Liu
- Department of Plastic and Burn Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Yuxin Yan
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qingfeng Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ru-Lin Huang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
6
|
Critchley S, Sheehy EJ, Cunniffe G, Diaz-Payno P, Carroll SF, Jeon O, Alsberg E, Brama PAJ, Kelly DJ. 3D printing of fibre-reinforced cartilaginous templates for the regeneration of osteochondral defects. Acta Biomater 2020; 113:130-143. [PMID: 32505800 DOI: 10.1016/j.actbio.2020.05.040] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/27/2020] [Accepted: 05/28/2020] [Indexed: 12/11/2022]
Abstract
Successful osteochondral defect repair requires regenerating the subchondral bone whilst simultaneously promoting the development of an overlying layer of articular cartilage that is resistant to vascularization and endochondral ossification. During skeletal development articular cartilage also functions as a surface growth plate, which postnatally is replaced by a more spatially complex bone-cartilage interface. Motivated by this developmental process, the hypothesis of this study is that bi-phasic, fibre-reinforced cartilaginous templates can regenerate both the articular cartilage and subchondral bone within osteochondral defects created in caprine joints. To engineer mechanically competent implants, we first compared a range of 3D printed fibre networks (PCL, PLA and PLGA) for their capacity to mechanically reinforce alginate hydrogels whilst simultaneously supporting mesenchymal stem cell (MSC) chondrogenesis in vitro. These mechanically reinforced, MSC-laden alginate hydrogels were then used to engineer the endochondral bone forming phase of bi-phasic osteochondral constructs, with the overlying chondral phase consisting of cartilage tissue engineered using a co-culture of infrapatellar fat pad derived stem/stromal cells (FPSCs) and chondrocytes. Following chondrogenic priming and subcutaneous implantation in nude mice, these bi-phasic cartilaginous constructs were found to support the development of vascularised endochondral bone overlaid by phenotypically stable cartilage. These fibre-reinforced, bi-phasic cartilaginous templates were then evaluated in clinically relevant, large animal (caprine) model of osteochondral defect repair. Although the quality of repair was variable from animal-to-animal, in general more hyaline-like cartilage repair was observed after 6 months in animals treated with bi-phasic constructs compared to animals treated with commercial control scaffolds. This variability in the quality of repair points to the need for further improvements in the design of 3D bioprinted implants for joint regeneration. STATEMENT OF SIGNIFICANCE: Successful osteochondral defect repair requires regenerating the subchondral bone whilst simultaneously promoting the development of an overlying layer of articular cartilage. In this study, we hypothesised that bi-phasic, fibre-reinforced cartilaginous templates could be leveraged to regenerate both the articular cartilage and subchondral bone within osteochondral defects. To this end we used 3D printed fibre networks to mechanically reinforce engineered transient cartilage, which also contained an overlying layer of phenotypically stable cartilage engineered using a co-culture of chondrocytes and stem cells. When chondrogenically primed and implanted into caprine osteochondral defects, these fibre-reinforced bi-phasic cartilaginous grafts were shown to spatially direct tissue development during joint repair. Such developmentally inspired tissue engineering strategies, enabled by advances in biofabrication and 3D printing, could form the basis of new classes of regenerative implants in orthopaedic medicine.
Collapse
Affiliation(s)
- Susan Critchley
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland; Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
| | - Eamon J Sheehy
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland; Advanced Materials and Bioengineering Research Centre, Trinity College Dublin and Royal College of Surgeons in Ireland, Dublin, Ireland; Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Gráinne Cunniffe
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland; Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
| | - Pedro Diaz-Payno
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland; Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
| | - Simon F Carroll
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland; Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
| | - Oju Jeon
- Department of Bioengineering, University of Illinois, Chicago, IL, USA
| | - Eben Alsberg
- Department of Bioengineering, University of Illinois, Chicago, IL, USA; Departments of Orthopaedics, Pharmacology, and Mechanical & Industrial Engineering, University of Illinois, Chicago, IL, USA
| | - Pieter A J Brama
- School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| | - Daniel J Kelly
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland; Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland; Advanced Materials and Bioengineering Research Centre, Trinity College Dublin and Royal College of Surgeons in Ireland, Dublin, Ireland; Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland.
| |
Collapse
|
7
|
Sheehy E, Kelly D, O'Brien F. Biomaterial-based endochondral bone regeneration: a shift from traditional tissue engineering paradigms to developmentally inspired strategies. Mater Today Bio 2019; 3:100009. [PMID: 32159148 PMCID: PMC7061547 DOI: 10.1016/j.mtbio.2019.100009] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 05/23/2019] [Accepted: 05/24/2019] [Indexed: 02/06/2023] Open
Abstract
There is an urgent, clinical need for an alternative to the use of autologous grafts for the ever increasing number of bone grafting procedures performed annually. Herein, we describe a developmentally inspired approach to bone tissue engineering, which focuses on leveraging biomaterials as platforms for recapitulating the process of endochondral ossification. To begin, we describe the traditional biomaterial-based approaches to tissue engineering that have been investigated as methods to promote in vivo bone regeneration, including the use of three-dimensional biomimetic scaffolds, the delivery of growth factors and recombinant proteins, and the in vitro engineering of mineralized bone-like tissue. Thereafter, we suggest that some of the hurdles encountered by these traditional tissue engineering approaches may be circumvented by modulating the endochondral route to bone repair and, to that end, we assess various biomaterials that can be used in combination with cells and signaling factors to engineer hypertrophic cartilaginous grafts capable of promoting endochondral bone formation. Finally, we examine the emerging trends in biomaterial-based approaches to endochondral bone regeneration, such as the engineering of anatomically shaped templates for bone and osteochondral tissue engineering, the fabrication of mechanically reinforced constructs using emerging three-dimensional bioprinting techniques, and the generation of gene-activated scaffolds, which may accelerate the field towards its ultimate goal of clinically successful bone organ regeneration.
Collapse
Affiliation(s)
- E.J. Sheehy
- Tissue Engineering Research Group (TERG), Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin, Ireland
| | - D.J. Kelly
- Tissue Engineering Research Group (TERG), Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
- Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin, Ireland
| | - F.J. O'Brien
- Tissue Engineering Research Group (TERG), Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
- Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
8
|
Gonzalez-Fernandez T, Rathan S, Hobbs C, Pitacco P, Freeman FE, Cunniffe GM, Dunne NJ, McCarthy HO, Nicolosi V, O'Brien FJ, Kelly DJ. Pore-forming bioinks to enable spatio-temporally defined gene delivery in bioprinted tissues. J Control Release 2019; 301:13-27. [PMID: 30853527 DOI: 10.1016/j.jconrel.2019.03.006] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 03/02/2019] [Accepted: 03/06/2019] [Indexed: 12/17/2022]
Abstract
The regeneration of complex tissues and organs remains a major clinical challenge. With a view towards bioprinting such tissues, we developed a new class of pore-forming bioink to spatially and temporally control the presentation of therapeutic genes within bioprinted tissues. By blending sacrificial and stable hydrogels, we were able to produce bioinks whose porosity increased with time following printing. When combined with amphipathic peptide-based plasmid DNA delivery, these bioinks supported enhanced non-viral gene transfer to stem cells in vitro. By modulating the porosity of these bioinks, it was possible to direct either rapid and transient (pore-forming bioinks), or slower and more sustained (solid bioinks) transfection of host or transplanted cells in vivo. To demonstrate the utility of these bioinks for the bioprinting of spatially complex tissues, they were next used to zonally position stem cells and plasmids encoding for either osteogenic (BMP2) or chondrogenic (combination of TGF-β3, BMP2 and SOX9) genes within networks of 3D printed thermoplastic fibers to produce mechanically reinforced, gene activated constructs. In vivo, these bioprinted tissues supported the development of a vascularised, bony tissue overlaid by a layer of stable cartilage. When combined with multiple-tool biofabrication strategies, these gene activated bioinks can enable the bioprinting of a wide range of spatially complex tissues.
Collapse
Affiliation(s)
- T Gonzalez-Fernandez
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland; Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Ireland; Advanced Materials and Bioengineering Research Centre (AMBER), Trinity College Dublin and Royal College of Surgeons, Ireland
| | - S Rathan
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland; Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Ireland
| | - C Hobbs
- Advanced Materials and Bioengineering Research Centre (AMBER), Trinity College Dublin and Royal College of Surgeons, Ireland; School of Physics, Trinity College Dublin, Ireland; Centre for Research of Adaptive Nanostructures and Nanodevices, Trinity College Dublin, Ireland
| | - P Pitacco
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland; Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Ireland
| | - F E Freeman
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland; Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Ireland
| | - G M Cunniffe
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland; Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Ireland
| | - N J Dunne
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland; Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Ireland; Advanced Materials and Bioengineering Research Centre (AMBER), Trinity College Dublin and Royal College of Surgeons, Ireland; Centre for Medical Engineering Research, School of Mechanical and Manufacturing Engineering, Dublin City University, Ireland; School of Mechanical and Manufacturing Engineering, Dublin City University, Ireland; School of Pharmacy, Queen's University Belfast, UK
| | - H O McCarthy
- School of Pharmacy, Queen's University Belfast, UK
| | - V Nicolosi
- Advanced Materials and Bioengineering Research Centre (AMBER), Trinity College Dublin and Royal College of Surgeons, Ireland; School of Physics, Trinity College Dublin, Ireland; Centre for Research of Adaptive Nanostructures and Nanodevices, Trinity College Dublin, Ireland
| | - F J O'Brien
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland; Advanced Materials and Bioengineering Research Centre (AMBER), Trinity College Dublin and Royal College of Surgeons, Ireland; Tissue Engineering Research Group, Dept. of Anatomy, Royal College of Surgeons in, Ireland
| | - D J Kelly
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland; Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Ireland; Advanced Materials and Bioengineering Research Centre (AMBER), Trinity College Dublin and Royal College of Surgeons, Ireland; Tissue Engineering Research Group, Dept. of Anatomy, Royal College of Surgeons in, Ireland.
| |
Collapse
|
9
|
Wong SA, Rivera KO, Miclau T, Alsberg E, Marcucio RS, Bahney CS. Microenvironmental Regulation of Chondrocyte Plasticity in Endochondral Repair-A New Frontier for Developmental Engineering. Front Bioeng Biotechnol 2018; 6:58. [PMID: 29868574 PMCID: PMC5962790 DOI: 10.3389/fbioe.2018.00058] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 04/23/2018] [Indexed: 12/31/2022] Open
Abstract
The majority of fractures heal through the process of endochondral ossification, in which a cartilage intermediate forms between the fractured bone ends and is gradually replaced with bone. Recent studies have provided genetic evidence demonstrating that a significant portion of callus chondrocytes transform into osteoblasts that derive the new bone. This evidence has opened a new field of research aimed at identifying the regulatory mechanisms that govern chondrocyte transformation in the hope of developing improved fracture therapies. In this article, we review known and candidate molecular pathways that may stimulate chondrocyte-to-osteoblast transformation during endochondral fracture repair. We also examine additional extrinsic factors that may play a role in modulating chondrocyte and osteoblast fate during fracture healing such as angiogenesis and mineralization of the extracellular matrix. Taken together the mechanisms reviewed here demonstrate the promising potential of using developmental engineering to design therapeutic approaches that activate endogenous healing pathways to stimulate fracture repair.
Collapse
Affiliation(s)
- Sarah A Wong
- Department of Orthopaedic Surgery, Orthopaedic Trauma Institute, University of California, San Francisco, San Francisco, CA, United States.,School of Dentistry, University of California, San Francisco, San Francisco, CA, United States
| | - Kevin O Rivera
- Department of Orthopaedic Surgery, Orthopaedic Trauma Institute, University of California, San Francisco, San Francisco, CA, United States.,School of Dentistry, University of California, San Francisco, San Francisco, CA, United States
| | - Theodore Miclau
- Department of Orthopaedic Surgery, Orthopaedic Trauma Institute, University of California, San Francisco, San Francisco, CA, United States
| | - Eben Alsberg
- Department of Orthopaedic Surgery and Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
| | - Ralph S Marcucio
- Department of Orthopaedic Surgery, Orthopaedic Trauma Institute, University of California, San Francisco, San Francisco, CA, United States.,School of Dentistry, University of California, San Francisco, San Francisco, CA, United States
| | - Chelsea S Bahney
- Department of Orthopaedic Surgery, Orthopaedic Trauma Institute, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
10
|
Pirosa A, Gottardi R, Alexander PG, Tuan RS. Engineering in-vitro stem cell-based vascularized bone models for drug screening and predictive toxicology. Stem Cell Res Ther 2018; 9:112. [PMID: 29678192 PMCID: PMC5910611 DOI: 10.1186/s13287-018-0847-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The production of veritable in-vitro models of bone tissue is essential to understand the biology of bone and its surrounding environment, to analyze the pathogenesis of bone diseases (e.g., osteoporosis, osteoarthritis, osteomyelitis, etc.), to develop effective therapeutic drug screening, and to test potential therapeutic strategies. Dysregulated interactions between vasculature and bone cells are often related to the aforementioned pathologies, underscoring the need for a bone model that contains engineered vasculature. Due to ethical restraints and limited prediction power of animal models, human stem cell-based tissue engineering has gained increasing relevance as a candidate approach to overcome the limitations of animals and to serve as preclinical models for drug testing. Since bone is a highly vascularized tissue, the concomitant development of vasculature and mineralized matrix requires a synergistic interaction between osteogenic and endothelial precursors. A number of experimental approaches have been used to achieve this goal, such as the combination of angiogenic factors and three-dimensional scaffolds, prevascularization strategies, and coculture systems. In this review, we present an overview of the current models and approaches to generate in-vitro stem cell-based vascularized bone, with emphasis on the main challenges of vasculature engineering. These challenges are related to the choice of biomaterials, scaffold fabrication techniques, and cells, as well as the type of culturing conditions required, and specifically the application of dynamic culture systems using bioreactors.
Collapse
Affiliation(s)
- Alessandro Pirosa
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, 450 Technology Drive, Pittsburgh, PA 15219 USA
| | - Riccardo Gottardi
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, 450 Technology Drive, Pittsburgh, PA 15219 USA
- Ri.MED Foundation, Via Bandiera 11, Palermo, 90133 Italy
| | - Peter G. Alexander
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, 450 Technology Drive, Pittsburgh, PA 15219 USA
| | - Rocky S. Tuan
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, 450 Technology Drive, Pittsburgh, PA 15219 USA
| |
Collapse
|
11
|
Daly AC, Pitacco P, Nulty J, Cunniffe GM, Kelly DJ. 3D printed microchannel networks to direct vascularisation during endochondral bone repair. Biomaterials 2018; 162:34-46. [PMID: 29432987 DOI: 10.1016/j.biomaterials.2018.01.057] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 01/16/2018] [Accepted: 01/30/2018] [Indexed: 01/02/2023]
Abstract
Bone tissue engineering strategies that recapitulate the developmental process of endochondral ossification offer a promising route to bone repair. Clinical translation of such endochondral tissue engineering strategies will require overcoming a number of challenges, including the engineering of large and often anatomically complex cartilage grafts, as well as the persistence of core regions of avascular cartilage following their implantation into large bone defects. Here 3D printing technology is utilized to develop a versatile and scalable approach to guide vascularisation during endochondral bone repair. First, a sacrificial pluronic ink was used to 3D print interconnected microchannel networks in a mesenchymal stem cell (MSC) laden gelatin-methacryloyl (GelMA) hydrogel. These constructs (with and without microchannels) were next chondrogenically primed in vitro and then implanted into critically sized femoral bone defects in rats. The solid and microchanneled cartilage templates enhanced bone repair compared to untreated controls, with the solid cartilage templates (without microchannels) supporting the highest levels of total bone formation. However, the inclusion of 3D printed microchannels was found to promote osteoclast/immune cell invasion, hydrogel degradation, and vascularisation following implantation. In addition, the endochondral bone tissue engineering strategy was found to support comparable levels of bone healing to BMP-2 delivery, whilst promoting lower levels of heterotopic bone formation, with the microchanneled templates supporting the lowest levels of heterotopic bone formation. Taken together, these results demonstrate that 3D printed hypertrophic cartilage grafts represent a promising approach for the repair of complex bone fractures, particularly for larger defects where vascularisation will be a key challenge.
Collapse
Affiliation(s)
- Andrew C Daly
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland; Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland; Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Pierluca Pitacco
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland; Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
| | - Jessica Nulty
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland; Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
| | - Gráinne M Cunniffe
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland; Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
| | - Daniel J Kelly
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland; Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland; Department of Anatomy, Royal College of Surgeons in Ireland, Dublin, Ireland; Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
12
|
Nims RJ, Cigan AD, Durney KM, Jones BK, O'Neill JD, Law WSA, Vunjak-Novakovic G, Hung CT, Ateshian GA. * Constrained Cage Culture Improves Engineered Cartilage Functional Properties by Enhancing Collagen Network Stability. Tissue Eng Part A 2017; 23:847-858. [PMID: 28193145 DOI: 10.1089/ten.tea.2016.0467] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
When cultured with sufficient nutrient supply, engineered cartilage synthesizes proteoglycans rapidly, producing an osmotic swelling pressure that destabilizes immature collagen and prevents the development of a robust collagen framework, a hallmark of native cartilage. We hypothesized that mechanically constraining the proteoglycan-induced tissue swelling would enhance construct functional properties through the development of a more stable collagen framework. To test this hypothesis, we developed a novel "cage" growth system to mechanically prevent tissue constructs from swelling while ensuring adequate nutrient supply to the growing construct. The effectiveness of constrained culture was examined by testing constructs embedded within two different scaffolds: agarose and cartilage-derived matrix hydrogel (CDMH). Constructs were seeded with immature bovine chondrocytes and cultured under free swelling (FS) conditions for 14 days with transforming growth factor-β before being placed into a constraining cage for the remainder of culture. Controls were cultured under FS conditions throughout. Agarose constructs cultured in cages did not expand after the day 14 caging while FS constructs expanded to 8 × their day 0 weight after 112 days of culture. In addition to the physical differences in growth, by day 56, caged constructs had higher equilibrium (agarose: 639 ± 179 kPa and CDMH: 608 ± 257 kPa) and dynamic compressive moduli (agarose: 3.4 ± 1.0 MPa and CDMH 2.8 ± 1.0 MPa) than FS constructs (agarose: 193 ± 74 kPa and 1.1 ± 0.5 MPa and CDMH: 317 ± 93 kPa and 1.8 ± 1.0 MPa for equilibrium and dynamic properties, respectively). Interestingly, when normalized to final day wet weight, cage and FS constructs did not exhibit differences in proteoglycan or collagen content. However, caged culture enhanced collagen maturation through the increased formation of pyridinoline crosslinks and improved collagen matrix stability as measured by α-chymotrypsin solubility. These findings demonstrate that physically constrained culture of engineered cartilage constructs improves functional properties through improved collagen network maturity and stability. We anticipate that constrained culture may benefit other reported engineered cartilage systems that exhibit a mismatch in proteoglycan and collagen synthesis.
Collapse
Affiliation(s)
- Robert J Nims
- 1 Department of Biomedical Engineering, Columbia University , New York, New York
| | - Alexander D Cigan
- 1 Department of Biomedical Engineering, Columbia University , New York, New York
| | - Krista M Durney
- 1 Department of Biomedical Engineering, Columbia University , New York, New York
| | - Brian K Jones
- 2 Department of Mechanical Engineering, Columbia University , New York, New York
| | - John D O'Neill
- 1 Department of Biomedical Engineering, Columbia University , New York, New York
| | - Wing-Sum A Law
- 2 Department of Mechanical Engineering, Columbia University , New York, New York
| | - Gordana Vunjak-Novakovic
- 1 Department of Biomedical Engineering, Columbia University , New York, New York.,3 Department of Medicine, Columbia University , New York, New York
| | - Clark T Hung
- 1 Department of Biomedical Engineering, Columbia University , New York, New York
| | - Gerard A Ateshian
- 1 Department of Biomedical Engineering, Columbia University , New York, New York.,2 Department of Mechanical Engineering, Columbia University , New York, New York
| |
Collapse
|
13
|
Freeman FE, McNamara LM. Endochondral Priming: A Developmental Engineering Strategy for Bone Tissue Regeneration. TISSUE ENGINEERING PART B-REVIEWS 2016; 23:128-141. [PMID: 27758156 DOI: 10.1089/ten.teb.2016.0197] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Tissue engineering and regenerative medicine have significant potential to treat bone pathologies by exploiting the capacity for bone progenitors to grow and produce tissue constituents under specific biochemical and physical conditions. However, conventional tissue engineering approaches, which combine stem cells with biomaterial scaffolds, are limited as the constructs often degrade, due to a lack of vascularization, and lack the mechanical integrity to fulfill load bearing functions, and as such are not yet widely used for clinical treatment of large bone defects. Recent studies have proposed that in vitro tissue engineering approaches should strive to simulate in vivo bone developmental processes and, thereby, imitate natural factors governing cell differentiation and matrix production, following the paradigm recently defined as "developmental engineering." Although developmental engineering strategies have been recently developed that mimic specific aspects of the endochondral ossification bone formation process, these findings are not widely understood. Moreover, a critical comparison of these approaches to standard biomaterial-based bone tissue engineering has not yet been undertaken. For that reason, this article presents noteworthy experimental findings from researchers focusing on developing an endochondral-based developmental engineering strategy for bone tissue regeneration. These studies have established that in vitro approaches, which mimic certain aspects of the endochondral ossification process, namely the formation of the cartilage template and the vascularization of the cartilage template, can promote mineralization and vascularization to a certain extent both in vitro and in vivo. Finally, this article outlines specific experimental challenges that must be overcome to further exploit the biology of endochondral ossification and provide a tissue engineering construct for clinical treatment of large bone/nonunion defects and obviate the need for bone tissue graft.
Collapse
Affiliation(s)
- Fiona E Freeman
- Centre for Biomechanics Research (BMEC), Biomedical Engineering, College of Engineering and Informatics, National University of Ireland Galway , Galway, Ireland
| | - Laoise M McNamara
- Centre for Biomechanics Research (BMEC), Biomedical Engineering, College of Engineering and Informatics, National University of Ireland Galway , Galway, Ireland
| |
Collapse
|
14
|
Daly AC, Cunniffe GM, Sathy BN, Jeon O, Alsberg E, Kelly DJ. 3D Bioprinting of Developmentally Inspired Templates for Whole Bone Organ Engineering. Adv Healthc Mater 2016; 5:2353-62. [PMID: 27281607 DOI: 10.1002/adhm.201600182] [Citation(s) in RCA: 149] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 04/30/2016] [Indexed: 12/22/2022]
Abstract
The ability to print defined patterns of cells and extracellular-matrix components in three dimensions has enabled the engineering of simple biological tissues; however, bioprinting functional solid organs is beyond the capabilities of current biofabrication technologies. An alternative approach would be to bioprint the developmental precursor to an adult organ, using this engineered rudiment as a template for subsequent organogenesis in vivo. This study demonstrates that developmentally inspired hypertrophic cartilage templates can be engineered in vitro using stem cells within a supporting gamma-irradiated alginate bioink incorporating Arg-Gly-Asp adhesion peptides. Furthermore, these soft tissue templates can be reinforced with a network of printed polycaprolactone fibers, resulting in a ≈350 fold increase in construct compressive modulus providing the necessary stiffness to implant such immature cartilaginous rudiments into load bearing locations. As a proof-of-principal, multiple-tool biofabrication is used to engineer a mechanically reinforced cartilaginous template mimicking the geometry of a vertebral body, which in vivo supported the development of a vascularized bone organ containing trabecular-like endochondral bone with a supporting marrow structure. Such developmental engineering approaches could be applied to the biofabrication of other solid organs by bioprinting precursors that have the capacity to mature into their adult counterparts over time in vivo.
Collapse
Affiliation(s)
- Andrew C. Daly
- Trinity Centre for Bioengineering and Department of Mechanical and Manufacturing Engineering; Trinity College Dublin; The University of Dublin; Dublin 2 Ireland
| | - Gráinne M. Cunniffe
- Trinity Centre for Bioengineering and Department of Mechanical and Manufacturing Engineering; Trinity College Dublin; The University of Dublin; Dublin 2 Ireland
| | - Binulal N. Sathy
- Trinity Centre for Bioengineering and Department of Mechanical and Manufacturing Engineering; Trinity College Dublin; The University of Dublin; Dublin 2 Ireland
| | - Oju Jeon
- Departments of Biomedical Engineering and Orthopedic Surgery, and the National Centre for Regenerative Medicine; Case Western Reserve University; Cleveland OH USA
| | - Eben Alsberg
- Departments of Biomedical Engineering and Orthopedic Surgery, and the National Centre for Regenerative Medicine; Case Western Reserve University; Cleveland OH USA
| | - Daniel J. Kelly
- Trinity Centre for Bioengineering and Department of Mechanical and Manufacturing Engineering; Trinity College Dublin; The University of Dublin; Dublin 2 Ireland
| |
Collapse
|
15
|
Studer D, Cavalli E, Formica FA, Kuhn GA, Salzmann G, Mumme M, Steinwachs MR, Laurent-Applegate LA, Maniura-Weber K, Zenobi-Wong M. Human chondroprogenitors in alginate-collagen hybrid scaffolds produce stable cartilage in vivo. J Tissue Eng Regen Med 2016; 11:3014-3026. [PMID: 27373220 DOI: 10.1002/term.2203] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 02/26/2016] [Accepted: 03/27/2016] [Indexed: 12/17/2022]
Abstract
The goal of this study was to evaluate human epiphyseal chondroprogenitor cells (ECPs) as a potential new cell source for cartilage regeneration. ECPs were compared to human bone marrow stromal cells (MSCs) and human adult articular chondrocytes (ACs) for their chondrogenic potential and phenotypic stability in vitro and in vivo. The cells were seeded in Optimaix-3D scaffolds at 5 × 104 cells/mm3 and gene expression, matrix production and mechanical properties were analysed up to 6 weeks. In vitro, ECPs synthesized consistently high collagen 2 and low collagen 10. AC-seeded constructs exhibited high donor variability in GAG/DNA values as well as in collagen 2 staining, but showed low collagen 10 production. MSCs, on the other hand, expressed high levels of collagen 2 but also of collagens 1 and 10, and were therefore not considered further. In vivo, there was considerable loss of matrix proteins in ECPs compared to in vitro cultured samples. To overcome this, a second implantation study investigated the effect of mixing cells with alginate prior to seeding in the scaffold. ECPs in alginate maintained their cartilage matrix and resisted mineralization and vessel infiltration better 6 weeks after subcutaneous implantation, whereas ACs lost their chondrogenic matrix completely. This study shows the great potential of ECPs as an off-the-shelf, highly chondrogenic cell type that produces stable cartilage in vivo. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Deborah Studer
- Cartilage Engineering and Regeneration, Institute for Biomechanics, Swiss Federal Institute of Technology Zürich (ETH Zürich), Zürich, Switzerland.,Cellular and Molecular Bioengineering Research Laboratory, Department of Chemical and Petroleum Engineering, University of Calgary, Canada
| | - Emma Cavalli
- Cartilage Engineering and Regeneration, Institute for Biomechanics, Swiss Federal Institute of Technology Zürich (ETH Zürich), Zürich, Switzerland
| | - Florian A Formica
- Cartilage Engineering and Regeneration, Institute for Biomechanics, Swiss Federal Institute of Technology Zürich (ETH Zürich), Zürich, Switzerland
| | - Gisela Anne Kuhn
- Institute for Biomechanics and ETH Phenomics Centre (EPIC), ETH Zürich, Switzerland
| | | | - Marcus Mumme
- Department of Biomedicine, University Hospital Basel, Switzerland
| | | | - Lee Ann Laurent-Applegate
- Department of Musculoskeletal Medicine, Regenerative Therapy Unit, University Hospital of Lausanne (CHUV), Epalinges, Switzerland
| | - Katharina Maniura-Weber
- Laboratory for Biointerfaces, Empa, Swiss Federal Laboratories for Materials Testing and Research, St.Gallen, Switzerland
| | - Marcy Zenobi-Wong
- Cartilage Engineering and Regeneration, Institute for Biomechanics, Swiss Federal Institute of Technology Zürich (ETH Zürich), Zürich, Switzerland
| |
Collapse
|
16
|
Fu JY, Lim SY, He PF, Fan CJ, Wang DA. Osteogenic Treatment Initiating a Tissue-Engineered Cartilage Template Hypertrophic Transition. Ann Biomed Eng 2016; 44:2957-2970. [PMID: 27066786 DOI: 10.1007/s10439-016-1615-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 04/06/2016] [Indexed: 12/15/2022]
Abstract
Hypertrophic chondrocytes play a critical role in endochondral bone formation as well as the progress of osteoarthritis (OA). An in vitro cartilage hypertrophy model can be used as a platform to study complex molecular mechanisms involved in these processes and screen new drugs for OA. To develop an in vitro cartilage hypertrophy model, we treated a tissue-engineered cartilage template, living hyaline cartilaginous graft (LhCG), with osteogenic medium for hypertrophic induction. In addition, endothelial progenitor cells (EPCs) were seeded onto LhCG constructs to mimic vascular invasion. The results showed that osteogenic treatment significantly inhibited the synthesis of endostatin in LhCG constructs and enhanced expression of hypertrophic marker-collagen type X (Col X) and osteogenic markers, as well as calcium deposition in vitro. Upon subcutaneous implantation, osteogenic medium-treated LhCG constructs all stained positive for Col X and showed significant calcium deposition and blood vessel invasion. Col X staining and calcium deposition were most obvious in osteogenic medium-treated only group, while there was no difference between EPC-seeded and non-seeded group. These results demonstrated that osteogenic treatment was of the primary factor to induce hypertrophic transition of LhCG constructs and this model may contribute to the establishment of an in vitro cartilage hypertrophy model.
Collapse
Affiliation(s)
- J Y Fu
- Division of Bioengineering, School of Chemical & Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, N1.3-B2-13, Singapore, 637457, Singapore
| | - S Y Lim
- Division of Bioengineering, School of Chemical & Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, N1.3-B2-13, Singapore, 637457, Singapore
| | - P F He
- Division of Bioengineering, School of Chemical & Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, N1.3-B2-13, Singapore, 637457, Singapore
| | - C J Fan
- Division of Bioengineering, School of Chemical & Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, N1.3-B2-13, Singapore, 637457, Singapore
| | - D A Wang
- Division of Bioengineering, School of Chemical & Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, N1.3-B2-13, Singapore, 637457, Singapore.
| |
Collapse
|
17
|
Frohbergh ME, Guevara JM, Grelsamer RP, Barbe MF, He X, Simonaro CM, Schuchman EH. Acid ceramidase treatment enhances the outcome of autologous chondrocyte implantation in a rat osteochondral defect model. Osteoarthritis Cartilage 2016; 24:752-62. [PMID: 26524412 PMCID: PMC4799741 DOI: 10.1016/j.joca.2015.10.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 10/14/2015] [Accepted: 10/22/2015] [Indexed: 02/02/2023]
Abstract
OBJECTIVE The overall aim of this study was to evaluate how supplementation of chondrocyte media with recombinant acid ceramidase (rhAC) influenced cartilage repair in a rat osteochondral defect model. METHODS Primary chondrocytes were grown as monolayers in polystyrene culture dishes with and without rhAC (added once at the time of cell plating) for 7 days, and then seeded onto Bio-Gide® collagen scaffolds and grown for an additional 3 days. The scaffolds were then introduced into osteochondral defects created in Sprague-Dawley rat trochlea by a microdrilling procedure. Analysis was performed 6 weeks post-surgery macroscopically, by micro-CT, histologically, and by immunohistochemistry. RESULTS Treatment with rhAC led to increased cell numbers and glycosaminoglycan (GAG) production (∼2 and 3-fold, respectively) following 7 days of expansion in vitro. Gene expression of collagen 2, aggrecan and Sox-9 also was significantly elevated. After seeding onto Bio-Gide®, more rhAC treated cells were evident within 4 h. At 6 weeks post-surgery, defects containing rhAC-treated cells exhibited more soft tissue formation at the articular surface, as evidenced by microCT, as well as histological evidence of enhanced cartilage repair. Notably, collagen 2 immunostaining revealed greater surface expression in animals receiving rhAC treated cells as well. Collagen 10 staining was not enhanced. CONCLUSION The results further demonstrate the positive effects of rhAC treatment on chondrocyte growth and phenotype in vitro, and reveal for the first time the in vivo effects of the treated cells on cartilage repair.
Collapse
Affiliation(s)
- Michael E. Frohbergh
- Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Johana M. Guevara
- Institute for the Study of Inborn Errors of Metabolism, Pontificia Universidad Javeriana, Bogota, Colombia
| | - Ronald P. Grelsamer
- Department of Orthopedic Surgery, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Mary F. Barbe
- Department of Anatomy and Cell Biology, Temple University, Philadelphia, PA
| | - Xingxuan He
- Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Calogera M. Simonaro
- Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Edward H. Schuchman
- Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY,Corresponding Author: Edward H. Schuchman, PhD, Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, Rm. 14-20A, New York, NY 10029, Tel: 212-659-6711; Fax: 212-849-2447,
| |
Collapse
|
18
|
Stem Cells for Bone Regeneration: From Cell-Based Therapies to Decellularised Engineered Extracellular Matrices. Stem Cells Int 2016; 2016:9352598. [PMID: 26997959 PMCID: PMC4779529 DOI: 10.1155/2016/9352598] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 01/11/2016] [Accepted: 01/17/2016] [Indexed: 02/07/2023] Open
Abstract
Currently, autologous bone grafting represents the clinical gold standard in orthopaedic surgery. In certain cases, however, alternative techniques are required. The clinical utility of stem and stromal cells has been demonstrated for the repair and regeneration of craniomaxillofacial and long bone defects although clinical adoption of bone tissue engineering protocols has been very limited. Initial tissue engineering studies focused on the bone marrow as a source of cells for bone regeneration, and while a number of promising results continue to emerge, limitations to this technique have prompted the exploration of alternative cell sources, including adipose and muscle tissue. In this review paper we discuss the advantages and disadvantages of cell sources with a focus on adipose tissue and the bone marrow. Additionally, we highlight the relatively recent paradigm of developmental engineering, which promotes the recapitulation of naturally occurring developmental processes to allow the implant to optimally respond to endogenous cues. Finally we examine efforts to apply lessons from studies into different cell sources and developmental approaches to stimulate bone growth by use of decellularised hypertrophic cartilage templates.
Collapse
|
19
|
Almubarak S, Nethercott H, Freeberg M, Beaudon C, Jha A, Jackson W, Marcucio R, Miclau T, Healy K, Bahney C. Tissue engineering strategies for promoting vascularized bone regeneration. Bone 2016; 83:197-209. [PMID: 26608518 PMCID: PMC4911893 DOI: 10.1016/j.bone.2015.11.011] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 10/06/2015] [Accepted: 11/17/2015] [Indexed: 02/07/2023]
Abstract
This review focuses on current tissue engineering strategies for promoting vascularized bone regeneration. We review the role of angiogenic growth factors in promoting vascularized bone regeneration and discuss the different therapeutic strategies for controlled/sustained growth factor delivery. Next, we address the therapeutic uses of stem cells in vascularized bone regeneration. Specifically, this review addresses the concept of co-culture using osteogenic and vasculogenic stem cells, and how adipose derived stem cells compare to bone marrow derived mesenchymal stem cells in the promotion of angiogenesis. We conclude this review with a discussion of a novel approach to bone regeneration through a cartilage intermediate, and discuss why it has the potential to be more effective than traditional bone grafting methods.
Collapse
Affiliation(s)
- Sarah Almubarak
- Department of Orthopaedic Surgery, Orthopaedic Trauma Institute, University of California, San Francisco, San Francisco, CA, United States; UCSF-UCB Masters of Translational Medicine Program, Berkeley and San Francisco, CA, United States
| | - Hubert Nethercott
- Department of Orthopaedic Surgery, Orthopaedic Trauma Institute, University of California, San Francisco, San Francisco, CA, United States; UCSF-UCB Masters of Translational Medicine Program, Berkeley and San Francisco, CA, United States
| | - Marie Freeberg
- Department of Orthopaedic Surgery, Orthopaedic Trauma Institute, University of California, San Francisco, San Francisco, CA, United States; UCSF-UCB Masters of Translational Medicine Program, Berkeley and San Francisco, CA, United States
| | - Caroline Beaudon
- Department of Orthopaedic Surgery, Orthopaedic Trauma Institute, University of California, San Francisco, San Francisco, CA, United States; UCSF-UCB Masters of Translational Medicine Program, Berkeley and San Francisco, CA, United States
| | - Amit Jha
- Departments of Bioengineering, and Material Science and Engineering, University of California, Berkeley (UCB), Berkeley, CA, United States
| | - Wesley Jackson
- Departments of Bioengineering, and Material Science and Engineering, University of California, Berkeley (UCB), Berkeley, CA, United States
| | - Ralph Marcucio
- Department of Orthopaedic Surgery, Orthopaedic Trauma Institute, University of California, San Francisco, San Francisco, CA, United States
| | - Theodore Miclau
- Department of Orthopaedic Surgery, Orthopaedic Trauma Institute, University of California, San Francisco, San Francisco, CA, United States
| | - Kevin Healy
- Departments of Bioengineering, and Material Science and Engineering, University of California, Berkeley (UCB), Berkeley, CA, United States
| | - Chelsea Bahney
- Department of Orthopaedic Surgery, Orthopaedic Trauma Institute, University of California, San Francisco, San Francisco, CA, United States; Departments of Bioengineering, and Material Science and Engineering, University of California, Berkeley (UCB), Berkeley, CA, United States.
| |
Collapse
|
20
|
Cunniffe G, Vinardell T, Thompson E, Daly A, Matsiko A, O’Brien F, Kelly D. Chondrogenically primed mesenchymal stem cell-seeded alginate hydrogels promote early bone formation in critically-sized defects. Eur Polym J 2015. [DOI: 10.1016/j.eurpolymj.2015.07.021] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
21
|
Sathy BN, Watson BM, Kinard LA, Spicer PP, Dahlin RL, Mikos AG, Nair S. Bone Tissue Engineering with Multilayered Scaffolds—Part II: Combining Vascularization with Bone Formation in Critical-Sized Bone Defect. Tissue Eng Part A 2015; 21:2495-503. [DOI: 10.1089/ten.tea.2015.0099] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Affiliation(s)
- Binulal Nelson Sathy
- Amrita Centre for Nanosciences & Molecular Medicine, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham University, Kochi, India
| | | | - Lucas A. Kinard
- Department of Bioengineering, Rice University, Houston, Texas
| | | | | | | | - Shantikumar Nair
- Amrita Centre for Nanosciences & Molecular Medicine, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham University, Kochi, India
| |
Collapse
|
22
|
Bigham-Sadegh A, Oryan A. Selection of animal models for pre-clinical strategies in evaluating the fracture healing, bone graft substitutes and bone tissue regeneration and engineering. Connect Tissue Res 2015; 56:175-94. [PMID: 25803622 DOI: 10.3109/03008207.2015.1027341] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In vitro assays can be useful in determining biological mechanism and optimizing scaffold parameters, however translation of the in vitro results to clinics is generally hard. Animal experimentation is a better approximation than in vitro tests, and usage of animal models is often essential in extrapolating the experimental results and translating the information in a human clinical setting. In addition, usage of animal models to study fracture healing is useful to answer questions related to the most effective method to treat humans. There are several factors that should be considered when selecting an animal model. These include availability of the animal, cost, ease of handling and care, size of the animal, acceptability to society, resistance to surgery, infection and disease, biological properties analogous to humans, bone structure and composition, as well as bone modeling and remodeling characteristics. Animal experiments on bone healing have been conducted on small and large animals, including mice, rats, rabbits, dogs, pigs, goats and sheep. This review also describes the molecular events during various steps of fracture healing and explains different means of fracture healing evaluation including biomechanical, histopathological and radiological assessments.
Collapse
Affiliation(s)
- Amin Bigham-Sadegh
- Faculty of Veterinary Medicine, Department of Veterinary Surgery and Radiology, Shahrekord University , Shahrekord , Iran and
| | | |
Collapse
|
23
|
Sheehy EJ, Mesallati T, Kelly L, Vinardell T, Buckley CT, Kelly DJ. Tissue Engineering Whole Bones Through Endochondral Ossification: Regenerating the Distal Phalanx. Biores Open Access 2015; 4:229-41. [PMID: 26309799 PMCID: PMC4540120 DOI: 10.1089/biores.2015.0014] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Novel strategies are urgently required to facilitate regeneration of entire bones lost due to trauma or disease. In this study, we present a novel framework for the regeneration of whole bones by tissue engineering anatomically shaped hypertrophic cartilaginous grafts in vitro that subsequently drive endochondral bone formation in vivo. To realize this, we first fabricated molds from digitized images to generate mesenchymal stem cell-laden alginate hydrogels in the shape of different bones (the temporomandibular joint [TMJ] condyle and the distal phalanx). These constructs could be stimulated in vitro to generate anatomically shaped hypertrophic cartilaginous tissues that had begun to calcify around their periphery. Constructs were then formed into the shape of the distal phalanx to create the hypertrophic precursor of the osseous component of an engineered long bone. A layer of cartilage engineered through self-assembly of chondrocytes served as the articular surface of these constructs. Following chondrogenic priming and subcutaneous implantation, the hypertrophic phase of the engineered phalanx underwent endochondral ossification, leading to the generation of a vascularized bone integrated with a covering layer of stable articular cartilage. Furthermore, spatial bone deposition within the construct could be modulated by altering the architecture of the osseous component before implantation. These findings open up new horizons to whole limb regeneration by recapitulating key aspects of normal bone development.
Collapse
Affiliation(s)
- Eamon J. Sheehy
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
- Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
| | - Tariq Mesallati
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
- Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
| | - Lara Kelly
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
- Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
| | - Tatiana Vinardell
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, Ireland
| | - Conor T. Buckley
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
- Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
| | - Daniel J. Kelly
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
- Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
- Department of Anatomy, Royal College of Surgeons in Ireland, Dublin, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
24
|
Sheehy EJ, Mesallati T, Vinardell T, Kelly DJ. Engineering cartilage or endochondral bone: a comparison of different naturally derived hydrogels. Acta Biomater 2015; 13:245-53. [PMID: 25463500 DOI: 10.1016/j.actbio.2014.11.031] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 10/30/2014] [Accepted: 11/17/2014] [Indexed: 01/08/2023]
Abstract
Cartilaginous tissues engineered using mesenchymal stem cells (MSCs) have been shown to generate bone in vivo by executing an endochondral programme. This may hinder the use of MSCs for articular cartilage regeneration, but opens the possibility of using engineered cartilaginous tissues for large bone defect repair. Hydrogels may be an attractive tool in the scaling-up of such tissue engineered grafts for endochondral bone regeneration. In this study, we compared the capacity of different naturally derived hydrogels (alginate, chitosan and fibrin) to support chondrogenesis and hypertrophy of MSCs in vitro and endochondral ossification in vivo. In vitro, alginate and chitosan constructs accumulated the highest levels of sulfated glycosaminoglycan (sGAG), with chitosan constructs synthesizing the highest levels of collagen. Alginate and fibrin constructs supported the greatest degree of calcium accumulation, though only fibrin constructs calcified homogeneously. In vivo, chitosan constructs facilitated neither vascularization nor endochondral ossification, and also retained the greatest amount of sGAG, suggesting it to be a more suitable material for the engineering of articular cartilage. Both alginate and fibrin constructs facilitated vascularization and endochondral bone formation as well as the development of a bone marrow environment. Alginate constructs accumulated significantly more mineral and supported greater bone formation in central regions of the engineered tissue. In conclusion, this study demonstrates the capacity of chitosan hydrogels to promote and better maintain a chondrogenic phenotype in MSCs and highlights the potential of utilizing alginate hydrogels for MSC-based endochondral bone tissue engineering applications.
Collapse
Affiliation(s)
- Eamon J Sheehy
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland; Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
| | - Tariq Mesallati
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland; Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
| | - Tatiana Vinardell
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Daniel J Kelly
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland; Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland; Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
25
|
Dennis SC, Berkland CJ, Bonewald LF, Detamore MS. Endochondral ossification for enhancing bone regeneration: converging native extracellular matrix biomaterials and developmental engineering in vivo. TISSUE ENGINEERING PART B-REVIEWS 2014; 21:247-66. [PMID: 25336144 DOI: 10.1089/ten.teb.2014.0419] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Autologous bone grafting (ABG) remains entrenched as the gold standard of treatment in bone regenerative surgery. Consequently, many marginally successful bone tissue engineering strategies have focused on mimicking portions of ABG's "ideal" osteoconductive, osteoinductive, and osteogenic composition resembling the late reparative stage extracellular matrix (ECM) in bone fracture repair, also known as the "hard" or "bony" callus. An alternative, less common approach that has emerged in the last decade harnesses endochondral (EC) ossification through developmental engineering principles, which acknowledges that the molecular and cellular mechanisms involved in developmental skeletogenesis, specifically EC ossification, are closely paralleled during native bone healing. EC ossification naturally occurs during the majority of bone fractures and, thus, can potentially be utilized to enhance bone regeneration for nearly any orthopedic indication, especially in avascular critical-sized defects where hypoxic conditions favor initial chondrogenesis instead of direct intramembranous ossification. The body's native EC ossification response, however, is not capable of regenerating critical-sized defects without intervention. We propose that an underexplored potential exists to regenerate bone through the native EC ossification response by utilizing strategies which mimic the initial inflammatory or fibrocartilaginous ECM (i.e., "pro-" or "soft" callus) observed in the early reparative stage of bone fracture repair. To date, the majority of strategies utilizing this approach rely on clinically burdensome in vitro cell expansion protocols. This review will focus on the confluence of two evolving areas, (1) native ECM biomaterials and (2) developmental engineering, which will attempt to overcome the technical, business, and regulatory challenges that persist in the area of bone regeneration. Significant attention will be given to native "raw" materials and ECM-based designs that provide necessary osteo- and chondro-conductive and inductive features for enhancing EC ossification. In addition, critical perspectives on existing stem cell-based therapeutic strategies will be discussed with a focus on their use as an extension of the acellular ECM-based designs for specific clinical indications. Within this framework, a novel realm of unexplored design strategies for bone tissue engineering will be introduced into the collective consciousness of the regenerative medicine field.
Collapse
Affiliation(s)
- S Connor Dennis
- 1Bioengineering Program, University of Kansas, Lawrence, Kansas.,2Chemical and Petroleum Engineering Department, University of Kansas, Lawrence, Kansas
| | - Cory J Berkland
- 1Bioengineering Program, University of Kansas, Lawrence, Kansas.,2Chemical and Petroleum Engineering Department, University of Kansas, Lawrence, Kansas.,3Pharmaceutical Chemistry Department, University of Kansas, Lawrence, Kansas
| | - Lynda F Bonewald
- 4Department of Oral Biology, University of Missouri-Kansas City, Kansas City, Missouri
| | - Michael S Detamore
- 1Bioengineering Program, University of Kansas, Lawrence, Kansas.,2Chemical and Petroleum Engineering Department, University of Kansas, Lawrence, Kansas
| |
Collapse
|
26
|
Osteoinductivity of engineered cartilaginous templates devitalized by inducible apoptosis. Proc Natl Acad Sci U S A 2014; 111:17426-31. [PMID: 25422415 DOI: 10.1073/pnas.1411975111] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The role of cell-free extracellular matrix (ECM) in triggering tissue and organ regeneration has gained increased recognition, yet current approaches are predominantly based on the use of ECM from fully developed native tissues at nonhomologous sites. We describe a strategy to generate customized ECM, designed to activate endogenous regenerative programs by recapitulating tissue-specific developmental processes. The paradigm was exemplified in the context of the skeletal system by testing the osteoinductive capacity of engineered and devitalized hypertrophic cartilage, which is the primordial template for the development of most bones. ECM was engineered by inducing chondrogenesis of human mesenchymal stromal cells and devitalized by the implementation of a death-inducible genetic device, leading to cell apoptosis on activation and matrix protein preservation. The resulting hypertrophic cartilage ECM, tested in a stringent ectopic implantation model, efficiently remodeled to form de novo bone tissue of host origin, including mature vasculature and a hematopoietic compartment. Importantly, cartilage ECM could not generate frank bone tissue if devitalized by standard "freeze & thaw" (F&T) cycles, associated with a significant loss of glycosaminoglycans, mineral content, and ECM-bound cytokines critically involved in inflammatory, vascularization, and remodeling processes. These results support the utility of engineered ECM-based devices as off-the-shelf regenerative niches capable of recruiting and instructing resident cells toward the formation of a specific tissue.
Collapse
|
27
|
Thompson EM, Matsiko A, Farrell E, Kelly DJ, O'Brien FJ. Recapitulating endochondral ossification: a promising route toin vivobone regeneration. J Tissue Eng Regen Med 2014; 9:889-902. [DOI: 10.1002/term.1918] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 02/14/2014] [Accepted: 04/24/2014] [Indexed: 12/22/2022]
Affiliation(s)
- Emmet M. Thompson
- Tissue Engineering Research Group, Department of Anatomy; Royal College of Surgeons in Ireland; Dublin Ireland
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute; Trinity College Dublin; Ireland
- Advanced Materials and Bioengineering Research (AMBER) Centre; Dublin Ireland
| | - Amos Matsiko
- Tissue Engineering Research Group, Department of Anatomy; Royal College of Surgeons in Ireland; Dublin Ireland
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute; Trinity College Dublin; Ireland
- Advanced Materials and Bioengineering Research (AMBER) Centre; Dublin Ireland
| | - Eric Farrell
- Department of Oral and Maxillofacial Surgery, Erasmus MC; University Medical Centre Rotterdam; The Netherlands
| | - Daniel J. Kelly
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute; Trinity College Dublin; Ireland
- Advanced Materials and Bioengineering Research (AMBER) Centre; Dublin Ireland
- Department of Mechanical and Manufacturing Engineering, School of Engineering; Trinity College Dublin; Ireland
| | - Fergal J. O'Brien
- Tissue Engineering Research Group, Department of Anatomy; Royal College of Surgeons in Ireland; Dublin Ireland
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute; Trinity College Dublin; Ireland
- Advanced Materials and Bioengineering Research (AMBER) Centre; Dublin Ireland
| |
Collapse
|