1
|
Osman MF, Lee SY, Sarbini SR, Mohd Faudzi SM, Khamis S, Zainudin BH, Shaari K. Metabolomics-Driven Discovery of an Introduced Species and Two Malaysian Piper betle L. Variants. PLANTS 2021; 10:plants10112510. [PMID: 34834873 PMCID: PMC8622403 DOI: 10.3390/plants10112510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/26/2021] [Accepted: 11/01/2021] [Indexed: 11/23/2022]
Abstract
The differences in pungency of “sirih” imply the probable occurrence of several variants of Piper betle L. in Malaysia. However, the metabolite profiles underlying the pungency of the different variants remain a subject of further research. The differences in metabolite profiles of selected Malaysian P. betle variants were thus investigated; specifically, the leaf aqueous methanolic extracts and essential oils were analyzed via 1H-NMR and GC-MS metabolomics, respectively. Principal component analysis (PCA) of the 1H-NMR spectral data showed quantitative differences in the metabolite profiles of “sirih melayu” and “sirih india” and revealed an ambiguous group of samples with low acetic acid content, which was identified as Piper rubro-venosum hort. ex Rodigas based on DNA sequences of the internal transcribed spacer 2 (ITS2) region. The finding was supported by PCA of two GC-MS datasets of P. betle samples obtained from several states in Peninsular Malaysia, which displayed clustering of the samples into “sirih melayu” and “sirih india” groups. Higher abundance of chavicol acetate was consistently found to be characteristic of “sirih melayu”. The present research has provided preliminary evidence supporting the notion of occurrence of two P. betle variants in Malaysia based on chemical profiles, which may be related to the different genders of P. betle.
Collapse
Affiliation(s)
- Muhamad Faris Osman
- Natural Medicines and Products Research Laboratory (NaturMeds), Institute of Bioscience, Universiti Putra Malaysia, UPM, Serdang 43400, Selangor, Malaysia; (M.F.O.); (S.Y.L.); (S.M.M.F.)
- Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, Kuantan 25200, Pahang, Malaysia
| | - Soo Yee Lee
- Natural Medicines and Products Research Laboratory (NaturMeds), Institute of Bioscience, Universiti Putra Malaysia, UPM, Serdang 43400, Selangor, Malaysia; (M.F.O.); (S.Y.L.); (S.M.M.F.)
| | - Shahrul Razid Sarbini
- Department of Crop Science, Faculty of Agricultural Science and Forestry, Universiti Putra Malaysia, Bintulu 97008, Sarawak, Malaysia;
| | - Siti Munirah Mohd Faudzi
- Natural Medicines and Products Research Laboratory (NaturMeds), Institute of Bioscience, Universiti Putra Malaysia, UPM, Serdang 43400, Selangor, Malaysia; (M.F.O.); (S.Y.L.); (S.M.M.F.)
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, UPM, Serdang 43400, Selangor, Malaysia
| | - Shamsul Khamis
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM, Bangi 43600, Selangor, Malaysia;
| | - Badrul Hisyam Zainudin
- Analytical Services Laboratory, Chemistry and Technology Division, Malaysian Cocoa Board, Cocoa Innovation and Technology Centre, Lot 12621 Kawasan Perindustrian Nilai, Nilai 71800, Negeri Sembilan, Malaysia;
| | - Khozirah Shaari
- Natural Medicines and Products Research Laboratory (NaturMeds), Institute of Bioscience, Universiti Putra Malaysia, UPM, Serdang 43400, Selangor, Malaysia; (M.F.O.); (S.Y.L.); (S.M.M.F.)
- Correspondence: ; Tel.: +60-13-3420686
| |
Collapse
|
2
|
Durán-Aranguren D, Chiriví-Salomón J, Anaya L, Durán-Sequeda D, Cruz L, Serrano J, Sarmiento L, Restrepo S, Sanjuan T, Sierra R. Effect of bioactive compounds extracted from Cordyceps nidus ANDES-F1080 on laccase activity of Pleurotus ostreatus ANDES-F515. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2020; 26:e00466. [PMID: 32617265 PMCID: PMC7322798 DOI: 10.1016/j.btre.2020.e00466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 04/21/2020] [Accepted: 05/04/2020] [Indexed: 06/11/2023]
Abstract
Laccases are ligninolytic enzymes produced by different microorganisms, especially by fungi such as the white-rot fungus Pleurotus ostreatus. Chemical inductors have been used to promote laccase secretion due to the application of these enzymes in lignocellulosic biomass pretreatment. Cordyceps nidus ANDES-F1080 was previously described as a source of bioactive compounds that could influence the enzymatic production system of other fungi. For that reason, this study evaluates the effect of C. nidus' ANDES-F1080 extracts on the laccase activity of P. ostreatus ANDES-F515. To achieve this objective, C. nidus ANDES-F1080 was grown in four different substrates: two artificial-based and two natural-based culture media. Metabolites were extracted from C. nidus ANDES-F1080 using water and methanol as solvents. Biochemical characterization of these extracts was performed to complement the analysis of their effect on laccase activity. Our results revealed an enhancement on the laccase activity of P. ostreatus ANDES-F515 grown in natural-based cultures when C. nidus' ANDES-F1080 extracts were supplemented. The best laccase activities registered values around 10,575 ± 813 U·L-1.
Collapse
Affiliation(s)
- D. Durán-Aranguren
- Product and Processes Design Group, Department of Chemical Engineering, Universidad de Los Andes, Bogotá, Colombia
| | - J.S. Chiriví-Salomón
- Product and Processes Design Group, Department of Chemical Engineering, Universidad de Los Andes, Bogotá, Colombia
- Conservación, Bioprospección y Desarrollo Sostenible, Escuela de Ciencias Agrícolas, Pecuarias y del Medio Ambiente, Universidad Nacional Abierta y a Distancia, Bogotá, Colombia
| | - L. Anaya
- Product and Processes Design Group, Department of Chemical Engineering, Universidad de Los Andes, Bogotá, Colombia
| | - D. Durán-Sequeda
- Product and Processes Design Group, Department of Chemical Engineering, Universidad de Los Andes, Bogotá, Colombia
| | - L.J. Cruz
- Product and Processes Design Group, Department of Chemical Engineering, Universidad de Los Andes, Bogotá, Colombia
| | - J.D. Serrano
- Product and Processes Design Group, Department of Chemical Engineering, Universidad de Los Andes, Bogotá, Colombia
| | - L. Sarmiento
- Product and Processes Design Group, Department of Chemical Engineering, Universidad de Los Andes, Bogotá, Colombia
| | - S. Restrepo
- Laboratory of Mycology and Plant Diseases, Department of Biological Sciences, Universidad de Los Andes, Bogotá, Colombia
| | - T. Sanjuan
- Product and Processes Design Group, Department of Chemical Engineering, Universidad de Los Andes, Bogotá, Colombia
| | - R. Sierra
- Product and Processes Design Group, Department of Chemical Engineering, Universidad de Los Andes, Bogotá, Colombia
| |
Collapse
|
3
|
|
4
|
Metabolomic profiling reveals enrichment of cordycepin in senescence process of Cordyceps militaris fruit bodies. J Microbiol 2018; 57:54-63. [DOI: 10.1007/s12275-019-8486-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 10/15/2018] [Accepted: 10/16/2018] [Indexed: 12/19/2022]
|
5
|
Olatunji OJ, Tang J, Tola A, Auberon F, Oluwaniyi O, Ouyang Z. The genus Cordyceps : An extensive review of its traditional uses, phytochemistry and pharmacology. Fitoterapia 2018; 129:293-316. [DOI: 10.1016/j.fitote.2018.05.010] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 05/01/2018] [Accepted: 05/13/2018] [Indexed: 12/24/2022]
|
6
|
Integrated proteomics, genomics, metabolomics approaches reveal oxalic acid as pathogenicity factor in Tilletia indica inciting Karnal bunt disease of wheat. Sci Rep 2018; 8:7826. [PMID: 29777151 PMCID: PMC5959904 DOI: 10.1038/s41598-018-26257-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 05/03/2018] [Indexed: 01/21/2023] Open
Abstract
Tilletia indica incites Karnal bunt (KB) disease in wheat. To date, no KB resistant wheat cultivar could be developed due to non-availability of potential biomarkers related to pathogenicity/virulence for screening of resistant wheat genotypes. The present study was carried out to compare the proteomes of T. indica highly (TiK) and low (TiP) virulent isolates. Twenty one protein spots consistently observed as up-regulated/differential in the TiK proteome were selected for identification by MALDI-TOF/TOF. Identified sequences showed homology with fungal proteins playing essential role in plant infection and pathogen survival, including stress response, adhesion, fungal penetration, invasion, colonization, degradation of host cell wall, signal transduction pathway. These results were integrated with T. indica genome sequence for identification of homologs of candidate pathogenicity/virulence related proteins. Protein identified in TiK isolate as malate dehydrogenase that converts malate to oxaloacetate which is precursor of oxalic acid. Oxalic acid is key pathogenicity factor in phytopathogenic fungi. These results were validated by GC-MS based metabolic profiling of T. indica isolates indicating that oxalic acid was exclusively identified in TiK isolate. Thus, integrated omics approaches leads to identification of pathogenicity/virulence factor(s) that would provide insights into pathogenic mechanisms of fungi and aid in devising effective disease management strategies.
Collapse
|
7
|
Heat and light stresses affect metabolite production in the fruit body of the medicinal mushroom Cordyceps militaris. Appl Microbiol Biotechnol 2018; 102:4523-4533. [DOI: 10.1007/s00253-018-8899-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 02/23/2018] [Accepted: 02/27/2018] [Indexed: 01/16/2023]
|
8
|
Sato M, Miyagi A, Yoneyama S, Gisusi S, Tokuji Y, Kawai-Yamada M. CE–MS-based metabolomics reveals the metabolic profile of maitake mushroom (Grifola frondosa) strains with different cultivation characteristics. Biosci Biotechnol Biochem 2017; 81:2314-2322. [DOI: 10.1080/09168451.2017.1387049] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Abstract
Maitake mushroom (Grifola frondosa [Dicks.] Gray) is generally cultured using the sawdust of broadleaf trees. The maitake strain Gf433 has high production efficiency, with high-quality of fruiting bodies even when 30% of the birch sawdust on the basal substrate is replaced with conifer sawdust. We performed metabolome analysis to investigate the effect of different cultivation components on the metabolism of Gf433 and Mori52 by performing CE–MS on their fruiting bodies in different cultivation conditions to quantify the levels of amino acids, organic acids, and phosphorylated organic acids. We found that amino acid and organic acid content in Gf433 were not affected by the kind of sawdust. However, Gf433 contained more organic acids and less amino acids than Mori52, and Gf433 also contained more chitin compared with Mori52. We believe that these differences in the metabolome contents of the two strains are related to the high production efficiency of Gf433.
Collapse
Affiliation(s)
- Mayumi Sato
- Forest Products Research Institute, Hokkaido Research Organization, Asahikawa, Japan
| | - Atsuko Miyagi
- Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| | - Shozo Yoneyama
- Forest Products Research Institute, Hokkaido Research Organization, Asahikawa, Japan
| | - Seiki Gisusi
- Forest Products Research Institute, Hokkaido Research Organization, Asahikawa, Japan
| | - Yoshihiko Tokuji
- Department of Agricultural and Life Science, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Maki Kawai-Yamada
- Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| |
Collapse
|
9
|
Chiriví J, Danies G, Sierra R, Schauer N, Trenkamp S, Restrepo S, Sanjuan T. Metabolomic profile and nucleoside composition of Cordyceps nidus sp. nov. (Cordycipitaceae): A new source of active compounds. PLoS One 2017; 12:e0179428. [PMID: 28636672 PMCID: PMC5479552 DOI: 10.1371/journal.pone.0179428] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Accepted: 05/25/2017] [Indexed: 12/23/2022] Open
Abstract
Cordyceps sensu lato is a genus of arthropod-pathogenic fungi, which have been used traditionally as medicinal in Asia. Within the genus, Ophiocordyceps sinensis is the most coveted and expensive species in China. Nevertheless, harvesting wild specimens has become a challenge given that natural populations of the fungus are decreasing and because large-scale culture of it has not yet been achieved. The worldwide demand for products derived from cultivable fungal species with medicinal properties has increased recently. In this study, we propose a new species, Cordyceps nidus, which parasitizes underground nests of trapdoor spiders. This species is phylogenetically related to Cordyceps militaris, Cordyceps pruinosa, and a sibling species of Cordyceps caloceroides. It is found in tropical rainforests from Bolivia, Brazil, Colombia and Ecuador. We also investigated the medicinal potential of this fungus based on its biochemical properties when grown on four different culture media. The metabolic profile particularly that of nucleosides, in polar and non-polar extracts was determined by UPLC, and then correlated to their antimicrobial activity and total phenolic content. The metabolome showed a high and significant dependency on the substrate used for fungal growth. The mass intensities of nucleosides and derivative compounds were higher in natural culture media in comparison to artificial culture media. Among these compounds, cordycepin was the predominant, showing the potential use of this species as an alternative to O. sinensis. Furthermore, methanol fractions showed antimicrobial activity against gram-positive bacteria, and less than 3.00 mg of gallic acid equivalents per g of dried extract were obtained when assessing its total phenolic content by modified Folin-Ciocalteu method. The presence of polyphenols opens the possibility of further exploring the antioxidant capacity and the conditions that may enhance this characteristic. The metabolic composition and biochemical activity indicate potential use of C. nidus in pharmaceutical applications.
Collapse
Affiliation(s)
- Juan Chiriví
- Laboratory of Mycology and Plant Diseases, Universidad de los Andes, Bogotá, Colombia
- Product and Processes Design Group, Universidad de los Andes, Bogotá, Colombia
| | - Giovanna Danies
- Laboratory of Mycology and Plant Diseases, Universidad de los Andes, Bogotá, Colombia
| | - Rocio Sierra
- Product and Processes Design Group, Universidad de los Andes, Bogotá, Colombia
| | | | | | - Silvia Restrepo
- Laboratory of Mycology and Plant Diseases, Universidad de los Andes, Bogotá, Colombia
| | - Tatiana Sanjuan
- Product and Processes Design Group, Universidad de los Andes, Bogotá, Colombia
- Laboratorio de Taxonomía y Ecología de Hongos, Universidad de Antioquia, Medellín, Colombia
| |
Collapse
|
10
|
Kim JY, Lee IH, Kim D, Kim SH, Kwon YW, Han GH, Cho G, Choi EH, Lee GJ. Effects of reactive oxygen species on the biological, structural, and optical properties of Cordyceps pruinosa spores. RSC Adv 2016. [DOI: 10.1039/c5ra28107e] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Effects of reactive oxygen species on the biological and optical properties of Cordyceps pruinosa spores were studied. The decline in spore viability, antioxidative capacity, and DNA content were due to structural alteration of the cell wall.
Collapse
Affiliation(s)
- Jun Young Kim
- Department of Microbiology and Institute of Basic Sciences
- Dankook University
- Cheonan 31116
- Republic of Korea
| | - In Hee Lee
- Department of Microbiology and Institute of Basic Sciences
- Dankook University
- Cheonan 31116
- Republic of Korea
| | - Daewook Kim
- Department of Microbiology and Institute of Basic Sciences
- Dankook University
- Cheonan 31116
- Republic of Korea
| | - Seong Hwan Kim
- Department of Microbiology and Institute of Basic Sciences
- Dankook University
- Cheonan 31116
- Republic of Korea
| | - Young-Wan Kwon
- KU-KIST Graduate School of Converging Science and Technology
- Korea University
- Seoul 02841
- Republic of Korea
| | - Gook-Hee Han
- Department of Electrical and Biological Physics/Plasma Bioscience Research Center
- Kwangwoon University
- Seoul 01897
- Republic of Korea
| | - Guangsup Cho
- Department of Electrical and Biological Physics/Plasma Bioscience Research Center
- Kwangwoon University
- Seoul 01897
- Republic of Korea
| | - Eun Ha Choi
- Department of Electrical and Biological Physics/Plasma Bioscience Research Center
- Kwangwoon University
- Seoul 01897
- Republic of Korea
| | - Geon Joon Lee
- Department of Electrical and Biological Physics/Plasma Bioscience Research Center
- Kwangwoon University
- Seoul 01897
- Republic of Korea
| |
Collapse
|
11
|
Gogna N, Hamid N, Dorai K. Metabolomic profiling of the phytomedicinal constituents of Carica papaya L. leaves and seeds by 1H NMR spectroscopy and multivariate statistical analysis. J Pharm Biomed Anal 2015; 115:74-85. [PMID: 26163870 DOI: 10.1016/j.jpba.2015.06.035] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 06/28/2015] [Accepted: 06/29/2015] [Indexed: 12/20/2022]
Abstract
Extracts from the Carica papaya L. plant are widely reported to contain metabolites with antibacterial, antioxidant and anticancer activity. This study aims to analyze the metabolic profiles of papaya leaves and seeds in order to gain insights into their phytomedicinal constituents. We performed metabolite fingerprinting using 1D and 2D 1H NMR experiments and used multivariate statistical analysis to identify those plant parts that contain the most concentrations of metabolites of phytomedicinal value. Secondary metabolites such as phenyl propanoids, including flavonoids, were found in greater concentrations in the leaves as compared to the seeds. UPLC-ESI-MS verified the presence of significant metabolites in the papaya extracts suggested by the NMR analysis. Interestingly, the concentration of eleven secondary metabolites namely caffeic, cinnamic, chlorogenic, quinic, coumaric, vanillic, and protocatechuic acids, naringenin, hesperidin, rutin, and kaempferol, were higher in young as compared to old papaya leaves. The results of the NMR analysis were corroborated by estimating the total phenolic and flavonoid content of the extracts. Estimation of antioxidant activity in leaves and seed extracts by DPPH and ABTS in-vitro assays and antioxidant capacity in C2C12 cell line also showed that papaya extracts exhibit high antioxidant activity.
Collapse
Affiliation(s)
- Navdeep Gogna
- Department of Physical Sciences, Indian Institute of Science Education & Research Mohali, Knowledge City, Sector 81, Mohali, Manauli PO, 140306 Punjab, India
| | - Neda Hamid
- Sardar Bhagwan Singh Post Graduate Institute of Biomedical Sciences & Research, Balawala, Dehradun 248161 Uttarakhand, India
| | - Kavita Dorai
- Department of Physical Sciences, Indian Institute of Science Education & Research Mohali, Knowledge City, Sector 81, Mohali, Manauli PO, 140306 Punjab, India.
| |
Collapse
|
12
|
Pluchino LA, Liu AKY, Wang HCR. Reactive oxygen species-mediated breast cell carcinogenesis enhanced by multiple carcinogens and intervened by dietary ergosterol and mimosine. Free Radic Biol Med 2015; 80:12-26. [PMID: 25535943 DOI: 10.1016/j.freeradbiomed.2014.12.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 12/11/2014] [Accepted: 12/12/2014] [Indexed: 01/16/2023]
Abstract
Most breast cancers occur sporadically due to long-term exposure to low-dose carcinogens in the diet and the environment. Specifically, smoke, polluted air, and high-temperature cooked meats comprise multiple carcinogens, such as 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), benzo[α]pyrene (B[α]P), and 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP). We sought to determine if these carcinogens act together to induce breast cell carcinogenesis, and if so, whether noncytotoxic dietary agents could intervene. We demonstrated that coexposure to physiologically achievable doses of NNK, B[α]P, and PhIP (NBP) holistically enhanced initiation and progression of breast cell carcinogenesis. Reactive oxygen species (ROS) and activation of the ERK pathway were transiently induced by NBP in each exposure, and cross talk between reinforced ROS elevation and ERK activation played an essential role in increased DNA oxidation and damage. After cumulative exposures to NBP, this cross talk contributed to enhanced initiation of cellular carcinogenesis and led to enhanced acquisition of cancer-associated properties. Using NBP-induced transient changes, such as ROS elevation and ERK pathway activation, and cancer-associated properties as targeted endpoints, we revealed, for the first time, that two less-studied dietary compounds, ergosterol and mimosine, at physiologically achievable noncytotoxic levels, were highly effective in intervention of NBP-induced cellular carcinogenesis. Combined ergosterol and mimosine were more effective than individual agents in blocking NBP-induced transient endpoints, including ROS-mediated DNA oxidation, which accounted for their preventive ability to suppress progression of NBP-induced cellular carcinogenesis. Thus, dietary components, such as mushrooms containing ergosterol and legumes containing mimosine, should be considered for affordable prevention of sporadic breast cancer associated with long-term exposure to environmental and dietary carcinogens.
Collapse
Affiliation(s)
- Lenora Ann Pluchino
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, 2407 River Drive, Knoxville, TN 37996, USA; Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN 37996, USA
| | - Amethyst Kar-Yin Liu
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, 2407 River Drive, Knoxville, TN 37996, USA
| | - Hwa-Chain Robert Wang
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, 2407 River Drive, Knoxville, TN 37996, USA; Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN 37996, USA.
| |
Collapse
|
13
|
IKK β -Targeted Anti-Inflammatory Activities of a Butanol Fraction of Artificially Cultivated Cordyceps pruinosa Fruit Bodies. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 2014:562467. [PMID: 25132860 PMCID: PMC4123572 DOI: 10.1155/2014/562467] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 06/30/2014] [Indexed: 12/25/2022]
Abstract
The inhibitory activities of the Cordyceps pruinosa butanol fraction (Cp-BF) were investigated by determining inflammatory responses of lipopolysaccharide (LPS)-treated RAW264.7 macrophage cells and by evaluating HCl/ethanol (EtOH)-triggered gastric ulcers in mice. The molecular mechanisms of the inhibitory effects of Cp-BF were investigated by identifying target enzymes using biochemical and molecular biological approaches. Cp-BF strongly inhibited the production of NO and TNF-α, release of reactive oxygen species (ROS), phagocytic uptake of FITC-dextran, and mRNA expression levels of interleukin (IL)-6, inducible NO synthase (iNOS), and tumour necrosis factor-alpha (TNF)-α in activated RAW264.7 cells. Cp-BF also strongly downregulated the NF-κB pathway by suppressing IKKβ according to luciferase reporter assays and immunoblot analysis. Furthermore, Cp-BF blocked both increased levels of NF-κB-mediated luciferase activities and phosphorylation of p65/p50 observed by IKKβ overexpression. Finally, orally administered Cp-BF was found to attenuate gastric ulcer and block the phosphorylation of IκBα induced by HCl/EtOH. Therefore, these results suggest that the anti-inflammatory activity of Cp-BF may be mediated by suppression of IKKα and its downstream NF-κB activation. Since our group has established the mass cultivation conditions by developing culture conditions for Cordyceps pruinosa, the information presented in this study may be useful for developing new anti-inflammatory agents.
Collapse
|