1
|
Rumancev C, Rosenhahn A, Hilpert K. BioSAXS-an emerging method to accelerate, enrich and de-risk antimicrobial drug development. Front Pharmacol 2022; 13:947005. [PMID: 36081947 PMCID: PMC9445215 DOI: 10.3389/fphar.2022.947005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
Antimicrobial resistance is a worldwide threat to modern health care. Low-profit margin and high risk of cross-resistance resulted in a loss of interest in big pharma, contributing to the increasing threat. Strategies to address the problem are starting to emerge. Novel antimicrobial compounds with novel modes of action are especially valued because they have a lower risk of cross-resistance. Up to now determining the mode of action has been very time and resource consuming and will be performed once drug candidates were already progressed in preclinical development. BioSAXS is emerging as a new method to test up to thousands of compounds to classify them into groups based on ultra-structural changes that correlate to their modes of action. First experiments in E. coli (gram-negative) have demonstrated that using conventional and experimental antimicrobials a classification of compounds according to their mode of action was possible. Results were backed up by transmission electron microscopy. Further work showed that also gram-positive bacteria (Staphylococcus aureus) can be used and the effects of novel antimicrobial peptides on both types of bacteria were studied. Preliminary experiments also show that BioSAXS can be used to classify antifungal drugs, demonstrated on Candida albicans. In summary, BioSAXS can accelerate and enrich the discovery of antimicrobial compounds from screening projects with a novel mode of action and hence de-risk the development of urgently needed antimicrobial drugs.
Collapse
Affiliation(s)
- Christoph Rumancev
- Analytical Chemistry, Biointerfaces, Ruhr-University Bochum, Bochum, Germany
| | - Axel Rosenhahn
- Analytical Chemistry, Biointerfaces, Ruhr-University Bochum, Bochum, Germany
| | - Kai Hilpert
- Institute of Infection and Immunology, University of London, London, United Kingdom
| |
Collapse
|
2
|
Rumancev C, Vöpel T, Stuhr S, Gundlach AR, Senkbeil T, Osterhoff M, Sprung M, Garamus VM, Ebbinghaus S, Rosenhahn A. In Cellulo Analysis of Huntingtin Inclusion Bodies by Cryogenic Nanoprobe SAXS. CHEMSYSTEMSCHEM 2021. [DOI: 10.1002/syst.202000050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Christoph Rumancev
- Analytical Chemistry – Biointerfaces Ruhr University Bochum Universitätsstr. 150 44780 Bochum Germany
| | - Tobias Vöpel
- Department of Physical Chemistry II Ruhr University Bochum Universitätsstr. 150 44780 Bochum Germany
| | - Susan Stuhr
- Analytical Chemistry – Biointerfaces Ruhr University Bochum Universitätsstr. 150 44780 Bochum Germany
| | - Andreas R. Gundlach
- Analytical Chemistry – Biointerfaces Ruhr University Bochum Universitätsstr. 150 44780 Bochum Germany
| | - Tobias Senkbeil
- Analytical Chemistry – Biointerfaces Ruhr University Bochum Universitätsstr. 150 44780 Bochum Germany
| | - Markus Osterhoff
- Deutsches Elektronen-Synchrotron DESY Notkestr. 85 22607 Hamburg Germany
| | - Michael Sprung
- Deutsches Elektronen-Synchrotron DESY Notkestr. 85 22607 Hamburg Germany
| | - Vasil M. Garamus
- Helmholtz-Zentrum Geesthacht: Centre for Materials and Coast Research Institute of Materials Research Max-Planck-Str. 1 21502 Geesthacht Germany
| | - Simon Ebbinghaus
- Department of Physical Chemistry II Ruhr University Bochum Universitätsstr. 150 44780 Bochum Germany
- Institute of Physical and Theoretical Chemistry TU Braunschweig Rebenring 56 38106 Braunschweig Germany
| | - Axel Rosenhahn
- Analytical Chemistry – Biointerfaces Ruhr University Bochum Universitätsstr. 150 44780 Bochum Germany
| |
Collapse
|
3
|
Stanic V, Maia FCB, Freitas RDO, Montoro FE, Evans-Lutterodt K. The chemical fingerprint of hair melanosomes by infrared nano-spectroscopy. NANOSCALE 2018; 10:14245-14253. [PMID: 30010172 DOI: 10.1039/c8nr03146k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In situ characterization of the chemical and structural properties of black and white sheep hair was performed with a spatial resolution of 25 nm using infrared nano-spectroscopy. Comparing data sets from two types of hair allowed us to isolate the keratin FTIR fingerprint and so mark off chemical properties of the hair's melanosomes. From a polarization sensitive analysis of the nano-FTIR spectra, we showed that keratin intermediate filaments (IFs) present anisotropic molecular ordering. In stark contrast with white hair which does not contain melanosomes, in black hair, we spatially resolved single melanosomes and achieved unprecedented assignment of the vibrational modes of pheomelanin and eumelanin. The in situ experiment presented here avoids harsh chemical extractive methods used in previous studies. Our findings offer a basis for a better understanding of the keratin chemical and structural packing in different hair phenotypes as well as the involvement of melanosomes in hair color and biological functionality.
Collapse
Affiliation(s)
- Vesna Stanic
- Brazilian Synchrotron Light Laboratory, CNPEM, Campinas, SP 13083-970, Brazil.
| | | | | | | | - Kenneth Evans-Lutterodt
- National Synchrotron Light Source - II, Brookhaven National Laboratory, Upton, NY 11973, USA
| |
Collapse
|
4
|
Panzella L, Ebato A, Napolitano A, Koike K. The Late Stages of Melanogenesis: Exploring the Chemical Facets and the Application Opportunities. Int J Mol Sci 2018; 19:E1753. [PMID: 29899264 PMCID: PMC6032422 DOI: 10.3390/ijms19061753] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 06/08/2018] [Accepted: 06/08/2018] [Indexed: 11/16/2022] Open
Abstract
In the last decade, the late stages of melanin biosynthesis involving the oxidative polymerization of 5,6-dihydroxyindole (DHI) and 5,6-dihydroxyindole-2-carboxylic acid (DHICA) have been extensively investigated. Most of the information derived from a biomimetic approach in which the oxidation of melanogenic indoles was carried out under conditions mimicking those occurring in the biological environment. Characterization of the early oligomers allowed for drawing a structural picture of DHI and DHICA melanins, providing also an interpretative basis for the different properties exhibited by these pigments, e.g., the chromophore and the antioxidant ability. The improved knowledge has opened new perspectives toward the exploitation of the unique chemistry of melanins and its precursors in cosmetic and health care applications. A noticeable example is the development of an innovative hair dyeing system that is based on the marked ease of DHI to give rise to black melanin on air oxidation under slightly alkaline conditions. The advantage of this method for a step-wise coverage of gray hair with a natural shade pigmentation on repeated treatment with a DHI-based formulation with respect to traditional dyes is presented. A variant of DHICA melanin combining solubility in water-miscible organic solvents, an intense chromophore in the UltraViolet-A UV-A region, and a marked antioxidant potency was evaluated as an ingredient for cosmetic formulations.
Collapse
Affiliation(s)
- Lucia Panzella
- Department of Chemical Sciences, University of Naples "Federico II", I-80126 Naples, Italy.
| | - Atsuko Ebato
- Hair Care Products Research Laboratories, Kao Corporation, Tokyo 131-8501, Japan.
| | - Alessandra Napolitano
- Department of Chemical Sciences, University of Naples "Federico II", I-80126 Naples, Italy.
| | - Kenzo Koike
- Hair Care Products Research Laboratories, Kao Corporation, Tokyo 131-8501, Japan.
| |
Collapse
|
5
|
Hémonnot CYJ, Köster S. Imaging of Biological Materials and Cells by X-ray Scattering and Diffraction. ACS NANO 2017; 11:8542-8559. [PMID: 28787573 DOI: 10.1021/acsnano.7b03447] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Cells and biological materials are large objects in comparison to the size of internal components such as organelles and proteins. An understanding of the functions of these nanoscale elements is key to elucidating cellular function. In this review, we describe the advances in X-ray scattering and diffraction techniques for imaging biological systems at the nanoscale. We present a number of principal technological advances in X-ray optics and development of sample environments. We identify radiation damage as one of the most severe challenges in the field, thus rendering the dose an important parameter when putting different X-ray methods in perspective. Furthermore, we describe different successful approaches, including scanning and full-field techniques, along with prominent examples. Finally, we present a few recent studies that combined several techniques in one experiment in order to collect highly complementary data for a multidimensional sample characterization.
Collapse
Affiliation(s)
- Clément Y J Hémonnot
- Institute for X-Ray Physics, University of Goettingen , Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
- Northwestern Argonne Institute of Science and Engineering, Northwestern University , 9700 South Cass Avenue, Argonne, Illinois 60439, United States
- Argonne National Laboratory , 9700 South Cass Avenue, Argonne, Illinois 60439, United States
| | - Sarah Köster
- Institute for X-Ray Physics, University of Goettingen , Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| |
Collapse
|
6
|
Rumancev C, von Gundlach AR, Baier S, Wittstock A, Shi J, Benzi F, Senkbeil T, Stuhr S, Garamusx VM, Grunwaldt JD, Rosenhahn A. Morphological analysis of cerium oxide stabilized nanoporous gold catalysts by soft X-ray ASAXS. RSC Adv 2017. [DOI: 10.1039/c7ra05396g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Soft X-ray SAXS and ASAXS reveal nanostructural properties and temperature induced morphological changes in catalyst materials. The stabilizing effect of cerium oxide deposits on the gold catalyst and the morphological properties of the cerium oxide were determined.
Collapse
Affiliation(s)
- C. Rumancev
- Analytical Chemistry – Biointerfaces
- Ruhr-University Bochum
- 44780 Bochum
- Germany
| | - A. R. von Gundlach
- Analytical Chemistry – Biointerfaces
- Ruhr-University Bochum
- 44780 Bochum
- Germany
| | - S. Baier
- Institute for Chemical Technology and Polymer Chemistry
- Karlsruher Institut für Technologie (KIT)
- 76131 Karlsruhe
- Germany
| | - A. Wittstock
- Institute of Applied and Physical Chemistry
- University of Bremen
- 28359 Bremen
- Germany
| | - J. Shi
- Institute of Applied and Physical Chemistry
- University of Bremen
- 28359 Bremen
- Germany
| | - F. Benzi
- Institute for Chemical Technology and Polymer Chemistry
- Karlsruher Institut für Technologie (KIT)
- 76131 Karlsruhe
- Germany
| | - T. Senkbeil
- Analytical Chemistry – Biointerfaces
- Ruhr-University Bochum
- 44780 Bochum
- Germany
| | - S. Stuhr
- Analytical Chemistry – Biointerfaces
- Ruhr-University Bochum
- 44780 Bochum
- Germany
| | - V. M. Garamusx
- Helmholtz-Zentrum Geesthacht
- Zentrum für Material und Küstenforschung GmbH
- 21502 Geesthacht
- Germany
| | - J.-D. Grunwaldt
- Institute for Chemical Technology and Polymer Chemistry
- Karlsruher Institut für Technologie (KIT)
- 76131 Karlsruhe
- Germany
| | - A. Rosenhahn
- Analytical Chemistry – Biointerfaces
- Ruhr-University Bochum
- 44780 Bochum
- Germany
| |
Collapse
|
7
|
von Gundlach AR, Garamus VM, Willey TM, Ilavsky J, Hilpert K, Rosenhahn A. Use of small-angle X-ray scattering to resolve intracellular structure changes of Escherichia coli cells induced by antibiotic treatment. J Appl Crystallogr 2016; 49:2210-2216. [PMID: 27980516 PMCID: PMC5139998 DOI: 10.1107/s1600576716018562] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 11/19/2016] [Indexed: 12/22/2022] Open
Abstract
The application of small-angle X-ray scattering (SAXS) to whole Escherichia coli cells is challenging owing to the variety of internal constituents. To resolve their contributions, the outer shape was captured by ultra-small-angle X-ray scattering and combined with the internal structure resolved by SAXS. Building on these data, a model for the major structural components of E. coli was developed. It was possible to deduce information on the occupied volume, occurrence and average size of the most important intracellular constituents: ribosomes, DNA and proteins. E. coli was studied after treatment with three different antibiotic agents (chloramphenicol, tetracycline and rifampicin) and the impact on the intracellular constituents was monitored.
Collapse
Affiliation(s)
- A. R. von Gundlach
- Analytical Chemistry – Biointerfaces, Ruhr-University Bochum, Universitätsstrasse 150, 44780 Bochum, Germany
| | - V. M. Garamus
- Helmholtz-Zentrum Geesthacht, Zentrum für Material- und Küstenforschung GmbH, Max-Planck-Strasse 1, 21502 Geesthacht, Germany
| | - T. M. Willey
- Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94550, USA
| | - J. Ilavsky
- X-ray Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439, USA
| | - K. Hilpert
- Institute of Infection and Immunity, St George’s University of London (SGUL), Cranmer Terrace, London SW17 0RE, UK
| | - A. Rosenhahn
- Analytical Chemistry – Biointerfaces, Ruhr-University Bochum, Universitätsstrasse 150, 44780 Bochum, Germany
| |
Collapse
|
8
|
von Gundlach AR, Garamus VM, Gorniak T, Davies HA, Reischl M, Mikut R, Hilpert K, Rosenhahn A. Small angle X-ray scattering as a high-throughput method to classify antimicrobial modes of action. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1858:918-25. [PMID: 26730877 DOI: 10.1016/j.bbamem.2015.12.022] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 12/17/2015] [Accepted: 12/20/2015] [Indexed: 10/22/2022]
Abstract
Multi-drug resistant bacteria are currently undermining our health care system worldwide. While novel antimicrobial drugs, such as antimicrobial peptides, are urgently needed, identification of new modes of action is money and time consuming, and in addition current approaches are not available in a high throughput manner. Here we explore how small angle X-ray scattering (SAXS) as high throughput method can contribute to classify the mode of action for novel antimicrobials and therefore supports fast decision making in drug development. Using data bases for natural occurring antimicrobial peptides or predicting novel artificial peptides, many candidates can be discovered that will kill a selected target bacterium. However, in order to narrow down the selection it is important to know if these peptides follow all the same mode of action. In addition, the mode of action should be different from conventional antibiotics, in consequence peptide candidates can be developed further into drugs against multi-drug resistant bacteria. Here we used one short antimicrobial peptide with unknown mode of action and compared the ultrastructural changes of Escherichia coli cells after treatment with the peptide to cells treated with classic antibiotics. The key finding is that SAXS as a structure sensitive tool provides a rapid feedback on drug induced ultrastructural alterations in whole E. coli cells. We could demonstrate that ultrastructural changes depend on the used antibiotics and their specific mode of action. This is demonstrated using several well characterized antimicrobial compounds and the analysis of resulting SAXS curves by principal component analysis. To understand the result of the PCA analysis, the data is correlated with TEM images. In contrast to real space imaging techniques, SAXS allows to obtain nanoscale information averaged over approximately one million cells. The measurement takes only seconds, while conventional tests to identify a mode of action require days or weeks per single substance. The antimicrobial peptide showed a different mode of action as all tested antibiotics including polymyxin B and is therefore a good candidate for further drug development. We envision SAXS to become a useful tool within the high-throughput screening pipeline of modern drug discovery. This article is part of a Special Issue entitled: Antimicrobial peptides edited by Karl Lohner and Kai Hilpert.
Collapse
Affiliation(s)
- A R von Gundlach
- Analytical Chemistry - Biointerfaces, Ruhr-University Bochum, NC4, Universitätsstr, 150, 44780 Bochum, Germany
| | - V M Garamus
- Helmholtz-Zentrum Geesthacht, Zentrum für Material- und Küstenforschung GmbH, Max-Planck-Straße 1, 21502 Geesthacht, Germany
| | - T Gorniak
- Analytical Chemistry - Biointerfaces, Ruhr-University Bochum, NC4, Universitätsstr, 150, 44780 Bochum, Germany
| | - H A Davies
- Life Health and Chemical Sciences, Open University, Walton Hall, Milton Keynes MK7 6AA, United Kingdom
| | - M Reischl
- Institute for Applied Computer Science (IAI), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - R Mikut
- Institute for Applied Computer Science (IAI), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - K Hilpert
- Institute of Infection and Immunology, St. George's University of London (SGUL), Cranmer Terrace, London SW17 0RE, United Kingdom
| | - A Rosenhahn
- Analytical Chemistry - Biointerfaces, Ruhr-University Bochum, NC4, Universitätsstr, 150, 44780 Bochum, Germany
| |
Collapse
|