1
|
Rajonhson DM, Angthong P, Thepsuwan T, Sutheeworapong S, Satanwat P, Tapaneeyaworawong P, Powtongsook S, Kruasuwan W, Jenjaroenpun P, Wongsurawat T, Chaiyapechara S, Rungrassamee W. Integrating short- and full-length 16S rRNA gene sequencing to elucidate microbiome profiles in Pacific white shrimp ( Litopenaeus vannamei) ponds. Microbiol Spectr 2024; 12:e0096524. [PMID: 39329828 PMCID: PMC11537064 DOI: 10.1128/spectrum.00965-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 08/25/2024] [Indexed: 09/28/2024] Open
Abstract
Despite their immense economic value as a key aquaculture species, the production of Pacific white shrimp (Litopenaeus vannamei) faces significant challenges from intensive farming practices and disease outbreaks. Routine microbial profiling for disease surveillance could be a promising approach to anticipate and control disease outbreaks. To achieve this, accuracy in microbial profiling in shrimp ponds is crucial for enabling targeted action and prevention. Extensive documentation emphasizes that, beyond biological factors (related to the host, diet, or health status during the rearing period), technical elements, including sequencing techniques significantly influence bacterial community profiling. This study investigated the influence of short- and long-read sequencing of 16S rRNA genes on the microbial profiles in shrimp intestines, water, and sediments. The origin of the samples (intestine or environmental) in shrimp culture ponds primarily drove the observed differences in core microbial species. The ecological niches accounted for 56% of bacterial community variations in culture ponds. Both sequencing approaches showed consistent results in identifying higher-rank taxa and assessing alpha and beta diversity. However, at the species level, full-length 16S rRNA gene sequences provided better resolution than V3-V4 sequences. For routine microbial profiling in shrimp culture ponds, our study suggests that short-read sequences were sufficient for determining overall bacterial community.IMPORTANCEThis interdisciplinary study investigated the influence of sequencing techniques on bacterial communities profiling within Pacific white shrimp (Litopenaeus vannamei) ponds. By integrating aquaculture, microbiology, and environmental science, we revealed the role of ecological niches and factors like salinity and pH on microbiota diversity and composition in shrimp intestines, pond water, and sediment. Additionally, we compared the taxonomic resolution using partial versus full-length 16S rRNA gene sequences, highlighting the value of longer amplicons for precise identification of key taxa. These findings provide novel insights into microbial dynamics underlying environmental effects in shrimp aquaculture. Comprehensive characterization of the pond microbiome could lead to management strategies that promote shrimp health and productivity. Furthermore, the potential of a multi-omics approach for integrating complementary data streams to elucidate environment-microbiome-host interactions was highlighted.
Collapse
Affiliation(s)
- Dora M. Rajonhson
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Khlong Luang, Pathum Thani, Thailand
| | - Pacharaporn Angthong
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Khlong Luang, Pathum Thani, Thailand
| | - Timpika Thepsuwan
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Khlong Luang, Pathum Thani, Thailand
| | - Sawannee Sutheeworapong
- Pilot Plant Development and Training Institute, King Mongkut’s University of Technology Thonburi, Bangkok, Thailand
| | - Penpicha Satanwat
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Khlong Luang, Pathum Thani, Thailand
- Center of Excellence for Marine Biotechnology, Department of Marine Science, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Paveena Tapaneeyaworawong
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Khlong Luang, Pathum Thani, Thailand
- Center of Excellence for Marine Biotechnology, Department of Marine Science, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Sorawit Powtongsook
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Khlong Luang, Pathum Thani, Thailand
- Center of Excellence for Marine Biotechnology, Department of Marine Science, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Worarat Kruasuwan
- Division of Medical Bioinformatics, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Siriraj Long-read Lab (Si-LoL), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Piroon Jenjaroenpun
- Division of Medical Bioinformatics, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Siriraj Long-read Lab (Si-LoL), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Thidathip Wongsurawat
- Division of Medical Bioinformatics, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Siriraj Long-read Lab (Si-LoL), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Sage Chaiyapechara
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Khlong Luang, Pathum Thani, Thailand
| | - Wanilada Rungrassamee
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Khlong Luang, Pathum Thani, Thailand
| |
Collapse
|
2
|
Wang J, Feng G, Han Z, Zhang T, Chen J, Wu J. Insights into the intestinal microbiota of Exopalaemon annandalei and Exopalaemon carinicauda in the Yangtze River estuary. Front Cell Infect Microbiol 2024; 14:1420928. [PMID: 39445215 PMCID: PMC11496289 DOI: 10.3389/fcimb.2024.1420928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 06/27/2024] [Indexed: 10/25/2024] Open
Abstract
The gut microbiota plays a crucial role in food webs, carbon cycling, and related elements. Exopalaemon annandalei and Exopalaemon carinicauda are two important forage species in the Yangtze River estuary with extremely similar living habits and morphological characteristics. Exploring the microorganisms in the guts of these two shrimp species can help us understand the survival status of forage species and gut microbiota in the Yangtze River estuary. Therefore, this study analyzed the similarities and differences in the intestinal flora of E. annandalei and E. carinicauda through high-throughput sequencing of 16S rRNA gene amplicons. The results showed that the dominant bacteria in the intestinal flora of E. annandalei and E. carinicauda at the phylum level were Proteobacteria and Firmicutes, respectively. At the genus level, the intestinal flora had higher concentrations of Psychrobacter, Bacillus, Pseudomonas, Acinetobacter, and Macrococcus. In both shrimp species, the contents of Acinetobacter and Macrococcus were higher in spring than in winter. The most important potential functions of the intestinal microbiota were amino acid metabolism and purine metabolism. Additionally, the functions of metabolism and diseases in the intestinal microbiota of E. annandalei were greatly influenced by the season. Furthermore, the experimental results indicated that a lower ratio of Firmicutes to Bacteroidetes was associated with a larger body weight in shrimp. Overall, this study provides a theoretical reference for understanding the intestinal bacterial community of shrimp in estuaries and the healthy cultivation of E. annandalei and E. carinicauda.
Collapse
Affiliation(s)
- Jiahao Wang
- East China Sea Fisheries Research Institute, Shanghai, China
- Zhejiang Ocean University, Zhoushan, China
| | - Guangpeng Feng
- East China Sea Fisheries Research Institute, Shanghai, China
| | | | - Tao Zhang
- East China Sea Fisheries Research Institute, Shanghai, China
| | - Jinhui Chen
- Shanghai Aquatic Wildlife Conservation Research Center, Shanghai, China
| | - Jianhui Wu
- Shanghai Aquatic Wildlife Conservation Research Center, Shanghai, China
- Shanghai Monitoring Station of Aquatic Biological Resources in the Yangtze River Basin, Shanghai, China
| |
Collapse
|
3
|
Zhang L, Bai Y, Tao J, Yang S, Tu C, Liu L, Huang X, Li L, Qin Z. Effects of feeding chicken egg yolk antibodies on intestinal cell apoptosis, oxidative stress and microbial flora of tilapia (Oreochromis niloticus) infected with Streptococcus agalactiae. FISH & SHELLFISH IMMUNOLOGY 2024; 150:109596. [PMID: 38692380 DOI: 10.1016/j.fsi.2024.109596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/30/2024] [Accepted: 04/29/2024] [Indexed: 05/03/2024]
Abstract
Streptococcosis, the most common bacterial disease of fish in recent years, is highly infectious and lethal, and has become an important factor hindering the healthy and sustainable development of aquaculture. Chicken egg yolk antibody (IgY) has the advantages of high antigen specificity, inexpensive and easy to obtain, simple preparation, no toxic side effects, and in line with animal welfare, which is a green and safe alternative to antibiotics. In this study, the potential of specific IgY in the treatment of gastrointestinal pathogens was explored by observing the effects of specific IgY on intestinal flora, pathological tissue, apoptosis, oxidative stress, and inflammatory response of tilapia. We used the specific IgY prepared in the early stage to feed tilapia for 10 days, and then the tilapia was challenged with Streptococcus agalactiae. The results showed that feeding IgY before challenge had a small effect on the intestinal flora, and after challenge specific IgY decreased the proportion of Streptococcus and increased the diversity of the intestinal flora; in histopathology, specific IgY decreased tissue damage and maintained the integrity of tissue structure. Further study found that specific IgY can reduce intestinal epithelial cell apoptosis and reduce caspase activity; at the same time, the content of MDA was decreased, and the activities of SOD, CAT, GSH-Px and GR were increased. In addition, specific IgY can down-regulate the expression levels of IL-8 and TNF-α genes and up-regulate the expression levels of IL-10 and TGF-β. The results of this study showed that specific IgY could improve the intestinal flora of tilapia infected with Streptococcus agalactiae, reduce intestinal cell apoptosis, oxidative stress injury and inflammatory response, thereby reducing tissue damage and protecting the health of tilapia. Overall, specific IgY can be further explored as a potential antibiotic alternative for gastrointestinal pathogen infections.
Collapse
Affiliation(s)
- Linpeng Zhang
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China
| | - Yanhan Bai
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China
| | - Junjie Tao
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China
| | - Shiyi Yang
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China
| | - Chengming Tu
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China
| | - Lihan Liu
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China
| | - Xiaoman Huang
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China
| | - Lin Li
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China.
| | - Zhendong Qin
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China.
| |
Collapse
|
4
|
Jia C, Wang Y, Zheng B, Wang Y, He L, Xu Q, Gao F. Comparative Analysis of Gut Bacterial Community Composition in Two Tropical Economic Sea Cucumbers under Different Seasons of Artificial Environment. Int J Mol Sci 2024; 25:4573. [PMID: 38674158 PMCID: PMC11049810 DOI: 10.3390/ijms25084573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/16/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024] Open
Abstract
With the continuous rise of the sea cucumber aquaculture industry in China, the tropical sea cucumber aquaculture industry is also improving. However, research on the gut microorganisms of tropical sea cucumbers in captivity is scarce. In this study, high-throughput sequencing methods were used to analyze the gut microbial composition of Stichopus monotuberculatus and Holothuria scabra in the dry season and wet season of artificial environments. The results showed that 66 phyla were obtained in all samples, of which 59 phyla were obtained in the dry season, and 45 phyla were obtained in the wet season. The Tax4Fun analysis showed that certain gut bacterial communities affect the daily metabolism of two sea cucumber species and are involved in maintaining gut microecological balance in the gut of two sea cucumber species. In addition, compared with differences between species, PCoA and UPGMA clustering analysis showed the gut prokaryotes of the same sea cucumber species varied more in different seasons, indicating that the influence of environment was higher than the feeding choices of sea cucumbers under relatively closed conditions. These results revealed the gut bacterial community composition of S. monotuberculatus and H. scabra and the differences in gut bacterial structure between two sea cucumber species in different seasons were compared, which would provide the foundation for tropical sea cucumber aquaculture in the future.
Collapse
Affiliation(s)
- Chenghao Jia
- School of Ecology and Environment, Hainan University, Haikou 570228, China;
| | - Yuanhang Wang
- School of Marine Biology and Fisheries, Hainan University, Haikou 570228, China; (Y.W.); (B.Z.); (Y.W.); (L.H.); (Q.X.)
| | - Bojun Zheng
- School of Marine Biology and Fisheries, Hainan University, Haikou 570228, China; (Y.W.); (B.Z.); (Y.W.); (L.H.); (Q.X.)
| | - Yanan Wang
- School of Marine Biology and Fisheries, Hainan University, Haikou 570228, China; (Y.W.); (B.Z.); (Y.W.); (L.H.); (Q.X.)
| | - Linwen He
- School of Marine Biology and Fisheries, Hainan University, Haikou 570228, China; (Y.W.); (B.Z.); (Y.W.); (L.H.); (Q.X.)
| | - Qiang Xu
- School of Marine Biology and Fisheries, Hainan University, Haikou 570228, China; (Y.W.); (B.Z.); (Y.W.); (L.H.); (Q.X.)
| | - Fei Gao
- School of Marine Biology and Fisheries, Hainan University, Haikou 570228, China; (Y.W.); (B.Z.); (Y.W.); (L.H.); (Q.X.)
| |
Collapse
|
5
|
Kabir MA, Rabbane MG, Hernandez MR, Shaikh MAA, Moniruzzaman M, Chang X. Impaired intestinal immunity and microbial diversity in common carp exposed to cadmium. Comp Biochem Physiol C Toxicol Pharmacol 2024; 276:109800. [PMID: 37993011 DOI: 10.1016/j.cbpc.2023.109800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/17/2023] [Accepted: 11/15/2023] [Indexed: 11/24/2023]
Abstract
Waterborne cadmium (Cd) accumulates in the fish intestine and causes irreversible toxicity by disrupting intestinal immunity and microbial diversity. To explore the toxicity of environmentally available high Cd concentration on intestinal immunity and microbial diversity of fish, we selected the widely used bioindicator model species, Common carp (Cyprinus carpio). Literature review and Cd pollution data supported sequential doses of 0.2, 0.4, 0.8, 1.6, 3.2, and 6.4 mg/L Cd for 30 days. Based on intestinal tissue Cd accumulation, previous studies, and environmentally available Cd data, 0.4 and 1.6 mg/L Cd were selected for further studies. Intestinal Cd bioaccumulation increased significantly to ~100 times in fish exposed to 1.6 mg/L Cd. We observed villous atrophy, increased goblet cells with mucus production, muscularis erosion, and thickened lamina propria due to intense inflammatory cell infiltration in the intestine at this Cd concentration. Cd-induced immunosuppression occurred with increased lysozyme, alkaline phosphate (AKP), and acid phosphate (ACP). High levels of catalase (CAT), total antioxidant capacity (T-AOC), malondialdehyde (MDA), and hydrogen peroxide (H2O2) suggested induced oxidative stress and poor metabolism by α-amylase and lipase suppression for Cd toxicity. Proteobacteria (41.2 %), Firmicutes (21.8 %), and Bacteroidetes (17.5 %) were the dominant bacterial phyla in the common carp intestine. Additionally, potential pathogenic Cyanobacteria increased in Cd-treated fish. The decrease of beneficiary bacteria like Aeromonas, and Cetobacterium indicated Cd toxicity. Overall, these findings indicate harmful consequences of high Cd concentration in the intestinal homeostasis and health status of fish.
Collapse
Affiliation(s)
- Md Alamgir Kabir
- School of Ecology and Environmental Sciences, Yunnan University, Kunming 650091, PR China; Department of Fisheries, University of Dhaka, Dhaka 1000, Bangladesh
| | - Md Golam Rabbane
- Department of Fisheries, University of Dhaka, Dhaka 1000, Bangladesh
| | - Marco R Hernandez
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON N9B 3P4, Canada
| | - Md Aftab Ali Shaikh
- Bangladesh Council of Scientific and Industrial Research (BCSIR), Qudrat-I-Khuda Road, Dhanmandi, Dhaka 1205, Bangladesh; Department of Chemistry, University of Dhaka, Dhaka 1000, Bangladesh
| | - Mohammad Moniruzzaman
- Bangladesh Council of Scientific and Industrial Research (BCSIR) Division, Soil and Environment Section, BCSIR Laboratories, Qudrat-I-Khuda Road, Dhanmandi, Dhaka 1205, Bangladesh
| | - Xuexiu Chang
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON N9B 3P4, Canada; Yunnan Collaborative Innovation Center for Plateau Lake Ecology and Environmental Health, College of Agronomy and Life Sciences, Kunming University, Kunming 650214, China.
| |
Collapse
|
6
|
Angthong P, Chaiyapechara S, Rungrassamee W. Shrimp microbiome and immune development in the early life stages. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 147:104765. [PMID: 37380117 DOI: 10.1016/j.dci.2023.104765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 06/23/2023] [Accepted: 06/25/2023] [Indexed: 06/30/2023]
Abstract
With its contribution to nutrition, development, and disease resistance, gut microbiome has been recognized as a crucial component of the animal's health and well-being. Microbiome in the gastrointestinal tract constantly interacts with the host animal's immune systems as part of the normal function of the intestines. Interactions between the microbiome and the immune system are complex and dynamic, with the microbiome shaping immune development and function. In contrast, the immune system modulates the composition and activity of the microbiome. In shrimp, as with all other aquatic animals, the interaction between the microbiome and the animals occurs at the early developmental stages. This early interaction is likely essential to the development of immune responses of the animal as well as many key physiological developments that further contribute to the health of shrimp. This review provides background knowledge on the early developmental stage of shrimp and its microbiome, examines the interaction between the microbiome and the immune system in the early life stage of shrimp, and discusses potential pitfalls and challenges associated with microbiome research. Understanding the interaction between the microbiome and shrimp immune system at this crucial developmental stage could have the potential to aid in the establishment of a healthy microbiome, improve shrimp survival, and provide ways to shape the microbiome with feed supplements or other strategies.
Collapse
Affiliation(s)
- Pacharaporn Angthong
- Microarray Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Khlong Luang, Pathum Thani, 12120, Thailand
| | - Sage Chaiyapechara
- Aquaculture Service Development Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Khlong Luang, Pathum Thani, 12120, Thailand
| | - Wanilada Rungrassamee
- Microarray Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Khlong Luang, Pathum Thani, 12120, Thailand.
| |
Collapse
|
7
|
Huang J, Li J, Zhou W, Cheng Y, Li J. Effect of different rice transplanting patterns on microbial community in water, sediment, and Procambarus clarkii intestine in rice-crayfish system. Front Microbiol 2023; 14:1233815. [PMID: 37637113 PMCID: PMC10450618 DOI: 10.3389/fmicb.2023.1233815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 07/28/2023] [Indexed: 08/29/2023] Open
Abstract
Although the microbial ecology of integrated rice-crayfish farming systems is receiving increasing attention with the expanding application area in China, the effects of rice transplanting patterns on the microbial community of water, sediment and Procambarus clarkii intestine in rice-crayfish system has yet to be determined. This study explored the microbial community present in water, sediment and intestine samples from three transplant patterns (rice crayfish with wide-narrow row transplanting, rice-crayfish with normal transplanting and pond-crayfish, abbreviated as RC-W, RC, and PC, respectively) using high-throughput sequencing. The results showed that the dominant microbial taxa from sediment, surrounding water, and intestine at phylum level were Proteobacteria, Chloroflexi, Cyanobacteria, Actinobacteria, Bacteroidetes. The patterns of rice transplanting had significant effects on microbial biodiversity and species composition in surrounding water. The OTUs community richness of water under RC group was significantly higher than that of PC group and RC-W group. The OTU relative abundance of top 10 operational taxonomic units had significantly different (p < 0.05) in the water samples from the three groups. The intestinal OTU community richness of Procambarus clarkii in the three groups was positively correlated with the community richness of water. The proximity between intestinal and water samples in PCA diagram indicated that their species composition was more similar. The results also showed that rice transplanting patterns can affect intestinal microbial biodiversity of Procambarus clarkii and the intestinal microbial biodiversity correlated with water bodies. Although the intestinal microbial diversity of crayfish in RC-W group was lower than that in RC group, the relative abundance of potential pathogenic bacteria, such as Vibrio, Aeromonas, in intestine of the crayfish in the RC-W group was significantly decreased under rice wide-narrow row transplanting model. Redundancy analysis revealed that environmental parameters, such as pH, DO, nitrate, which regulate the composition of microbial community structures. This study provides an understanding for microbial response to different rice transplanting pattern in rice-crayfish farming system.
Collapse
Affiliation(s)
- Jin Huang
- Key Laboratory of Integrated Rice-Fish Farming Ecosystem, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China
- Centre for Research on Environmental Ecology and Fish Nutrition (CREEFN) of the Ministry of Agriculture, Shanghai Ocean University, Shanghai, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Jinghao Li
- Key Laboratory of Integrated Rice-Fish Farming Ecosystem, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China
- Centre for Research on Environmental Ecology and Fish Nutrition (CREEFN) of the Ministry of Agriculture, Shanghai Ocean University, Shanghai, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Wenzong Zhou
- Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Yongxu Cheng
- Key Laboratory of Integrated Rice-Fish Farming Ecosystem, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China
- Centre for Research on Environmental Ecology and Fish Nutrition (CREEFN) of the Ministry of Agriculture, Shanghai Ocean University, Shanghai, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Jiayao Li
- Key Laboratory of Integrated Rice-Fish Farming Ecosystem, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China
- Centre for Research on Environmental Ecology and Fish Nutrition (CREEFN) of the Ministry of Agriculture, Shanghai Ocean University, Shanghai, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
8
|
Liang M, Feng W, Chen X, Tang Y, Li J, Li W. Effects of different temperatures on growth and intestinal microbial composition of juvenile Eriocheir sinensis. Front Physiol 2023; 14:1163055. [PMID: 37520823 PMCID: PMC10373936 DOI: 10.3389/fphys.2023.1163055] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 06/22/2023] [Indexed: 08/01/2023] Open
Abstract
The change in temperature will change the composition of intestinal microorganisms of juvenile Eriocheir sinensis, and the composition of intestinal microorganisms will affect the growth and development of juvenile crabs. In order to explore the relationship between intestinal microorganisms and growth of E. sinensis at different temperatures, the status of growth and intestinal microflora of juvenile E. sinensis reared at different water temperatures (15 °C, 23 °C, and 30 °C) were compared in this study. The results showed that the respective survival rate of juvenile E. sinensis in the three water temperature groups was 100%, 87.5%, and 64.44%. Moreover, the molting rate increased with an increase in water temperature, which was at 0%, 10%, and 71.11% for the three respective temperature groups. The average weight gain rate showed an overall increasing trend with the increase of water temperature. Moreover, the final fatness of the crabs in the 30 °C water temperature group was significantly lower than that in the 15 °C and 23 °C groups (p < 0.05); there was no significant difference in the liver-to-body ratio among the three groups. The results of the alpha diversity analysis of the 16S rRNA data revealed that there was no significant difference in the intestinal microbial abundance among the three water temperature groups; however, the intestinal microbial diversity in the 23 °C water temperature group was significantly lower than that in the 15 °C and 30 °C groups. At the phylum level, the dominant flora of the three groups was Firmicutes, Proteobacteria, and Bacteroidota. At the genus level, the abundance of Parabacteroides and Aeromonas in the intestine of the crabs in the 30 °C water temperature group was significantly higher than that in the 15 °C and 23 °C groups (p < 0.05). The function prediction showed that the main functional diversity of intestinal microflora of juvenile E. sinensis in the three water temperature groups was similar and mainly involved in metabolic-related functions, but there were still differences in the effects of water temperature on functional pathways such as metabolism, immunity, and growth among each group, either promoting or inhibiting. In conclusion, different water temperatures can affect the composition and function of intestinal flora of E. sinensis, and 23 °C-30 °C is the optimal water temperature for the growth of juvenile E. sinensis.
Collapse
Affiliation(s)
- Meng Liang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| | - Wenrong Feng
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| | - Xue Chen
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Yongkai Tang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Jianlin Li
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| | - Wenjing Li
- Jiangsu Haorun Biological Industry Group Co., Ltd, Taizhou, China
| |
Collapse
|
9
|
Ballantyne R, Lee JW, Wang ST, Lin JS, Tseng DY, Liao YC, Chang HT, Lee TY, Liu CH. Dietary administration of a postbiotic, heat-killed Pediococcus pentosaceus PP4012 enhances growth performance, immune response and modulates intestinal microbiota of white shrimp, Penaeus vannamei. FISH & SHELLFISH IMMUNOLOGY 2023:108882. [PMID: 37279829 DOI: 10.1016/j.fsi.2023.108882] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/28/2023] [Accepted: 06/03/2023] [Indexed: 06/08/2023]
Abstract
The efficacy of postbiotics on the immune-related gene expression and gut microbiota of white shrimp (Penaeus vannamei) remains unexplored. A commercial heat-killed postbiotic Pediococcus pentosaceus PP4012 was used to evaluate the growth performance, intestinal morphology, immunological status, and microbial community of white shrimp after dietary administration in this study. White shrimp (0.040 ± 0.003 g) were divided into three treatments; a control, inanimate P. pentosaceus (105 CFU g feed-1) at low concentration (IPL) and inanimate P. pentosaceus (106 CFU g feed-1) at high concentrations (IPH). The diets of IPL and IPH significantly increased final weight, specific growth rate and production compared to the control group. Shrimp fed with IPL and IPH significantly utilized feed more efficiently than those fed the control diet. The IPH treatment significantly lowered the cumulative mortality rate compared to the control and IPL diet following Vibrio parahaemolyticus infection. No significant difference was observed for Vibrio-like and lactic acid bacteria in intestine of shrimp fed with the control diet and the experimental diets. Adding inanimate P. pentosaceus significantly improved immune responses such as lysozyme and phagocytic activity compared to the control group. However, the total hemocyte count, phenoloxidase activity, respiratory burst, and superoxide dismutase were not significantly different among treatments. The immune-related genes alf, pen3a, and pen4 expression were significantly higher in shrimp fed IPL diet compared with control and IPH. Taxonomic identification of bacterial genera in all dietary groups belonged to two predominant phyla, Proteobacteria and Bacteroidota. An abundance of Photobacterium, Motilimonas, Litorilituus, and Firmicutes bacterium ZOR0006 were identified in the intestine of shrimp fed postbiotic diets. Unique microbes such as Cohaesibacter was discovered in the shrimp fed IPL while Candidatus Campbellbacteria, uncultured Verrucomicrobium DEV114 and Paenalcaligenes were discovered in the intestines of shrimp fed IPH diet. Collectively, these data suggest that including heat-killed P. pentosaceus, particularly IPH, can enhance growth performance, promote microbial diversity, elevate immune responses, and increase shrimp's resistance to V. parahaemolyticus.
Collapse
Affiliation(s)
- Rolissa Ballantyne
- Department of Tropical Agriculture and International Cooperation, National Pingtung University of Science and Technology, Pingtung, 912, Taiwan
| | - Jai-Wei Lee
- Department of Tropical Agriculture and International Cooperation, National Pingtung University of Science and Technology, Pingtung, 912, Taiwan
| | - Sz-Tsan Wang
- Department of Aquaculture, National Pingtung University of Science and Technology, Pingtung, 912, Taiwan
| | - Jin-Seng Lin
- Culture Collection & Research Institute, SYNBIO TECH INC., Kaohsiung, 821, Taiwan
| | - Deng-Yu Tseng
- Department of Biological Sciences and Technology, National University of Tainan, Tainan, 700, Taiwan
| | - Yi-Chu Liao
- Culture Collection & Research Institute, SYNBIO TECH INC., Kaohsiung, 821, Taiwan
| | - Hsiao-Tung Chang
- Culture Collection & Research Institute, SYNBIO TECH INC., Kaohsiung, 821, Taiwan
| | - Ting-Yu Lee
- Culture Collection & Research Institute, SYNBIO TECH INC., Kaohsiung, 821, Taiwan
| | - Chun-Hung Liu
- Department of Aquaculture, National Pingtung University of Science and Technology, Pingtung, 912, Taiwan.
| |
Collapse
|
10
|
Yang J, Zhang Q, Zhang T, Wang S, Hao J, Wu Z, Li A. Comparative Analysis of the Symbiotic Microbiota in the Chinese Mitten Crab (Eriocheir sinensis): Microbial Structure, Co-Occurrence Patterns, and Predictive Functions. Microorganisms 2023; 11:microorganisms11030544. [PMID: 36985118 PMCID: PMC10053967 DOI: 10.3390/microorganisms11030544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 02/23/2023] Open
Abstract
Symbiotic microorganisms in the digestive and circulatory systems are found in various crustaceans, and their essential roles in crustacean health, nutrition, and disease have attracted considerable interest. Although the intestinal microbiota of the Chinese mitten crab (Eriocheir sinensis) has been extensively studied, information on the symbiotic microbiota at various sites of this aquatic economic species, particularly the hepatopancreas and hemolymph, is lacking. This study aimed to comprehensively characterize the hemolymph, hepatopancreas, and intestinal microbiota of Chinese mitten crab through the high-throughput sequencing of the 16S rRNA gene. Results showed no significant difference in microbial diversity between the hemolymph and hepatopancreas (Welch t-test; p > 0.05), but their microbial diversity was significantly higher than that in the intestine (p < 0.05). Distinct differences were found in the structure, composition, and predicted function of the symbiotic microbiota at these sites. At the phylum level, the hemolymph and hepatopancreas microbiota were dominated by Proteobacteria, Firmicutes, and Acidobacteriota, followed by Bacteroidota and Actinobacteriota, whereas the gut microbiota was mainly composed of Firmicutes, Proteobacteria, and Bacteroidota. At the genus level, Candidatus Hepatoplasma, Shewanella, and Aeromonas were dominant in the hepatopancreas; Candidatus Bacilloplasma, Roseimarinus, and Vibrio were dominant in the intestine; Enterobacter, norank_Vicinamibacterales, and Pseudomonas were relatively high-abundance genera in the hemolymph. The composition and abundance of symbiotic microbiota in the hemolymph and hepatopancreas were extremely similar (p > 0.05), and no significant difference in functional prediction was found (p > 0.05). Comparing the hemolymph in the intestine and hepatopancreas, the hemolymph had lower variation in bacterial composition among individuals, having a more uniform abundance of major bacterial taxa, a smaller coefficient of variation, and the highest proportion of shared genera. Network complexity varied greatly among the three sites. The hepatopancreas microbiota was the most complex, followed by the hemolymph microbiota, and the intestinal microbiota had the simplest network. This study revealed the taxonomic and functional characteristics of the hemolymph, hepatopancreas, and gut microbiota in Chinese mitten crab. The results expanded our understanding of the symbiotic microbiota in crustaceans, providing potential indicators for assessing the health status of Chinese mitten crab.
Collapse
Affiliation(s)
- Jicheng Yang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
| | - Qianqian Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- National Aquatic Biological Resource Center (NABRC), Wuhan 430072, China
| | - Tanglin Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Shuyi Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingwen Hao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhenbing Wu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
- Correspondence: (Z.W.); (A.L.); Tel.: +86-27-68780053 (A.L.)
| | - Aihua Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- National Aquatic Biological Resource Center (NABRC), Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence: (Z.W.); (A.L.); Tel.: +86-27-68780053 (A.L.)
| |
Collapse
|
11
|
Characterisation of the Gut Bacteria of Cultured and Wild Spiny Lobster Panulirus ornatus. Appl Microbiol 2023. [DOI: 10.3390/applmicrobiol3010016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
The commercial onshore aquaculture of the spiny lobster Panulirus ornatus, while in its infancy, has progressed rapidly from the enabling research that continues at the University of Tasmania. The development of lobster feeds, both fresh and manufactured, has been critical to the success of this emerging aquaculture sector. Fresh feeds derived from mussel represent the gold standard in terms of the growth performance of juvenile lobsters. Nonetheless, concerns regarding availability, sustainability, and potential biosecurity issues of fresh feeds highlight the importance of developing manufactured feeds for lobster aquaculture. Wild lobsters are assumed to have a balanced natural diet that allows for standard growth and development, and as such natural diets are often used as a reference for feed development. Similarly, the gut microbiota associated with a natural diet is assumed to reflect a healthy microbial assemblage. The aim of this study was to compare the microbiota of the hindgut and hepatopancreas of cultured P. ornatus fed with a commercial prawn pellet or mussel to that of wild spiny lobster juveniles. Gut samples were analysed using Oxford Nanopore 16S rRNA gene sequencing. Based on principal coordinate analysis, the gut bacteria of cultured lobsters were different from the wild juveniles. The core microbiota of the hindgut and hepatopancreas libraries were phyla Proteobacteria (Gamma, Alpha) and Bacteroidetes. Vibrio was the most dominant genus in both organs. The differences in bacterial relative abundance were mainly between cultured (pellet-, mussel-fed) and wild lobsters. In conclusion, bacteria in the cultured lobsters had significantly different profiles to that of the wild juveniles, indicating that current onshore aquaculture practices alter the gut microbiota. A number of different feeding and culture practices may be required if the aim of closed culture practices is to attain a gut microbiota in cultured animals that is representative of that found in wild spiny lobsters.
Collapse
|
12
|
Jin X, Liu S, Zhang Z, Liu T, Li N, Liang Y, Zheng J, Peng N. Enrofloxacin-induced transfer of multiple-antibiotic resistance genes and emergence of novel resistant bacteria in red swamp crayfish guts and pond sediments. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130261. [PMID: 36356515 DOI: 10.1016/j.jhazmat.2022.130261] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 09/06/2022] [Accepted: 10/23/2022] [Indexed: 06/16/2023]
Abstract
Antibiotic resistance genes (ARGs) can be transferred from environmental microbes to human pathogens, thus leading to bacterial infection treatment failures. The aquaculture polluted by over-used antibiotics is considered as a notorious reservoir of ARGs. However, the origin, diachronic changes, and mobility of ARGs under antibiotic exposure in aquaculture systems remain elusive. Our findings showed that enrofloxacin application also increased the relative abundance of various ARGs in addition to quinolone-resistance genes and induced ARG dissemination in crayfish gut and sediment bacteria. Further investigation indicated that the transposase-mediated recombination was the major driver of horizontal gene transfer (HGT) of ARGs under antibiotic stress. Notably, enrofloxacin application also induced the generation of some metagenome-assembled genomes (MAGs) carrying multiple ARGs, which were identified as novel species. Additionally, Enterobacteriaceae constituted a mobile ARG pool in aquaculture. Therefore, aquaculture provides potential wide environmental pathways for generation and spread of antibiotic resistance. Our findings of ARG temporal variations and dissemination pattern in aquaculture with artificial use of antibiotics are critical to the management of antibiotic resistance, which is of great ecosystem and health implications.
Collapse
Affiliation(s)
- Xuexia Jin
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, PR China
| | - Sizhen Liu
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, PR China
| | - Zhenting Zhang
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, PR China
| | - Tong Liu
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, PR China
| | - Na Li
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Yunxiang Liang
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, PR China; Runge College of Bioengineering, Mianzhu, 618200 Deyang, Sichuan, PR China
| | - Jinshui Zheng
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, PR China.
| | - Nan Peng
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, PR China.
| |
Collapse
|
13
|
Xie S, Liu R, Zhang H, Yu F, Shi T, Zhu J, Zhou X, Yan B, Gao H, Wang P, Xing C. Comparative Analyses of the Exopalaemon carinicauda Gut Bacterial Community and Digestive and Immune Enzyme Activity during a 24-Hour Cycle. Microorganisms 2022; 10:2258. [PMID: 36422328 PMCID: PMC9695413 DOI: 10.3390/microorganisms10112258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/07/2022] [Accepted: 11/12/2022] [Indexed: 11/16/2022] Open
Abstract
The change in life activities throughout a cycle of approximately 24 h is called the circadian rhythm. Circadian rhythm has an important impact on biological metabolism, digestion, immunity, and other physiological activities, but the circadian rhythm of crustaceans has rarely been studied. In this study, the activity of digestive enzymes (α-amylase, trypsin, and lipase) and immune enzymes (superoxide dismutase, lysozyme, and catalase), as well as the circadian rhythm of the intestinal bacterial community of Exopalaemon carinicauda, were studied. The results showed that the digestive and immune enzyme activities of E. carinicauda changed significantly (p < 0.05) at four time points throughout the day by one-way ANOVA analysis, with the highest value at 24:00 and the lowest value at 12:00. The highest values of alpha diversity and richness were observed in the 24:00 samples, which were significantly higher than those in the other groups (p < 0.05). The principal coordinate analysis (PCoA) results obviously showed that the samples from the same sampling time had higher similarity in the bacterial community structure. Candidatus hepatoplasma had the highest abundance among the intestinal microorganisms at 24:00, and Marinomonas had the highest abundance at 12:00. This study contributed to the understanding of digestive enzyme activity, immune enzyme activity, and the circadian rhythm of the intestinal bacterial community structure in E. carinicauda. It will play an important role in optimizing feeding times and improving digestion and nutrient utilization for E. carinicauda. The results of this study provide a basis for further study on the physiological mechanism of diurnal variation of intestinal flora in crustaceans.
Collapse
Affiliation(s)
- Shumin Xie
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China
- Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Runyao Liu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China
- Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Huiling Zhang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China
- Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Fei Yu
- Lianyungang Marine and Fishery Development Promotion Center, Lianyungang 222044, China
| | - Tingting Shi
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China
- Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Jiawei Zhu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China
- Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Xinlei Zhou
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China
- Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Binlun Yan
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China
- Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- Marine Resource Development Institute of Jiangsu (Lianyungang), Lianyungang 222005, China
- The Jiangsu Provincial Infrastructure for Conservation and Utilization of Agricultural Germplasm, Nanjing 210014, China
| | - Huan Gao
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China
- Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- Marine Resource Development Institute of Jiangsu (Lianyungang), Lianyungang 222005, China
- The Jiangsu Provincial Infrastructure for Conservation and Utilization of Agricultural Germplasm, Nanjing 210014, China
| | - Panpan Wang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China
- Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- Marine Resource Development Institute of Jiangsu (Lianyungang), Lianyungang 222005, China
- The Jiangsu Provincial Infrastructure for Conservation and Utilization of Agricultural Germplasm, Nanjing 210014, China
| | - Chaofan Xing
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China
- Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- Marine Resource Development Institute of Jiangsu (Lianyungang), Lianyungang 222005, China
| |
Collapse
|
14
|
Chen CZ, Li P, Liu L, Li ZH. Exploring the interactions between the gut microbiome and the shifting surrounding aquatic environment in fisheries and aquaculture: A review. ENVIRONMENTAL RESEARCH 2022; 214:114202. [PMID: 36030922 DOI: 10.1016/j.envres.2022.114202] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/10/2022] [Accepted: 08/20/2022] [Indexed: 06/15/2023]
Abstract
The rise of "new" sequencing technologies and the development of sophisticated bioinformatics tools have dramatically increased the study of the aquaculture microbiome. Microbial communities exist in complex and dynamic communities that play a vital role in the stability of healthy ecosystems. The gut microbiome contributes to multiple aspects of the host's physiological health status, ranging from nutritional regulation to immune modulation. Although studies of the gut microbiome in aquaculture are growing rapidly, the interrelationships between the aquaculture microbiome and its aquatic environment have not been discussed and summarized. In particular, few reviews have focused on the potential mechanisms driving the alteration of the gut microbiome by surrounding aquatic environmental factors. Here, we review current knowledge on the host gut microbiome and its interrelationship with the microbiome of the surrounding environment, mainly including the main methods for characterizing the gut microbiome, the composition and function of microbial communities, the dynamics of microbial interactions, and the relationship between the gut microbiome and the surrounding water/sediment microbiome. Our review highlights two potential mechanisms for how surrounding aquatic environmental factors drive the gut microbiome. This may deepen the understanding of the interactions between the microbiome and environmental factors. Lastly, we also briefly describe the research gaps in current knowledge and prospects for the future orientation of research. This review provides a framework for studying the complex relationship between the host gut microbiome and environmental stresses to better facilitate the widespread application of microbiome technologies in fisheries and aquaculture.
Collapse
Affiliation(s)
- Cheng-Zhuang Chen
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Ping Li
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Ling Liu
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Zhi-Hua Li
- Marine College, Shandong University, Weihai, Shandong, 264209, China.
| |
Collapse
|
15
|
Chen J, Wang H, Yuan H, Hu N, Zou F, Li C, Shi L, Tan B, Zhang S. Effects of dietary Clostridium autoethanogenum protein on the growth, disease resistance, intestinal digestion, immunity and microbiota structure of Litopenaeus vannamei reared at different water salinities. Front Immunol 2022; 13:1034994. [PMID: 36275652 PMCID: PMC9585349 DOI: 10.3389/fimmu.2022.1034994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 09/21/2022] [Indexed: 12/04/2022] Open
Abstract
The shortage of fishmeal (FM) resources limits the healthy development of aquaculture. Developing new protein sources to replace FM in aquatic feeds is an effective measure to alleviate this situation. However, the application effect of new protein sources is greatly affected by water salinity, which is an important parameter of aquaculture. In this study, the growth, disease resistance, and intestinal digestion, immunity, and microbiota structure of Litopenaeus vannamei (initial weight: 0.38 ± 0.01 g) fed on Clostridium autoethanogenum protein (CAP) or not at three different water salinities (15 ‰, 30 ‰, and 45 ‰) were compared, aiming to explore the effects of dietary CAP on shrimp when suffering different salinity stresses. The results showed that the growth performance, feed utilization, and survival rate (SR) after pathogen challenge of L. vannamei could be significantly improved by dietary CAP when compared with the control at the same salinity and they were also significantly affected by salinity changes when L. vannamei was fed on the same protein source. With the increase in salinity, obvious upregulation was observed in the activities and gene expression of digestive enzymes both in L. vannamei fed on FM and CAP, with significantly higher levels in L. vannamei fed on CAP than in those fed on FM at the same salinity. Meanwhile, the expression levels of immune genes in the CAP group were significantly higher than those in the FM group at different salinities. The intestinal microbiota analysis showed that CAP could increase the relative abundance of beneficial bacteria and decrease the relative abundance of harmful bacteria in the intestine of L. vannamei at the phylum, family, and genus levels, and it was more affected by salinity changes when compared with FM. Besides, the changes in salinity and protein sources led to different changes in the intestinal microflora function of L. vannamei. In sum, this study indicated that CAP could improve the growth, disease resistance, digestive capacity, and intestinal microflora of L. vannamei with a much more intense immune response and enhance its ability to cope with salinity stress.
Collapse
Affiliation(s)
- Jian Chen
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
| | - Hongming Wang
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
| | - Hang Yuan
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
| | - Naijie Hu
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
| | - Fangqi Zou
- Technology R&D Department, Beijing Shoulang Bio-Technology Co., Ltd., Beijing, China
| | - Chongyang Li
- Technology R&D Department, Beijing Shoulang Bio-Technology Co., Ltd., Beijing, China
| | - Lili Shi
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
| | - Beiping Tan
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, China
- Aquatic Animal Nutrition and Feed Laboratory, Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang, China
| | - Shuang Zhang
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, China
- Aquatic Animal Nutrition and Feed Laboratory, Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang, China
- *Correspondence: Shuang Zhang,
| |
Collapse
|
16
|
Characteristics and bioactive properties of agro-waste and yeast derived manno-oligosaccharides. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
17
|
Niu GJ, Yan M, Li C, Lu PY, Yu Z, Wang JX. Infection with white spot syndrome virus affects the microbiota in the stomachs and intestines of kuruma shrimp. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 839:156233. [PMID: 35636540 DOI: 10.1016/j.scitotenv.2022.156233] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 05/20/2022] [Accepted: 05/22/2022] [Indexed: 06/15/2023]
Abstract
Maintaining eubiosis of the gastrointestinal (GI) microbiota is essential for animal health. White spot syndrome virus (WSSV) is the most lethal viral pathogen because it causes extremely high mortality in shrimp farming. However, it remains poorly understood how WSSV infection affects the microbiota in different regions of the GI tract of shrimp. In the present study, we established an experimental model of kuruma shrimp (Marsupenaeus japonicus) infection with WSSV and then investigated the effects of WSSV infection on the microbiota in the cardiac stomach, pyloric stomach, and intestines using metataxonomics. We identified 34 phyla and 576 genera of bacteria collectively. At the phylum level, Proteobacteria and Firmicutes were the most abundant in all the three GI segments. The WSSV infection decreased microbial diversity to a different extent in the stomachs and in a time-dependent manner. The infection with WSSV affected the microbiota composition in the two stomachs, but not the intestines. Firmicutes increased significantly, while Actinobacteria, Bacteroidetes, and Cyanobacteria decreased in the two stomachs of the WSSV-infected shrimp. At the genus level, Trichococcus and Vibrio increased, but Bradyrhizobium and Roseburia decreased in the cardiac stomach of the WSSV-infected shrimp. Trichococcus and Photobacterium increased in the pyloric stomach. Although Vibrio showed a slight downward trend, Aliivibrio (formerly Vibrio) increased in the pyloric stomach. Thiothrix, Fusibacter, and Shewanella decreased in the pyloric stomach, but no significant differences in these genera were detected in the cardiac stomach. Analysis of the predicted functions of the GI microbiota indicated that the WSSV infection resulted in losses of some microbiota functions. The new information from this study may help better understand the bacteria-virus interaction in the GI tract of shrimp and other crustacean species, and inform pathogen prevention/control and sustainable aquaculture production.
Collapse
Affiliation(s)
- Guo-Juan Niu
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Ming Yan
- Department of Animal Sciences, The Ohio State University, Columbus, OH, United States
| | - Cang Li
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Peng-Yuan Lu
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Zhongtang Yu
- Department of Animal Sciences, The Ohio State University, Columbus, OH, United States.
| | - Jin-Xing Wang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao 266237, China; State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, Shandong, China.
| |
Collapse
|
18
|
Sun F, Wang C, Chen X. Bacterial community in Sinonovacula constricta intestine and its relationship with culture environment. Appl Microbiol Biotechnol 2022; 106:5211-5220. [PMID: 35781839 DOI: 10.1007/s00253-022-12048-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/19/2022] [Accepted: 06/21/2022] [Indexed: 11/24/2022]
Abstract
Although the importance of intestinal microbes to aquaculture animals has been recognized, the intestinal bacteria of Sinonovacula constricta and its culture environment are rarely studied. In this study, high-throughput sequencing was used to explore the intestinal bacterial communities of pond water, sediment, and S. constricta intestine. Significance analysis and principal coordinates analysis (PCoA) showed that there were significant differences in bacterial communities among animals' intestine, pond water, and sediment (p < 0.05). Venn analysis showed that intestinal bacteria shared a considerable number of OTUs (operational taxonomic units) with the sediment and water. SourceTracker analysis suggested that the contribution of sediment to the intestinal bacteria of S. constricta was much larger than that of rearing water. The Kruskal-Wallis test showed that the dominant bacterial taxa differed significantly between animals' intestines and the pond environment, and each of them has a unique bacterial composition. A network diagram indicated the complex positive and negative interactions between intestinal bacteria at the OTU level. Furthermore, BugBase analysis indicated that the bacterial contribution to potential pathogens in the animals' intestines is similar to that in sediments, suggesting that sediment was the main source of potential pathogens in S. constricta intestine. This study provided a theoretical basis for environmental regulation and disease prevention of S. constricta in aquaculture. KEY POINTS: • Culture environment had a significant effect on the intestinal bacterial community in S. constricta. • Sediment was a major source of intestinal bacteria and potentially pathogenic bacteria. • Complex positive and negative interactions existed between intestinal bacteria.
Collapse
Affiliation(s)
- Fulin Sun
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China. .,Daya Bay Marine Biology Research Station, Chinese Academy of Sciences, Shenzhen, China. .,Sanya Institute of Oceanology, South China Sea Institute of Oceanology, Sanya, China.
| | - Chunzhong Wang
- Putian Institute of Aquaculture Science of Fujian Province, Putian, China
| | - Xuelian Chen
- Putian Tian Ran Xing Agriculture Development Co. Ltd, Putian, China
| |
Collapse
|
19
|
Gastrointestinal Microbiota of Spiny Lobster: A Review. FISHES 2022. [DOI: 10.3390/fishes7030108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The gastrointestinal (GI) microbiota is a group of complex and dynamic microorganisms present in the GI tract of an organism that live in symbiosis with the host and benefit the host with various biological functions. The communities of GI microbiota are formed by various aerobic, anaerobic, and facultatively anaerobic bacteria in aquatic species. In spiny lobsters, common GI microorganisms found in the GI tract are Vibrio, Pseudomonas, Bacillus, Micrococcus, and Flavobacterium, where the structure and abundance of these microbes are varied depending on the environment. GI microbiotas hold an important role and significantly affect the overall condition of spiny lobsters, such as secreting digestive enzymes (lipase, protease, and cellulase), helping in digesting food intake, providing nutrition and synthesising vitamins needed by the host system, and protecting the host against infection from pathogens and diseases by activating an immune mechanism in the GI tract. The microorganisms in the water column, sediment, and diet are primarily responsible for altering, manipulating, and shaping GI microbial structures and communities. This review also highlights the possibilities of isolating the indigenous GI microbiota as a potential probiotic strain and introducing it to spiny lobster juveniles and larvae for better health management.
Collapse
|
20
|
Reyes G, Betancourt I, Andrade B, Panchana F, Román R, Sorroza L, Trujillo LE, Bayot B. Microbiome of Penaeus vannamei Larvae and Potential Biomarkers Associated With High and Low Survival in Shrimp Hatchery Tanks Affected by Acute Hepatopancreatic Necrosis Disease. Front Microbiol 2022; 13:838640. [PMID: 35615516 PMCID: PMC9125206 DOI: 10.3389/fmicb.2022.838640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 03/21/2022] [Indexed: 11/13/2022] Open
Abstract
Acute hepatopancreatic necrosis disease (AHPND) is an emerging bacterial disease of cultured shrimp caused mainly by Vibrio parahaemolyticus, which harbors the lethal PirAB toxin genes. Although Penaeus vannamei (P. vannamei) postlarvae are susceptible to AHPND, the changes in the bacterial communities through the larval stages affected by the disease are unknown. We characterized, through high-throughput sequencing, the microbiome of P. vannamei larvae infected with AHPND-causing bacteria through the larval stages and compared the microbiome of larvae collected from high- and low-survival tanks. A total of 64 tanks from a commercial hatchery were sampled at mysis 3, postlarvae 4, postlarvae 7, and postlarvae 10 stages. PirAB toxin genes were detected by PCR and confirmed by histopathology analysis in 58 tanks. Seven from the 58 AHPND-positive tanks exhibited a survival rate higher than 60% at harvest, despite the AHPND affectation, being selected for further analysis, whereas 51 tanks exhibited survival rates lower than 60%. A random sample of 7 out of these 51 AHPND-positive tanks was also selected. Samples collected from the selected tanks were processed for the microbiome analysis. The V3–V4 hypervariable regions of the 16S ribosomal RNA (rRNA) gene of the samples collected from both the groups were sequenced. The Shannon diversity index was significantly lower at the low-survival tanks. The microbiomes were significantly different between high- and low-survival tanks at M3, PL4, PL7, but not at PL10. Differential abundance analysis determined that biomarkers associated with high and low survival in shrimp hatchery tanks affected with AHPND. The genera Bacillus, Vibrio, Yangia, Roseobacter, Tenacibaculum, Bdellovibrio, Mameliella, and Cognatishimia, among others, were enriched in the high-survival tanks. On the other hand, Gilvibacter, Marinibacterium, Spongiimonas, Catenococcus, and Sneathiella, among others, were enriched in the low-survival tanks. The results can be used to develop applications to prevent losses in shrimp hatchery tanks affected by AHPND.
Collapse
Affiliation(s)
- Guillermo Reyes
- Centro Nacional de Acuicultura e Investigaciones Marinas (CENAIM), Escuela Superior Politécnica del Litoral (ESPOL), Guayaquil, Ecuador
- Facultad de Ciencias de la Vida (FCV), Escuela Superior Politécnica del Litoral (ESPOL), Guayaquil, Ecuador
- *Correspondence: Guillermo Reyes,
| | - Irma Betancourt
- Centro Nacional de Acuicultura e Investigaciones Marinas (CENAIM), Escuela Superior Politécnica del Litoral (ESPOL), Guayaquil, Ecuador
| | - Betsy Andrade
- Centro Nacional de Acuicultura e Investigaciones Marinas (CENAIM), Escuela Superior Politécnica del Litoral (ESPOL), Guayaquil, Ecuador
| | - Fanny Panchana
- Centro Nacional de Acuicultura e Investigaciones Marinas (CENAIM), Escuela Superior Politécnica del Litoral (ESPOL), Guayaquil, Ecuador
| | - Rubén Román
- Centro Nacional de Acuicultura e Investigaciones Marinas (CENAIM), Escuela Superior Politécnica del Litoral (ESPOL), Guayaquil, Ecuador
| | - Lita Sorroza
- Facultad de Ciencias Agropecuarias, Universidad Técnica de Machala, Machala, Ecuador
| | - Luis E. Trujillo
- Industrial Biotechnology Research Group, Center for Nanoscience and Nanotechnology (CENCINAT), Universidad de las Fuerzas Armadas (ESPE), Sangolquí, Ecuador
| | - Bonny Bayot
- Centro Nacional de Acuicultura e Investigaciones Marinas (CENAIM), Escuela Superior Politécnica del Litoral (ESPOL), Guayaquil, Ecuador
- Facultad de Ingeniería Marítima y Ciencias del Mar (FIMCM), Escuela Superior Politécnica del Litoral (ESPOL), Guayaquil, Ecuador
- Bonny Bayot,
| |
Collapse
|
21
|
Characterization of the Bacterial Community in the Ecosystem of Sea Cucumber (Apostichopus japonicus) Culture Ponds: Correlation and Specificity in Multiple Media. WATER 2022. [DOI: 10.3390/w14091386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The bacterial community is an essential component of the aquaculture pond ecosystem, which not only improves and restores the aquaculture environment but also maintains a stable ecological equilibrium with the external environment. Here, Illumina 16S rRNA sequencing was conducted to characterize the bacterial community in the ecosystem of sea cucumber Apostichopus japonicus culture ponds, as well as their correlation with overall community structures. The alpha-diversities of bacterial community among water, sediment, and the gut of A. japonicus were consistent across culture ponds from different areas. Specifically, the richness and diversity of bacterial communities were the highest in sediment, followed by the gut, and the lowest in water. The dominant bacterial community among multiple media was Proteobacteria, which occupies a large proportion of the bacterial community structure, followed by Bacteroidetes and Verrucomicrobia. Highly similar bacterial community structures were present in multiple media among different areas, which provides evidence for deterministic natural evolution. Meanwhile, there was a significant difference (p < 0.05) in the specific bacterial communities across the multiple media. The specific functions of the multiple media in the ecosystem are the main reason for the formation of different bacterial communities. This work demonstrates that bacterial communities are the result of natural evolution within the ecosystem during adaptation to the required environment.
Collapse
|
22
|
Ochoa-Romo JP, Cornejo-Granados F, Lopez-Zavala AA, Viana MT, Sánchez F, Gallardo-Becerra L, Luque-Villegas M, Valdez-López Y, Sotelo-Mundo RR, Cota-Huízar A, López-Munguia A, Ochoa-Leyva A. Agavin induces beneficial microbes in the shrimp microbiota under farming conditions. Sci Rep 2022; 12:6392. [PMID: 35430601 PMCID: PMC9013378 DOI: 10.1038/s41598-022-10442-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 03/30/2022] [Indexed: 12/12/2022] Open
Abstract
Prebiotics and probiotics have shown a number of beneficial impacts preventing diseases in cultured shrimps. Complex soluble carbohydrates are considered ideal for fostering microbiota biodiversity by fermentable oligosaccharides, disaccharides, monosaccharides, and polyols (FODMAPS). Here we evaluated the growth performance and microbiota composition of the white shrimp Litopenaeus vannamei after dietary intervention using agavin as a FODMAP prebiotic under farming conditions. Adult L. vannamei were raised at a shrimp farm and the effect of agavin supplemented at 2% (AG2) or 10% (AG10) levels were compared to an agavin-free basal diet (BD). After 28 days-trial, the feed conversion ratio, total feed ingested, and protein efficiency ratio was significantly improved on animals fed with AG2. At the same time, no effect on growth performance was observed in AG10. Surprisingly, after sequencing the V3-V4 regions of the 16S rRNA gene a higher microbial richness and diversity in the hepatopancreas and intestine was found only in those animals receiving the AG10 diet, while those receiving the AG2 diet had a decreased richness and diversity, both diets compared to the BD. The beta diversity analysis showed a clear significant microbiota clustering by agavin diets only in the hepatopancreas, suggesting that agavin supplementation had a more substantial deterministic effect on the microbiota of hepatopancreas than on the intestine. We analyzed the literature to search beneficial microbes for shrimp's health and found sequences for 42 species in our 16S data, being significantly increased Lactobacillus pentosus, Pseudomonas putida and Pseudomonas synxantha in the hepatopancreas of the AG10 and Rodopseudomonas palustris and Streptococcus thermophiles th1435 in the hepatopancreas of the AG2, both compared to BD. Interestingly, when we analyzed the abundance of 42 beneficial microbes as a single microbial community "meta-community," found an increase in their abundance as agavin concentration increases in the hepatopancreas. In addition, we also sequenced the DNA of agavin and found 9 of the 42 beneficial microbes. From those, Lactobacillus lactis and Lactobacillus delbrueckii were found in shrimps fed with agavin (both AG2 and AG10), and Lysinibacillus fusiformis in AG10 and they were absent the BD diet, suggesting these three species could be introduced with the agavin to the diet. Our work provides evidence that agavin supplementation is associated with an increase of beneficial microbes for the shrimp microbiota at farming conditions. Our study provides the first evidence that a shrimp prebiotic may selectively modify the microbiota in an organ-dependent effect.
Collapse
Affiliation(s)
- Juan Pablo Ochoa-Romo
- Departamento de Microbiología Molecular, Instituto de Biotecnología (IBT), Universidad Nacional Autónoma de México (UNAM), Av. Universidad #2001, Col. Chamilpa, 62210, Cuernavaca, MOR, Mexico
| | - Fernanda Cornejo-Granados
- Departamento de Microbiología Molecular, Instituto de Biotecnología (IBT), Universidad Nacional Autónoma de México (UNAM), Av. Universidad #2001, Col. Chamilpa, 62210, Cuernavaca, MOR, Mexico
| | - Alonso A Lopez-Zavala
- Departamento de Ciencias Químico Biológicas, Universidad de Sonora (UNISON), Blvd., Rosales y Luis Encinas, 83000, Hermosillo, SON, Mexico
| | - María Teresa Viana
- Instituto de Investigaciones Oceanológicas, Universidad Autónoma de Baja California (UABC), Km 107 carretera Tijuana/Ensenada, 22860, Ensenada, BC, Mexico
| | - Filiberto Sánchez
- Departamento de Microbiología Molecular, Instituto de Biotecnología (IBT), Universidad Nacional Autónoma de México (UNAM), Av. Universidad #2001, Col. Chamilpa, 62210, Cuernavaca, MOR, Mexico
| | - Luigui Gallardo-Becerra
- Departamento de Microbiología Molecular, Instituto de Biotecnología (IBT), Universidad Nacional Autónoma de México (UNAM), Av. Universidad #2001, Col. Chamilpa, 62210, Cuernavaca, MOR, Mexico
| | - Mirna Luque-Villegas
- Departamento de Microbiología Molecular, Instituto de Biotecnología (IBT), Universidad Nacional Autónoma de México (UNAM), Av. Universidad #2001, Col. Chamilpa, 62210, Cuernavaca, MOR, Mexico
| | - Yesenia Valdez-López
- Departamento de Microbiología Molecular, Instituto de Biotecnología (IBT), Universidad Nacional Autónoma de México (UNAM), Av. Universidad #2001, Col. Chamilpa, 62210, Cuernavaca, MOR, Mexico
| | - Rogerio R Sotelo-Mundo
- Laboratorio de Estructura Biomolecular, Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD), Carretera Gustavo Enrique Astiazarán Rosas Num. 46, Col. La Victoria, 83304, Hermosillo, SON, Mexico
| | - Andrés Cota-Huízar
- Camarones El Renacimiento SPR de RI, Justino Rubio No. 26, Col Ejidal, 81330, Higuera de Zaragoza, SIN, Mexico
| | - Agustín López-Munguia
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, UNAM, Avenida Universidad 2001, Col. Chamilpa, 62420, Cuernavaca, MOR, Mexico
| | - Adrian Ochoa-Leyva
- Departamento de Microbiología Molecular, Instituto de Biotecnología (IBT), Universidad Nacional Autónoma de México (UNAM), Av. Universidad #2001, Col. Chamilpa, 62210, Cuernavaca, MOR, Mexico.
| |
Collapse
|
23
|
Vinay TN, Patil PK, Aravind R, Anand PSS, Baskaran V, Balasubramanian CP. Microbial community composition associated with early developmental stages of the Indian white shrimp, Penaeus indicus. Mol Genet Genomics 2022; 297:495-505. [PMID: 35129686 DOI: 10.1007/s00438-022-01865-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 01/24/2022] [Indexed: 10/19/2022]
Abstract
Gut microbiota is known to influence the physiology, health, nutrient absorption, reproduction, and other metabolic activities of aquatic organisms. Microbial composition can influence intestinal immunity and are considered as health indicators. Information on gut microbial composition provides potential application possibilities to improve shrimp health and production. In the absence of such information for Penaeus indicus, the present study reports the microbial community structure associated with its early developmental stages. Bacterial community associated with the early developmental stages (egg, nauplii, zoea, mysis, PL1, PL6 and PL12) from two hatchery cycles were analysed employing 16S rRNA high throughput sequencing. Proteobacteria and Bacteroidetes, were the two dominant phyla in P. indicus development stages. Sequential sampling revealed the constant change in the bacterial composition at genus level. Alteromonas was dominant in egg and nauplii stage, whilst Ascidiaceihabitans (formerly Roseobacter) was the dominant genera in both PL6 and PL12. The bacterial composition was highly dynamic in early stages and our study suggests that the mysis stage is the critical phase in transforming the microbial composition and it gets stabilised by early post larval stages. This is the first report on the composition of microbiota in early developmental stages of P. indicus. Based on these results the formation of microbial composition seems to be influenced by feeding at early stages. The study provides valuable information to device intervention strategies for healthy seed production.
Collapse
Affiliation(s)
- T N Vinay
- ICAR-Central Institute of Brackishwater Aquaculture, 75, Santhome High Road, MRC Nagar, Chennai, 600028, India.
| | - P K Patil
- ICAR-Central Institute of Brackishwater Aquaculture, 75, Santhome High Road, MRC Nagar, Chennai, 600028, India
| | - R Aravind
- ICAR-Central Institute of Brackishwater Aquaculture, 75, Santhome High Road, MRC Nagar, Chennai, 600028, India
| | - P S Shyne Anand
- ICAR-Central Institute of Brackishwater Aquaculture, 75, Santhome High Road, MRC Nagar, Chennai, 600028, India
| | - V Baskaran
- ICAR-Central Institute of Brackishwater Aquaculture, 75, Santhome High Road, MRC Nagar, Chennai, 600028, India
| | - C P Balasubramanian
- ICAR-Central Institute of Brackishwater Aquaculture, 75, Santhome High Road, MRC Nagar, Chennai, 600028, India
| |
Collapse
|
24
|
Quiroz-Guzmán E, Cabrera-Stevens M, Sánchez-Paz A, Mendoza-Cano F, Encinas-García T, Barajas-Sandoval D, Gómez-Gil B, Peña-Rodríguez A. Effect of functional diets on intestinal microbiota and resistance to Vibrio parahaemolyticus causing acute hepatopancreatic necrosis disease (AHPND) of Pacific white shrimp (Penaeus vannamei). J Appl Microbiol 2022; 132:2649-2660. [PMID: 35007373 DOI: 10.1111/jam.15448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/29/2021] [Accepted: 01/06/2022] [Indexed: 11/26/2022]
Abstract
AIMS The present study evaluated the effect of four functional diets and a reference diet on the survival and intestinal bacterial community of shrimp Penaeus vannamei infected with AHPND. METHODS AND RESULTS After 42 days of feeding trail, shrimp were inoculated with a Vibrio parahaemolyticus (CIB-0018-3) carrying the plasmid encoding for the PirAB toxins responsible for AHPND. After 120 h post-infection (hpi), shrimp fed with a diet containing 2% of a mix with Curcuma longa and Lepidium meyenii (TuMa) and a diet containing 0.2% of vitamin C (VitC) showed a significantly higher survival (85%) compared to the remaining treatments (50-55%) (p<0.05). Infected shrimp fed with TuMa diet, showed a significant reduction of Vibrionales; and VitC diet promoted an increase of Alteromonadales. CONCLUSIONS Our findings suggest that the TuMa diet conferred protection against AHPND and could be attributed to a combined effect of antibacterial properties against Vibrionales, and promoting a desirable bacterial community in the shrimp intestine, while the VitC diet protection could be attributed to their antioxidant capacity and in a lower proportion to a bacterial modulation in shrimp gut. SIGNIFICANCE AND IMPACT OF THE STUDY Acute Hepatopancreatic Necrosis Disease (AHPND) is a devastating disease that significantly affects aquaculture production of shrimps. Therefore, the use of functional diets that promotes resistance to AHPND, represents a valuable tool to reduce the mortality of farmed shrimp.
Collapse
Affiliation(s)
- Eduardo Quiroz-Guzmán
- CONACYT - CIBNOR, Instituto Politécnico Nacional 195, Col. Playa Palo de Santa Rita Sur, La Paz, B.C.S., 23096, México
| | - Mónica Cabrera-Stevens
- Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Instituto Politécnico Nacional 195, Col. Playa Palo de Santa Rita Sur, La Paz, B.C.S., 23096, México
| | - Arturo Sánchez-Paz
- Laboratorio de Virología. Centro de Investigaciones Biológicas del Noroeste (CIBNOR), S.C. (Campus Hermosillo). Calle Hermosa 101. Fraccionamiento Los Ángeles. Hermosillo, Son. C.P., 83206, México
| | - Fernando Mendoza-Cano
- Laboratorio de Virología. Centro de Investigaciones Biológicas del Noroeste (CIBNOR), S.C. (Campus Hermosillo). Calle Hermosa 101. Fraccionamiento Los Ángeles. Hermosillo, Son. C.P., 83206, México
| | - Trinidad Encinas-García
- Laboratorio de Virología. Centro de Investigaciones Biológicas del Noroeste (CIBNOR), S.C. (Campus Hermosillo). Calle Hermosa 101. Fraccionamiento Los Ángeles. Hermosillo, Son. C.P., 83206, México
| | - Diana Barajas-Sandoval
- Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Instituto Politécnico Nacional 195, Col. Playa Palo de Santa Rita Sur, La Paz, B.C.S., 23096, México
| | - Bruno Gómez-Gil
- Centro de Investigación en Alimentación y Desarrollo (CIAD), Unidad Mazatlán en Acuicultura y Manejo Ambiental. AP. 711, 82000, Mazatlán, Sinaloa, Mexico
| | - Alberto Peña-Rodríguez
- CONACYT - CIBNOR, Instituto Politécnico Nacional 195, Col. Playa Palo de Santa Rita Sur, La Paz, B.C.S., 23096, México
| |
Collapse
|
25
|
Li D, Miao J, Pan L, Zhou Y, Gao Z, Yang Y, Xu R, Zhang X. Impacts of benzo(a)pyrene exposure on scallop (Chlamys farreri) gut health and gut microbiota composition. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 799:149471. [PMID: 34371399 DOI: 10.1016/j.scitotenv.2021.149471] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/19/2021] [Accepted: 08/01/2021] [Indexed: 06/13/2023]
Abstract
The gut tissue interacts with nutrients and pollutants which can impact gut health. Gut microbiota is essential to the host health, but is also easily affected by external environment. However, little is known about the toxicological assessment of environmental contaminants on gut health and microbiota, especially in marine invertebrates. In this study, we first explored the effect of benzo(a)pyrene (BaP) on the gut health and gut microbiota of scallops (Chlamys farreri). The scallops were exposed to different concentrations (0, 0.4, 2 and 10 μg/L) of BaP for 21 days. The histological morphology, immune- and oxidative enzyme-related gene expression, and lipid peroxidation of the scallops were analyzed at 7, 14 and 21 days. The results revealed that BaP could impair intestinal barrier function, increasing the intestinal permeability of scallops. Moreover, immune and antioxidant responses were induced in the gut tissue. After a 21-day exposure to different concentrations of BaP, the intestinal microbial community was analyzed based on 16S rRNA sequencing. Our results suggested that BaP exposure altered the gut microbial diversity and composition in scallops. Many beneficial genera declined after BaP treatment, while the potential pathogens were increased, such as Mycoplasma and Tenacibaculum. A series of hydrocarbon-degrading bacteria were recognized in BaP-treated groups, such as Pseudomonas, Polaribacter, Amphritea and Kordiimonas. Interestingly, the degrading bacteria present varied after exposure to different concentrations of BaP. Overall, this study provides new insights into gut health and gut microbiota in marine invertebrates following exposure to persistent organic pollutants.
Collapse
Affiliation(s)
- Dongyu Li
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Jingjing Miao
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Luqing Pan
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China.
| | - Yueyao Zhou
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Zhongyuan Gao
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Yingying Yang
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Ruiyi Xu
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Xin Zhang
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| |
Collapse
|
26
|
Huang Z, Hou D, Zhou R, Zeng S, Xing C, Wei D, Deng X, Yu L, Wang H, Deng Z, Weng S, Ning D, Xiao C, Yan Q, Zhou J, He Z, He J. Environmental Water and Sediment Microbial Communities Shape Intestine Microbiota for Host Health: The Central Dogma in an Anthropogenic Aquaculture Ecosystem. Front Microbiol 2021; 12:772149. [PMID: 34795658 PMCID: PMC8593368 DOI: 10.3389/fmicb.2021.772149] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 10/08/2021] [Indexed: 12/22/2022] Open
Abstract
From increasing evidence has emerged a tight link among the environment, intestine microbiota, and host health status; moreover, the microbial interaction in different habitats is crucial for ecosystems. However, how the environmental microbial community assembly governs the intestinal microbiota and microbial communities of multiple habitats contribute to the metacommunity remain elusive. Here, we designed two delicate experiments from temporal and spatial scales in a shrimp culture pond ecosystem (SCPE). Of the SCPE metacommunity, the microbial diversity was mainly contributed to by the diversity of–βIntraHabitats and βInterHabitats, and water and sediment communities had a large contribution to the shrimp intestine community as shown by SourceTracker and Sloan neutral community model analyses. Also, phylogenetic bin-based null model results show that microbial assembly of three habitats in the SCPE appeared to be largely driven by stochastic processes. These results enrich our understanding of the environment–intestinal microbiota–host health closely linked relationship, making it possible to be the central dogma for an anthropogenic aquaculture ecosystem. Our findings enhance the mechanistic understanding of microbial assembly in the SCPE for further analyzing metacommunities, which has important implications for microbial ecology and animal health.
Collapse
Affiliation(s)
- Zhijian Huang
- State Key Laboratory of Biocontrol, Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Guangzhou, China.,Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Dongwei Hou
- State Key Laboratory of Biocontrol, Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
| | - Renjun Zhou
- State Key Laboratory of Biocontrol, Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
| | - Shenzheng Zeng
- State Key Laboratory of Biocontrol, Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
| | - Chengguang Xing
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Dongdong Wei
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xisha Deng
- State Key Laboratory of Biocontrol, Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
| | - Lingfei Yu
- State Key Laboratory of Biocontrol, Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
| | - Hao Wang
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zhixuan Deng
- State Key Laboratory of Biocontrol, Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
| | - Shaoping Weng
- State Key Laboratory of Biocontrol, Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Guangzhou, China.,Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Daliang Ning
- Department of Microbiology and Plant Biology, Institute for Environmental Genomics, School of Civil Engineering and Environmental Sciences, The University of Oklahoma, Norman, OK, United States
| | - Chuanle Xiao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Qingyun Yan
- State Key Laboratory of Biocontrol, Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Guangzhou, China.,Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, China
| | - Jizhong Zhou
- State Key Laboratory of Biocontrol, Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Guangzhou, China.,Department of Microbiology and Plant Biology, Institute for Environmental Genomics, School of Civil Engineering and Environmental Sciences, The University of Oklahoma, Norman, OK, United States
| | - Zhili He
- State Key Laboratory of Biocontrol, Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Guangzhou, China.,Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, China
| | - Jianguo He
- State Key Laboratory of Biocontrol, Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Guangzhou, China.,Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
27
|
Zhang T, Zhang Y, Xu J, Yan Z, Sun Q, Huang Y, Wang S, Li S, Sun B. Toxic effects of ammonia on the intestine of the Asian clam (Corbicula fluminea). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 287:117617. [PMID: 34174666 DOI: 10.1016/j.envpol.2021.117617] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 06/09/2021] [Accepted: 06/15/2021] [Indexed: 06/13/2023]
Abstract
Intestines contain a large number of microorganisms that collectively play a vital role in regulating physiological and biochemical processes, including digestion, water balance, and immune function. In this study, we explored the effects of ammonia stress on intestinal inflammation, the antioxidant system, and the microbiome of the Asian clam (Corbicula fluminea). Exposure to varying ammonia concentrations (10 and 25 mg N/L) and exposure times (7 and 14 days) resulted in damage to C. fluminea intestinal tissue, according to histological analysis. Furthermore, intestinal inflammatory responses and damage to the antioxidant system were revealed through qPCR, ELISA, and biochemical analysis experiments. Inflammatory responses were more severe in the treatment group exposed to a lower concentration of ammonia. High-throughput 16S rDNA sequencing showed that ammonia stress under different conditions altered intestinal bacterial diversity and microbial community composition, particularly impacting the dominant phylum Proteobacteria and genus Aeromonas. These results indicate that ammonia stress can activate intestinal inflammatory reactions, damage the intestinal antioxidant system, and alter intestinal microbial composition, thereby impeding intestinal physiological function and seriously threatening the health of C. fluminea.
Collapse
Affiliation(s)
- Tianxu Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China; Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, PR China.
| | - Yan Zhang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, PR China.
| | - Jiayun Xu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China.
| | - Zhenguang Yan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China.
| | - Qianhang Sun
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China.
| | - Yi Huang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China.
| | - Shuping Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China.
| | - Shuo Li
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, 300387, PR China.
| | - Binbin Sun
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, PR China.
| |
Collapse
|
28
|
Liu B, Song C, Gao Q, Liu B, Zhou Q, Sun C, Zhang H, Liu M, Tadese DA. Maternal and environmental microbes dominate offspring microbial colonization in the giant freshwater prawn Macrobrachium rosenbergii. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 790:148062. [PMID: 34091334 DOI: 10.1016/j.scitotenv.2021.148062] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 05/23/2021] [Accepted: 05/23/2021] [Indexed: 06/12/2023]
Abstract
Microbial colonization is vital for physiological equilibrium in animals. However, the impact of maternal and environmental microbes on microbial succession in the early developmental stages of Macrobrachium rosenbergii remains elusive. In this study, the effects of maternal and environmental microbes on the embryonic and larval microbiota of M. rosenbergii were evaluated by high-throughput sequencing. The results showed that Proteobacteria and Firmicutes were the dominant phyla in the intestine, gonads, and hepatopancreases of maternal prawn. In addition, Actinobacteria was dominant in the intestine while Actinobacteria, Bacteroidetes, and Acidobacteria were dominant in gonads of maternal prawn. During the embryonic stages, Proteobacteria, Actinobacteria, and Bacteroidetes became the dominant phyla. In post-larval stages, Proteobacteria, Actinobacteria, Firmicutes, and Bacteroidetes tended to dominate. In the water, Proteobacteria, Actinobacteria, and Bacteroidetes were the dominant phyla at 7, 14, and 21 dph water. Maternal microbes prominently impacted the microbial composition during the embryonic stages. Specifically, microbial colonization during embryonic stages was directly related to the maternal hepatopancreas according to source-tracking models. When the post-larvae developed to 7 days, the high contribution to the larval microbiota mimicked the environment. These results indicated that microbial colonization in embryonic and post-larval stages was attributed to the maternal and environmental microbe community, respectively. This study provides a theoretical basis for microbial community manipulation to promote prawn growth and physiological health in aquaculture.
Collapse
Affiliation(s)
- Bo Liu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Changyou Song
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| | - Qiang Gao
- Zhejiang Institute of Freshwater Fishery, Huzhou 313001, PR China
| | - Bo Liu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| | - Qunlan Zhou
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Cunxin Sun
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Huimin Zhang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Mingyang Liu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Dawit Adisu Tadese
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| |
Collapse
|
29
|
Xie M, Zhang S, Xu L, Wu Z, Yuan J, Chen X. Comparison of the Intestinal Microbiota During the Different Growth Stages of Red Swamp Crayfish ( Procambarus clarkii). Front Microbiol 2021; 12:696281. [PMID: 34589066 PMCID: PMC8473915 DOI: 10.3389/fmicb.2021.696281] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 08/12/2021] [Indexed: 12/21/2022] Open
Abstract
This study aimed to determine the effect of the growth stage of Procambarus clarkii on their intestinal microbiota. Intestinal samples of five different growth stages of P. clarkii (first instar, second instar, third instar, juvenile, and adult) from laboratory culture were analyzed through the Illumina MiSeq high-throughput sequencing platform to determine the intestinal microbiome of crayfish. The alpha diversity decreased along with the growth of the crayfish, with the relative abundance of the microbiota changing among stages; crayfish at closer development stages had a more comparable intestinal microbiota composition. A comparative analysis by principal component analysis and principal coordinate analysis showed that there were significant differences in the intestinal microbiota of crayfish among the different growth stages, except for the first two stages of larval crayfish, and the intestinal microbiota showed a consistent progression pattern from the larval stage to the juvenile stage. Some microbiota showed stage specificity, which might be the characteristic microbiota of different stages of growth. According to FAPROTAX functional clustering analysis, the three stages of larvae were clustered together, while the juvenile and adult stages were clustered separately according to the growth stage, indicating that, in the early stages of larval development, the function of the intestinal flora was similar; as the body grew and developed, the composition and function of the intestinal microbiota also changed.
Collapse
Affiliation(s)
- Mengqi Xie
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agriculture University, Wuhan, China.,Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan, China
| | - Shiyu Zhang
- Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan, China
| | - Lili Xu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agriculture University, Wuhan, China
| | - Zhixin Wu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agriculture University, Wuhan, China.,Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan, China
| | - Junfa Yuan
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agriculture University, Wuhan, China.,Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan, China
| | - Xiaoxuan Chen
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agriculture University, Wuhan, China
| |
Collapse
|
30
|
Patil PK, Vinay TN, Ghate SD, Baskaran V, Avunje S. 16 S rRNA gene diversity and gut microbial composition of the Indian white shrimp (Penaeus indicus). Antonie van Leeuwenhoek 2021; 114:2019-2031. [PMID: 34536184 DOI: 10.1007/s10482-021-01658-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 09/09/2021] [Indexed: 01/15/2023]
Abstract
The endemic Indian white shrimp (Penaeus indicus) is an economically important crustacean species, distributed in the Indo-West Pacific region. Knowledge of its gut microbial composition helps in dietary interventions to ensure improved health and production. Here we analyzed V3-V4 hypervariable regions of the 16 S rRNA gene to examine intestinal microbiota in wild and domesticated farmed P. indicus. The study revealed that Proteobacteria, Fusobacteria, Tenericutes, and Bacteroidetes, were the dominant phyla in both the groups although there were differences in relative abundance. The dominant genera in case of the wild group were Photobacterium (29.5 %) followed by Propionigenium (13.9 %), Hypnocyclicus (13.7 %) and Vibrio (11.1 %); while Vibrio (46.5 %), Catenococcus (14 %), Propionigenium (10.3 %) and Photobacterium (8.7 %) were dominant in the farmed group. The results of the study suggest the role of environment on the relative abundance of gut bacteria. This is the first report characterizing gut microbial diversity in P. indicus, which can be used to understand the role of gut microbiota in health, nutrition, reproduction, and growth.
Collapse
Affiliation(s)
- Prasanna Kumar Patil
- ICAR-Central Institute of Brackishwater Aquaculture, 75, Santhome High Road, MRC Nagar, Chennai, 600028, India
| | | | - Sudeep Darbhe Ghate
- Nitte University Centre for Science Education and Research (NUCSER), NITTE (Deemed to be University), Mangalore, India
| | - Viswanathan Baskaran
- ICAR-Central Institute of Brackishwater Aquaculture, 75, Santhome High Road, MRC Nagar, Chennai, 600028, India
| | - Satheesha Avunje
- ICAR-Central Institute of Brackishwater Aquaculture, 75, Santhome High Road, MRC Nagar, Chennai, 600028, India
| |
Collapse
|
31
|
Cheng Y, Ge C, Li W, Yao H. The Intestinal Bacterial Community and Functional Potential of Litopenaeus vannamei in the Coastal Areas of China. Microorganisms 2021; 9:1793. [PMID: 34576689 PMCID: PMC8470311 DOI: 10.3390/microorganisms9091793] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/17/2021] [Accepted: 08/20/2021] [Indexed: 02/07/2023] Open
Abstract
Intestinal bacteria are crucial for the healthy aquaculture of Litopenaeus vannamei, and the coastal areas of China are important areas for concentrated L. vannamei cultivation. In this study, we evaluated different compositions and structures, key roles, and functional potentials of the intestinal bacterial community of L. vannamei shrimp collected in 12 Chinese coastal cities and investigated the correlation between the intestinal bacteria and functional potentials. The dominant bacteria in the shrimp intestines included Proteobacteria, Bacteroidetes, Tenericutes, Firmicutes, and Actinobacteria, and the main potential functions were metabolism, genetic information processing, and environmental information processing. Although the composition and structure of the intestinal bacterial community, potential pathogenic bacteria, and spoilage organisms varied from region to region, the functional potentials were homeostatic and significantly (p < 0.05) correlated with intestinal bacteria (at the family level) to different degrees. The correlation between intestinal bacteria and functional potentials further suggested that L. vannamei had sufficient functional redundancy to maintain its own health. These findings help us understand differences among the intestinal bacterial communities of L. vannamei cultivated in different regions and provide a basis for the disease management and healthy aquaculture of L. vannamei.
Collapse
Affiliation(s)
- Yimeng Cheng
- Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430073, China; (Y.C.); (W.L.); (H.Y.)
| | - Chaorong Ge
- Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430073, China; (Y.C.); (W.L.); (H.Y.)
| | - Wei Li
- Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430073, China; (Y.C.); (W.L.); (H.Y.)
| | - Huaiying Yao
- Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430073, China; (Y.C.); (W.L.); (H.Y.)
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, Ningbo Urban Environment Observation and Research Station, Chinese Academy of Sciences, Ningbo 315800, China
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| |
Collapse
|
32
|
Environment-Dependent Variation in Gut Microbiota of an Oviparous Lizard ( Calotes versicolor). Animals (Basel) 2021; 11:ani11082461. [PMID: 34438918 PMCID: PMC8388656 DOI: 10.3390/ani11082461] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/09/2021] [Accepted: 08/19/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary The different gut sections potentially provide different habitats for gut microbiota. We found that Bacteroidetes, Firmicutes, and Proteobacteria were the three primary phyla in gut microbiota of C. versicolor. The relative abundance of dominant phyla Bacteroidetes and Firmicutes exhibited an increasing trend from the small intestine to the large intestine, and there was a higher abundance of genus Bacteroides (Class: Bacteroidia), Coprobacillus and Eubacterium (Class: Erysipelotrichia), Parabacteroides (Family: Porphyromonadaceae) and Ruminococcus (Family: Lachnospiraceae), and Family Odoribacteraceae and Rikenellaceae in the hindgut, and some metabolic pathways were higher in the hindgut. Our results reveal the variations of gut microbiota composition and metabolic pathways in different parts of the lizards’ intestine. Abstract Vertebrates maintain complex symbiotic relationships with microbiota living within their gastrointestinal tracts which reflects the ecological and evolutionary relationship between hosts and their gut microbiota. However, this understanding is limited in lizards and the spatial heterogeneity and co-occurrence patterns of gut microbiota inside the gastrointestinal tracts of a host and variations of microbial community among samples remain poorly understood. To address this issue and provide a guide for gut microbiota sampling from lizards, we investigated the bacteria in three gut locations of the oriental garden lizard (Calotes versicolor) and the data were analyzed for bacterial composition by 16S ribosomal RNA (16S rRNA) gene amplicon sequencing. We found the relative abundance of the dominant phyla exhibited an increasing trend from the small intestine to the large intestine, and phyla Firmicutes, Bacteroidetes and Proteobacteria were the three primary phyla in the gut microbiota of C. versicolor. There were a higher abundance of genus Bacteroides (Class: Bacteroidia), Coprobacillus and Eubacterium (Class: Erysipelotrichia), Parabacteroides (Family: Porphyromonadaceae) and Ruminococcus (Family: Lachnospiraceae), and Family Odoribacteraceae and Rikenellaceae in the sample from the hindgut. The secondary bile acid biosynthesis, glycosaminoglycan degradation, sphingolipid metabolism and lysosome were significantly higher in the hindgut than that in the small intestine. Taken together our results indicate variations of gut microbiota composition and metabolic pathway in different parts of the oriental garden lizard.
Collapse
|
33
|
Diwan AD, Harke SN, Gopalkrishna, Panche AN. Aquaculture industry prospective from gut microbiome of fish and shellfish: An overview. J Anim Physiol Anim Nutr (Berl) 2021; 106:441-469. [PMID: 34355428 DOI: 10.1111/jpn.13619] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 07/17/2021] [Accepted: 07/20/2021] [Indexed: 12/17/2022]
Abstract
The microbiome actually deals with micro-organisms that are associated with indigenous body parts and the entire gut system in all animals, including human beings. These microbes are linked with roles involving hereditary traits, defence against diseases and strengthening overall immunity, which determines the health status of an organism. Considerable efforts have been made to find out the microbiome diversity and their taxonomic identification in finfish and shellfish and its importance has been correlated with various physiological functions and activities. In recent past due to the availability of advanced molecular tools, some efforts have also been made on DNA sequencing of these microbes to understand the environmental impact and other stress factors on their genomic structural profile. There are reports on the use of next-generation sequencing (NGS) technology, including amplicon and shot-gun approaches, and associated bioinformatics tools to count and classify commensal microbiome at the species level. The microbiome present in the whole body, particularly in the gut systems of finfish and shellfish, not only contributes to digestion but also has an impact on nutrition, growth, reproduction, immune system and vulnerability of the host fish to diseases. Therefore, the study of such microbial communities is highly relevant for the development of new and innovative bio-products which will be a vital source to build bio and pharmaceutical industries, including aquaculture. In recent years, attempts have been made to discover the chemical ingredients present in these microbes in the form of biomolecules/bioactive compounds with their functions and usefulness for various health benefits, particularly for the treatment of different types of disorders in animals. Therefore, it has been speculated that microbiomes hold great promise not only as a cure for ailments but also as a preventive measure for the number of infectious diseases. This kind of exploration of new breeds of microbes with their miraculous ingredients will definitely help to accelerate the development of the drugs, pharmaceutical and other biological related industries. Probiotic research and bioinformatics skills will further escalate these opportunities in the sector. In the present review, efforts have been made to collect comprehensive information on the finfish and shellfish microbiome, their diversity and functional properties, relationship with diseases, health status, data on species-specific metagenomics, probiotic research and bioinformatics skills. Further, emphasis has also been made to carry out microbiome research on priority basis not only to keep healthy environment of the fish farming sector but also for the sustainable growth of biological related industries, including aquaculture.
Collapse
Affiliation(s)
- Arvind D Diwan
- Mahatma Gandhi Mission's (MGM) Institute of Biosciences and Technology, MGM University, Aurangabad, Maharashtra, India
| | - Sanjay N Harke
- Mahatma Gandhi Mission's (MGM) Institute of Biosciences and Technology, MGM University, Aurangabad, Maharashtra, India
| | - Gopalkrishna
- Central Institute of Fisheries Education (CIFE, Deemed University), ICAR, Mumbai, India
| | - Archana N Panche
- Mahatma Gandhi Mission's (MGM) Institute of Biosciences and Technology, MGM University, Aurangabad, Maharashtra, India
| |
Collapse
|
34
|
Kim PS, Shin NR, Lee JB, Kim MS, Whon TW, Hyun DW, Yun JH, Jung MJ, Kim JY, Bae JW. Host habitat is the major determinant of the gut microbiome of fish. MICROBIOME 2021; 9:166. [PMID: 34332628 PMCID: PMC8325807 DOI: 10.1186/s40168-021-01113-x] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 06/14/2021] [Indexed: 05/09/2023]
Abstract
BACKGROUND Our understanding of the gut microbiota of animals is largely based on studies of mammals. To better understand the evolutionary basis of symbiotic relationships between animal hosts and indigenous microbes, it is necessary to investigate the gut microbiota of non-mammalian vertebrate species. In particular, fish have the highest species diversity among groups of vertebrates, with approximately 33,000 species. In this study, we comprehensively characterized gut bacterial communities in fish. RESULTS We analyzed 227 individual fish representing 14 orders, 42 families, 79 genera, and 85 species. The fish gut microbiota was dominated by Proteobacteria (51.7%) and Firmicutes (13.5%), different from the dominant taxa reported in terrestrial vertebrates (Firmicutes and Bacteroidetes). The gut microbial community in fish was more strongly shaped by host habitat than by host taxonomy or trophic level. Using a machine learning approach trained on the microbial community composition or predicted functional profiles, we found that the host habitat exhibited the highest classification accuracy. Principal coordinate analysis revealed that the gut bacterial community of fish differs significantly from those of other vertebrate classes (reptiles, birds, and mammals). CONCLUSIONS Collectively, these data provide a reference for future studies of the gut microbiome of aquatic animals as well as insights into the relationship between fish and their gut bacteria, including the key role of host habitat and the distinct compositions in comparison with those of mammals, reptiles, and birds. Video Abstract.
Collapse
Affiliation(s)
- Pil Soo Kim
- Department of Biology and Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, Dongdaemun-gu, Seoul, 02447 Republic of Korea
| | - Na-Ri Shin
- Department of Biology and Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, Dongdaemun-gu, Seoul, 02447 Republic of Korea
- Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup, Jeollabuk-do 56212 Republic of Korea
| | - Jae-Bong Lee
- Distant-water Fisheries Resources Division, National Institute of Fisheries Science, Gijang-eup, Busan, 46083 Republic of Korea
| | - Min-Soo Kim
- Department of Biology and Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, Dongdaemun-gu, Seoul, 02447 Republic of Korea
| | - Tae Woong Whon
- Department of Biology and Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, Dongdaemun-gu, Seoul, 02447 Republic of Korea
| | - Dong-Wook Hyun
- Department of Biology and Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, Dongdaemun-gu, Seoul, 02447 Republic of Korea
| | - Ji-Hyun Yun
- Department of Biology and Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, Dongdaemun-gu, Seoul, 02447 Republic of Korea
| | - Mi-Ja Jung
- Department of Biology and Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, Dongdaemun-gu, Seoul, 02447 Republic of Korea
| | - Joon Yong Kim
- Department of Biology and Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, Dongdaemun-gu, Seoul, 02447 Republic of Korea
| | - Jin-Woo Bae
- Department of Biology and Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, Dongdaemun-gu, Seoul, 02447 Republic of Korea
| |
Collapse
|
35
|
Apine E, Rai P, Mani MK, Subramanian V, Karunasagar I, Godhe A, Turner LM. Comparative analysis of the intestinal bacterial communities in mud crab Scylla serrata in South India. Microbiologyopen 2021; 10:e1179. [PMID: 33970543 PMCID: PMC8088116 DOI: 10.1002/mbo3.1179] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/24/2021] [Accepted: 02/25/2021] [Indexed: 12/12/2022] Open
Abstract
Little is known about the functions of the crustacean gut microbiome, but environmental parameters and habitat are known to affect the composition of the intestinal microbiome, which may in turn affect the physiological status of the host. The mud crab Scylla serrata is an economically important species, and is wild‐caught, and farmed across the Indo‐Pacific region. In this study, we compared the composition of the gut microbiome (in terms of gut microbial species richness and abundance) of S. serrata collected from wild sites, and farms, from the east and west coast of India, and also tested the effects of the environment on the composition. The water temperature had a statistically significant effect on gut microbiome composition, with microbial biodiversity decreasing with increasing water temperature. This could have negative effects on both wild and farmed mud crabs under future climate change conditions, although further research into the effects of temperature on gut microbiomes is required. By comparison, salinity, crab mass and carapace width, geographical location as well as whether they were farmed or wild‐caught crabs did not have a significant impact on gut microbiome composition. The results indicate that farming does not significantly alter the composition of the gut microbiome when compared to wild‐caught crabs.
Collapse
Affiliation(s)
- Elina Apine
- Marine Biology and Ecology Research Centre, University of Plymouth, Plymouth, UK
| | - Praveen Rai
- Nitte University Centre for Science Education and Research (NUCSER), Nitte (Deemed to be University), Mangaluru, India
| | - Madhu K Mani
- Nitte University Centre for Science Education and Research (NUCSER), Nitte (Deemed to be University), Mangaluru, India
| | | | - Indrani Karunasagar
- Nitte University Centre for Science Education and Research (NUCSER), Nitte (Deemed to be University), Mangaluru, India
| | - Anna Godhe
- Department of Marine Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Lucy M Turner
- Marine Biology and Ecology Research Centre, University of Plymouth, Plymouth, UK
| |
Collapse
|
36
|
The gut content microbiome of wild-caught rainbow darter is altered during laboratory acclimation. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2021; 39:100835. [PMID: 33894530 DOI: 10.1016/j.cbd.2021.100835] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 03/29/2021] [Accepted: 03/31/2021] [Indexed: 02/07/2023]
Abstract
An increasing number of laboratory studies are showing that environmental stressors and diet affect the fish gut microbiome. However, the application of these results to wild populations is uncertain as little is known about how the gut microbiome shifts when fish are transitioned from the field to the laboratory. To assess this, intestinal contents (i.e. digesta) of wild-caught rainbow darter (Etheostoma caeruleum) were sampled in the field and in the lab after 14- and 42-days acclimation. In addition, from days 15-42 some fish were exposed to waterborne triclosan, an antimicrobial found in aquatic ecosystems, or to dilutions of municipal wastewater effluents, to determine how these stressors affect the bacterial communities of gut contents. 16S rRNA gene amplicon sequencing was used to determine microbial community composition, alpha, and beta diversity present in the fish gut contents. In total, there was 8,074,658 reads and 11,853 amplicon sequence variants (ASVs) identified. The gut contents of wild fish were dominant in both Proteobacteria (35%) and Firmicutes (27%), while lab fish were dominant in Firmicutes (37-47%) and had lower alpha diversity. Wild fish had greater ASVs per sample (423-1304) compared to lab fish (19-685). Similarly, the beta-diversity of these bacterial communities differed between field and lab control fish; control fish were distinct from the 10% wastewater effluent and 100 ng/L TCS treatment groups. Results indicate that the gut microbiome of wild fish changes with the transition to laboratory environments; hence, prolonged acclimation to new settings may be required to achieve a stable gut content microbiome in wild-caught fish. Research is required to understand the length of time required to reach a stable fish gut microbiome.
Collapse
|
37
|
Luo J, Zhang Y, Zhou Q, Betancor MB, Tocher DR, Lu J, Yuan Y, Zhu T, Jiao L, Wang X, Zhao M, Hu X, Jin M. Dietary soybean oil aggravates the adverse effects of low salinity on intestinal health in juvenile mud crab Scylla paramamosain. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 213:112004. [PMID: 33581488 DOI: 10.1016/j.ecoenv.2021.112004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 01/24/2021] [Accepted: 01/26/2021] [Indexed: 06/12/2023]
Abstract
Salinity is one of the important factors affecting the physiological state of crustaceans in marine environments. Lipid plays major roles in energy supply and is main sources of essential fatty acids for membrane integrity, which is critical in adaptations to changes in salinity. Here we evaluated the effects of salinity (medium, 23 ppt and low, 4 ppt) and dietary lipid source (fish oil, FO and soybean oil, SO) on intestinal health of the marine crustacean mud crab Scylla paramamosain. The results indicated that low salinity and dietary SO (LSO group) significantly affected intestinal histomorphology, with a significant decrease of intestinal fold height and width as well as down-regulation of intestinal mRNA levels of tight junction genes compared to crab reared at medium salinity and fed FO diets (MFO group). Crabs reared at low salinity and fed SO showed an increased inflammatory response in intestine, which stimulated a physiological detoxification response together with apoptosis compared to crab in the MFO group. Low salinity and SO diets also could be responsible for multiply the pathogenic bacteria of Photobacterium and inhibit the beneficial bacteria of Firmicutes and Rhodobacteraceae in intestine, and act on a crucial impact on the development of intestinal microbial barrier disorders. The results of microbial function predictive analysis also support these inferences. The findings of the present study demonstrated that soybean oil as the main dietary lipid source could exacerbate the adverse effects of low salinity on intestinal health of mud crab, and provided evidence suggesting that dietary lipid source and fatty acid composition may play vital roles in intestinal health and the process of adaptation to environmental salinity in marine crustaceans.
Collapse
Affiliation(s)
- Jiaxiang Luo
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Yingying Zhang
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Qicun Zhou
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China.
| | - Mónica B Betancor
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, Scotland, UK
| | - Douglas R Tocher
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, Scotland, UK
| | - Jingjing Lu
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Ye Yuan
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Tingting Zhu
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Lefei Jiao
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Xuexi Wang
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Mingming Zhao
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Xiaoying Hu
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Min Jin
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
38
|
Wu Z, Zhang Q, Lin Y, Hao J, Wang S, Zhang J, Li A. Taxonomic and Functional Characteristics of the Gill and Gastrointestinal Microbiota and Its Correlation with Intestinal Metabolites in NEW GIFT Strain of Farmed Adult Nile Tilapia ( Oreochromis niloticus). Microorganisms 2021; 9:microorganisms9030617. [PMID: 33802740 PMCID: PMC8002438 DOI: 10.3390/microorganisms9030617] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/14/2021] [Accepted: 03/16/2021] [Indexed: 02/07/2023] Open
Abstract
The gill and gastrointestinal tract are primary entry routes for pathogens. The symbiotic microbiota are essential to the health, nutrition and disease of fish. Though the intestinal microbiota of Nile tilapia (Oreochromis niloticus) has been extensively studied, information on the mucosa-associated microbiota of this species, especially the gill and gastrointestinal mucosa-associated microbiota, is lacking. This study aimed to characterize the gill and gastrointestinal mucosa- and digesta-associated microbiota, as well as the intestinal metabolite profiles in the New Genetically Improved Farmed Tilapia (NEW GIFT) strain of farmed adult Nile tilapia by high-throughput sequencing and gas chromatography/mass spectrometry metabolomics. The diversity, structure, composition, and predicted function of gastrointestinal microbiota were significantly different across gastrointestinal regions and sample types (Welch t-test; p < 0.05). By comparing the mucosa- and digesta-associated microbiota, linear discriminant analysis (LDA) effect size (LEfSe) analysis revealed that Pelomonas, Ralstoniapickettii, Comamonadaceae, and Staphylococcus were significantly enriched in the mucosa-associated microbiota, whereas many bacterial taxa were significantly enriched in the digesta-associated microbiota, including Chitinophagaceae, Cetobacterium, CandidatusCompetibacter, Methyloparacoccus, and chloroplast (LDA score > 3.5). Furthermore, Undibacterium, Escherichia-Shigella, Paeniclostridium, and Cetobacterium were dominant in the intestinal contents and mucosae, whereas Sphingomonasaquatilis and Roseomonasgilardii were commonly found in the gill and stomach mucosae. The Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt2) analysis revealed that the predictive function of digesta-associated microbiota significantly differed from that of mucosa-associated microbiota (R = 0.8152, p = 0.0001). In addition, our results showed a significant interdependence between specific intestinal microbes and metabolites. Notably, the relative abundance values of several potentially beneficial microbes, including Undibacterium, Crenothrix, and Cetobacterium, were positively correlated with most intestinal metabolites, whereas the relative abundance values of some potential opportunistic pathogens, including Acinetobacter, Mycobacterium, Escherichia-Shigella, Paeniclostridium, Aeromonas, and Clostridiumsensustricto 1, were negatively correlated with most intestinal metabolites. This study revealed the characteristics of gill and gastrointestinal mucosa-associated and digesta-associated microbiota of farmed Nile tilapia and identified a close correlation between intestinal microbes and metabolites. The results serve as a basis for the effective application of targeted probiotics or prebiotics in the diet to regulate the nutrition and health of farmed tilapia.
Collapse
Affiliation(s)
- Zhenbing Wu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (Z.W.); (Q.Z.); (Y.L.); (J.H.); (S.W.); (J.Z.)
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qianqian Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (Z.W.); (Q.Z.); (Y.L.); (J.H.); (S.W.); (J.Z.)
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Wuhan 430072, China
| | - Yaoyao Lin
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (Z.W.); (Q.Z.); (Y.L.); (J.H.); (S.W.); (J.Z.)
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingwen Hao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (Z.W.); (Q.Z.); (Y.L.); (J.H.); (S.W.); (J.Z.)
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuyi Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (Z.W.); (Q.Z.); (Y.L.); (J.H.); (S.W.); (J.Z.)
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingyong Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (Z.W.); (Q.Z.); (Y.L.); (J.H.); (S.W.); (J.Z.)
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Wuhan 430072, China
| | - Aihua Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (Z.W.); (Q.Z.); (Y.L.); (J.H.); (S.W.); (J.Z.)
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Wuhan 430072, China
- Correspondence: ; Tel.: +86-27-68780053
| |
Collapse
|
39
|
Sharma L, Nagpal R, Jackson CR, Patel D, Singh P. Antibiotic-resistant bacteria and gut microbiome communities associated with wild-caught shrimp from the United States versus imported farm-raised retail shrimp. Sci Rep 2021; 11:3356. [PMID: 33558614 PMCID: PMC7870836 DOI: 10.1038/s41598-021-82823-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 01/22/2021] [Indexed: 01/30/2023] Open
Abstract
In the United States, farm-raised shrimp accounts for ~ 80% of the market share. Farmed shrimp are cultivated as monoculture and are susceptible to infections. The aquaculture industry is dependent on the application of antibiotics for disease prevention, resulting in the selection of antibiotic-resistant bacteria. We aimed to characterize the prevalence of antibiotic-resistant bacteria and gut microbiome communities in commercially available shrimp. Thirty-one raw and cooked shrimp samples were purchased from supermarkets in Florida and Georgia (U.S.) between March-September 2019. The samples were processed for the isolation of antibiotic-resistant bacteria, and isolates were characterized using an array of molecular and antibiotic susceptibility tests. Aerobic plate counts of the cooked samples (n = 13) varied from < 25 to 6.2 log CFU/g. Isolates obtained (n = 110) were spread across 18 genera, comprised of coliforms and opportunistic pathogens. Interestingly, isolates from cooked shrimp showed higher resistance towards chloramphenicol (18.6%) and tetracycline (20%), while those from raw shrimp exhibited low levels of resistance towards nalidixic acid (10%) and tetracycline (8.2%). Compared to wild-caught shrimp, the imported farm-raised shrimp harbored distinct gut microbiota communities and a higher prevalence of antibiotic-resistance genes in their gut. The presence of antibiotic-resistant strains in cooked shrimps calls for change in processing for their mitigation.
Collapse
Affiliation(s)
- Laxmi Sharma
- grid.255986.50000 0004 0472 0419Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, FL 32306 USA
| | - Ravinder Nagpal
- grid.255986.50000 0004 0472 0419Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, FL 32306 USA
| | - Charlene R. Jackson
- grid.463419.d0000 0001 0946 3608Bacterial Epidemiology and Antimicrobial Resistance Research Unit, U.S. Department of Agriculture Agricultural Research Service, Athens, GA USA
| | - Dhruv Patel
- grid.255986.50000 0004 0472 0419Department of Biological Sciences, Florida State University, Tallahassee, FL USA
| | - Prashant Singh
- grid.255986.50000 0004 0472 0419Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, FL 32306 USA
| |
Collapse
|
40
|
Significant Differences in Intestinal Microbial Communities in Aquatic Animals from an Aquaculture Area. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2021. [DOI: 10.3390/jmse9020104] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
While much attention has been given to the role of animal intestinal microbes, few studies have focused on microbial communities and associated functions in cultured aquatic animals. In this study, high–throughput sequencing was used to analyze intestinal microbial communities and functions in fish, shrimp, crab and razor clams. Alpha diversity analyses showed significant differences in intestinal microbial diversity amongst these aquatic animals, and that shrimp intestines harbored the highest diversity and species numbers. T–test analyses (p < 0.05) showed significant differences in dominant microbial operational taxonomic units (OTUs) between all aquatic animals. Predominant intestinal bacteria included; Gammaproteobacteria, Fusobacteria, Mollicutes, Spirochaetia, Cyanobacteria, Bacteroidia and Bacilli. Similarly, anaerobic bacteria were highly diverse in animal intestines and included; Vibrio, Photobacterium, Cetobacterium, Propionigenium, Candidatus Hepatoplasma, Paraclostridium, and Lactobacillus. Principal co–ordinate analysis indicated that the distribution characteristics of intestinal microbes varied with animal species; in particular, we observed a high variability among shrimp intestinal samples. This variability indicated these genera had suitability for the different intestinal environment. Function prediction analysis indicated significant differences amongst different animals in the major functional groups, and that microbial functional profiles were strongly shaped by the intestinal environment. Thus, this study provides an important reference for future studies investigating crosstalk between aquatic animal hosts and their intestinal microbiota.
Collapse
|
41
|
Effect of sample type and the use of high or low fishmeal diets on bacterial communities in the gastrointestinal tract of Penaeus monodon. Appl Microbiol Biotechnol 2021; 105:1301-1313. [PMID: 33427931 DOI: 10.1007/s00253-020-11052-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 11/30/2020] [Accepted: 12/09/2020] [Indexed: 01/04/2023]
Abstract
In shrimp aquaculture, manufactured diets that include various supplements and alternative fishmeal ingredients are increasingly being used and their effect on the gastrointestinal (GI) microbiota studied. However, dietary effects on different shrimp GI samples are not known. We investigated how a high (HFM) or low (LFM) fishmeal diet affects bacterial communities from different sample types collected from Penaeus monodon gastrointestinal tract. Bacterial communities of the stomach, intestine tissue and intestine digesta were assessed using 16s rRNA gene sequencing. The feed pellets were also assessed as a potential source of bacteria in the GI tract. Results showed substantial differences in bacterial communities between the two diets as well as between the different sample types. Within the shrimp GI samples, stomach and digesta communities were most impacted by diet, while the community observed in the intestine tissue was less affected. Proteobacteria, Firmicutes and Bacteroidetes were the main phyla observed in shrimp samples, with enrichment of Bacteroidetes and Firmicutes in the LFM fed shrimp. The feed pellets were dominated by Firmicutes and were largely dissimilar to the shrimp samples. Several key taxa were shared however between the feed pellets and shrimp GI samples, particularly in the LFM fed shrimp, indicating the pellets may be a significant source of bacteria observed in shrimp GI samples. In summary, both diet and sample type influenced the bacterial communities characterised from the shrimp GI tract. Thus, it is important to consider the sample type collected from the GI tract when investigating dietary impacts on gut bacterial communities in shrimp. KEY POINTS: • Shrimp gastrointestinal communities are influenced by diet and sample type. • The low fishmeal diet enriched bacteria that aid in polysaccharide metabolism. • Feed pellets can be a source of bacteria-detected gastrointestinal tract of shrimp.
Collapse
|
42
|
Uawisetwathana U, Plaisen S, Arayamethakorn S, Jitthiang P, Rungrassamee W. Optimization of metabolite extraction and analytical methods from shrimp intestine for metabolomics profile analysis using LC-HRMS/MS. Metabolomics 2021; 17:8. [PMID: 33420663 DOI: 10.1007/s11306-020-01768-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 12/26/2020] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Intestinal microbiota and metabolites play important roles for further improvement of animal production. Metabolomics of shrimp intestine to understand roles and their relationship to the host is hampered by the lack of metabolome profiling method. OBJECTIVES This study aims to develop extraction and analytical methods to allow accurate metabolic analysis in shrimp intestine. METHODS Conditions for extraction and LC-HRMS/MS analysis were optimized. RESULTS Extraction with ethyl acetate:acetone (15:2 v/v) acidified with 0.5% acetic acid, elution with acetonitrile:water acidified with 0.01% acetic acid for 25 min, and mass fragmentation at 15% HCD were the optimal conditions, yielding the highest signal intensity and numbers of putative metabolites. CONCLUSION Our method enabled in-depth study for shrimp-microbial interaction at metabolite level.
Collapse
Affiliation(s)
- Umaporn Uawisetwathana
- Microarray Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Nueng, Khlong Luang, 12120, Pathumthani, Thailand.
| | - Siwat Plaisen
- Microarray Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Nueng, Khlong Luang, 12120, Pathumthani, Thailand
| | - Sopacha Arayamethakorn
- Microarray Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Nueng, Khlong Luang, 12120, Pathumthani, Thailand
| | - Prapatsorn Jitthiang
- Microarray Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Nueng, Khlong Luang, 12120, Pathumthani, Thailand
| | - Wanilada Rungrassamee
- Microarray Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Nueng, Khlong Luang, 12120, Pathumthani, Thailand
| |
Collapse
|
43
|
Liu L, Ji J, Guo Y, Chen J. Use of ecological concrete for nutrient removal in coastal sediment and its effects on sediment microbial communities. MARINE POLLUTION BULLETIN 2021; 162:111911. [PMID: 33338930 DOI: 10.1016/j.marpolbul.2020.111911] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 11/25/2020] [Accepted: 11/27/2020] [Indexed: 06/12/2023]
Abstract
Ecological concrete (eco-concrete) can reduce excess nutrients (nitrogen and phosphorus) in water, but its effectiveness in removing nutrients in marine coastal sediments and the response of sediment microbial communities to its use are largely unknown. In this study, eco-concrete planted with Bruguiera gymnorrhiza was used to remove nutrients in marine coastal sediment. We found that the mean removal efficiencies of sediment total nitrogen and total phosphorus by using planted eco-concrete were 11.50% and 30.31% on day 60, and were higher than those obtained by only using B. gymnorrhiza (7.14% and 7.36%). the Diatoms and bacterial genera Fusibacter and Anoxynatronum (which belong to Firmicutes) increased and became the abundant microbes by day 60 when using planted eco-concrete, indicating their potential roles in nutrient removal. Moreover, the eco-concrete did not endanger the core microbes in sediment suggesting its environment-friendly character. Our results suggest a potential method to control marine coastal eutrophication.
Collapse
Affiliation(s)
- Lemian Liu
- Technical Innovation Service Platform for High Value and High Quality Utilization of Marine Organism, Fuzhou University, Fuzhou 350108, China; Fujian Engineering and Technology Research Center for Comprehensive Utilization of Marine Products Waste, Fuzhou University, Fuzhou 350108, China; Fuzhou Industrial Technology Innovation Center for High Value Utilization of Marine Products, Fuzhou University, Fuzhou 350108, China.
| | - Jiannan Ji
- Technical Innovation Service Platform for High Value and High Quality Utilization of Marine Organism, Fuzhou University, Fuzhou 350108, China; Fujian Engineering and Technology Research Center for Comprehensive Utilization of Marine Products Waste, Fuzhou University, Fuzhou 350108, China; Fuzhou Industrial Technology Innovation Center for High Value Utilization of Marine Products, Fuzhou University, Fuzhou 350108, China
| | - Yisong Guo
- Technical Innovation Service Platform for High Value and High Quality Utilization of Marine Organism, Fuzhou University, Fuzhou 350108, China; Fujian Engineering and Technology Research Center for Comprehensive Utilization of Marine Products Waste, Fuzhou University, Fuzhou 350108, China; Fuzhou Industrial Technology Innovation Center for High Value Utilization of Marine Products, Fuzhou University, Fuzhou 350108, China
| | - Jianfeng Chen
- Technical Innovation Service Platform for High Value and High Quality Utilization of Marine Organism, Fuzhou University, Fuzhou 350108, China; Fujian Engineering and Technology Research Center for Comprehensive Utilization of Marine Products Waste, Fuzhou University, Fuzhou 350108, China; Fuzhou Industrial Technology Innovation Center for High Value Utilization of Marine Products, Fuzhou University, Fuzhou 350108, China.
| |
Collapse
|
44
|
Brown BRP, Nunez JCB, Rand DM. Characterizing the cirri and gut microbiomes of the intertidal barnacle Semibalanus balanoides. Anim Microbiome 2020; 2:41. [PMID: 33499976 PMCID: PMC7807441 DOI: 10.1186/s42523-020-00058-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 10/16/2020] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Natural populations inhabiting the rocky intertidal experience multiple ecological stressors and provide an opportunity to investigate how environmental differences influence microbiomes over small geographical scales. However, very few microbiome studies focus on animals that inhabit the intertidal. In this study, we investigate the microbiome of the intertidal barnacle Semibalanus balanoides. We first describe the microbiome of two body tissues: the feeding appendages, or cirri, and the gut. Next, we examine whether there are differences between the microbiome of each body tissue of barnacles collected from the thermally extreme microhabitats of the rocky shores' upper and lower tidal zones. RESULTS Overall, the microbiome of S. balanoides consisted of 18 phyla from 408 genera. Our results showed that although cirri and gut microbiomes shared a portion of their amplicon sequence variants (ASVs), the microbiome of each body tissue was distinct. Over 80% of the ASVs found in the cirri were also found in the gut, and 44% of the ASVs found in the gut were also found in the cirri. Notably, the gut microbiome was not a subset of the cirri microbiome. Additionally, we identified that the cirri microbiome was responsive to microhabitat differences. CONCLUSION Results from this study indicate that S. balanoides maintains distinct microbiomes in its cirri and gut tissues, and that the gut microbiome is more stable than the cirri microbiome between the extremes of the intertidal.
Collapse
Affiliation(s)
- Bianca R P Brown
- Department of Ecology and Evolutionary Biology, Brown University, 80 Waterman St., Providence, RI, 02912, USA.
- Institute at Brown for Environment and Society, Brown University, 85 Waterman St., Providence, RI, 02912, USA.
| | - Joaquin C B Nunez
- Department of Ecology and Evolutionary Biology, Brown University, 80 Waterman St., Providence, RI, 02912, USA
- Department of Biology, University of Virginia, 485 McCormick Road, Charlottesville, VA, 22904, USA
| | - David M Rand
- Department of Ecology and Evolutionary Biology, Brown University, 80 Waterman St., Providence, RI, 02912, USA.
| |
Collapse
|
45
|
Liu X, Cao Y, Ouyang S, Wu X. Comparative analysis of gut microbiota diversity in endangered, economical, and common freshwater mussels using 16S rRNA gene sequencing. Ecol Evol 2020; 10:12015-12023. [PMID: 33209266 PMCID: PMC7663966 DOI: 10.1002/ece3.6796] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 08/06/2020] [Accepted: 08/20/2020] [Indexed: 11/11/2022] Open
Abstract
Freshwater mussels are both among the most diverse and endangered faunas worldwide. The gut microbiota of species plays a key role in nutrition and immunity, such as preventing it from pathogen invasion, synthesizing beneficial secondary metabolites, and contributing to the digestion of complex nutrients. Information on the gut microbiota could have significant implications for conservation biology, especially for threatened or endangered species. However, there is relatively little study into the gut microbiota of freshwater mussels. Here, the gut microbiota diversity was analyzed in endangered (Solenaia carinata), economical (Sinohyriopsis cumingii), and common (Sinanodonta woodiana) freshwater mussels using 16S rRNA gene sequencing. This study represents the first to compare the gut microbiota diversity of endangered, economical, and common Chinese freshwater mussels. The results showed that 13,535 OTUs were found in S. carinata, 12,985 OTUs in S. cumingii, and 9,365 OTUs in S. woodiana. The dominant phylum in S. carinata and S. cumingii was Fusobacteria, and was Firmicutes in S. woodiana. Alpha diversity indices indicated that S. carinata and S. cumingii had a higher abundance and diversity of gut microbiota than S. woodiana. The composition of gut microbiota was different among three freshwater mussels, but their composition variation was not significant. This study provides insight for the conservation of freshwater mussel biodiversity, which will not only help conserve these vulnerable groups but also, will offer wider benefits to freshwater ecosystems.
Collapse
Affiliation(s)
- Xiongjun Liu
- School of Life SciencesNanchang UniversityNanchangChina
- School of Life SciencesJiaying UniversityMeizhouChina
| | - Yanling Cao
- School of Life SciencesNanchang UniversityNanchangChina
| | - Shan Ouyang
- School of Life SciencesNanchang UniversityNanchangChina
| | - Xiaoping Wu
- School of Life SciencesNanchang UniversityNanchangChina
| |
Collapse
|
46
|
Tepaamorndech S, Nookaew I, Higdon SM, Santiyanont P, Phromson M, Chantarasakha K, Mhuantong W, Plengvidhya V, Visessanguan W. Metagenomics in bioflocs and their effects on gut microbiome and immune responses in Pacific white shrimp. FISH & SHELLFISH IMMUNOLOGY 2020; 106:733-741. [PMID: 32858186 DOI: 10.1016/j.fsi.2020.08.042] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 08/19/2020] [Accepted: 08/24/2020] [Indexed: 05/20/2023]
Abstract
Biofloc systems generate and accumulate microbial aggregates known as bioflocs. The presence of bioflocs has been shown to change gut bacterial diversity and stimulate innate immunity in shrimp. The microbial niche of bioflocs may therefore have the potential to drive shifts in the shrimp gut microbiota associated with stimulation of innate immunity. We performed shotgun metagenomic analysis and 16S rRNA-based amplicon sequencing to characterize complex bacterial members in bioflocs and the shrimp digestive tract, respectively. Moreover, we determined whether biofloc-grown shrimp with discrete gut microbiomes had an elevation in local immune-related gene expression and systemic immune activities. Our findings demonstrated that the bacterial community in bioflocs changed dynamically during Pacific white shrimp cultivation. Metagenomic analysis revealed that Vibrio comprised 90% of the biofloc population, while Pseualteromonas, Photobacterium, Shewanella, Alteromonas, Bacillus, Lactobacillus, Acinetobacter, Clostridium, Marinifilum, and Pseudomonas were also detected. In the digestive tract, biofloc-grown shrimp maintained the presence of commensal bacteria including Vibrio, Photobacterium, Shewanella, Granulosicoccus, and Ruegeria similar to control shrimp. However, Vibrio and Photobacterium were significantly enriched and declined, respectively, in biofloc-grown shrimp. The presence of bioflocs upregulated immune-related genes encoding serine proteinase and prophenoloxidase in digestive organs which are routinely exposed to gut microbiota. Biofloc-grown shrimp also demonstrated a significant increase in systemic immune status. As a result, the survival rate of biofloc-grown shrimp was substantially higher than that of the control shrimp. Our findings suggested that the high relative abundance of vibrios in bioflocs enriched the number of vibrios in the digestive tract of biofloc-grown shrimp. This shift in gut microbiota composition may be partially responsible for local upregulation of immune-related gene expression in digestive organs and systemic promotion of immune status in circulating hemolymph.
Collapse
Affiliation(s)
- Surapun Tepaamorndech
- National Center for Genetic Engineering and Biotechnology (BIOTEC), Phahonyothin Rd., Pathumthani, 12120, Thailand.
| | - Intawat Nookaew
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Shawn M Higdon
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | - Pannita Santiyanont
- National Center for Genetic Engineering and Biotechnology (BIOTEC), Phahonyothin Rd., Pathumthani, 12120, Thailand
| | - Metavee Phromson
- National Center for Genetic Engineering and Biotechnology (BIOTEC), Phahonyothin Rd., Pathumthani, 12120, Thailand
| | - Kanittha Chantarasakha
- National Center for Genetic Engineering and Biotechnology (BIOTEC), Phahonyothin Rd., Pathumthani, 12120, Thailand
| | - Wuttichai Mhuantong
- National Center for Genetic Engineering and Biotechnology (BIOTEC), Phahonyothin Rd., Pathumthani, 12120, Thailand
| | - Vetthachai Plengvidhya
- National Center for Genetic Engineering and Biotechnology (BIOTEC), Phahonyothin Rd., Pathumthani, 12120, Thailand
| | - Wonnop Visessanguan
- National Center for Genetic Engineering and Biotechnology (BIOTEC), Phahonyothin Rd., Pathumthani, 12120, Thailand
| |
Collapse
|
47
|
Qu YF, Wu YQ, Zhao YT, Lin LH, Du Y, Li P, Li H, Ji X. The invasive red-eared slider turtle is more successful than the native Chinese three-keeled pond turtle: evidence from the gut microbiota. PeerJ 2020; 8:e10271. [PMID: 33194431 PMCID: PMC7603792 DOI: 10.7717/peerj.10271] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 10/08/2020] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND The mutualistic symbiosis between the gut microbial communities (microbiota) and their host animals has attracted much attention. Many factors potentially affect the gut microbiota, which also varies among host animals. The native Chinese three-keeled pond turtle (Chinemys reevesii) and the invasive red-eared slider turtle (Trachemys scripta elegans) are two common farm-raised species in China, with the latter generally considered a more successful species. However, supporting evidence from the gut microbiota has yet to be collected. METHODS We collected feces samples from these two turtle species raised in a farm under identical conditions, and analyzed the composition and relative abundance of the gut microbes using bacterial 16S rRNA sequencing on the Roach/454 platform. RESULTS The gut microbiota was mainly composed of Bacteroidetes and Firmicutes at the phylum level, and Porphyromonadaceae, Bacteroidaceae and Lachnospiraceae at the family level in both species. The relative abundance of the microbes and gene functions in the gut microbiota differed between the two species, whereas alpha or beta diversity did not. Microbes of the families Bacteroidaceae, Clostridiaceae and Lachnospiraceae were comparatively more abundant in C. reevesii, whereas those of the families Porphyromonadaceae and Fusobacteriaceae were comparatively more abundant in T. s. elegans. In both species the gut microbiota had functional roles in enhancing metabolism, genetic information processing and environmental information processing according to the Kyoto Encyclopedia of Genes and Genomes database. The potential to gain mass is greater in T. s. elegans than in C. reevesii, as revealed by the fact that the Firmicutes/Bacteroidetes ratio was lower in the former species. The percentage of human disease-related functional genes was lower in T. s. elegans than in C. reevesii, presumably suggesting an enhanced potential to colonize new habitats in the former species.
Collapse
Affiliation(s)
- Yan-Fu Qu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Yan-Qing Wu
- National Key Laboratory of Environmental Protection and Biosafety, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, Jiangsu, China
| | - Yu-Tian Zhao
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Long-Hui Lin
- Hangzhou Key Laboratory for Ecosystem Protection and Restoration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Yu Du
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, China
- Hainan Key Laboratory of Herpetological Research, College of Fisheries and Life Science, Hainan Tropical Ocean University, Sanya, Hainan, China
| | - Peng Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Hong Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Xiang Ji
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, China
| |
Collapse
|
48
|
Su C, Fan D, Pan L, Lu Y, Wang Y, Zhang M. Effects of Yu-Ping-Feng polysaccharides (YPS) on the immune response, intestinal microbiota, disease resistance and growth performance of Litopenaeus vannamei. FISH & SHELLFISH IMMUNOLOGY 2020; 105:104-116. [PMID: 32629103 PMCID: PMC7333637 DOI: 10.1016/j.fsi.2020.07.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 06/28/2020] [Accepted: 07/01/2020] [Indexed: 05/02/2023]
Abstract
A 28-day feeding trial was conducted to investigate the effects of Yu-Ping-Feng polysaccharides (YPS) containing Astragalus polysaccharides (APS), Atractylodes macrocephala polysaccharides (AMP) and Saposhnikoviae polysaccharides (SPS) on the immune response, intestinal microbiota, disease resistance and growth performance of Litopenaeus vannamei. Seven hundred and twenty shrimp (3.04 ± 0.33 g) were fed the following diets: Control, YPS1 (0.13% APS + 0.0325% AMP + 0.0325% SPS), YPS2 (0.13% APS + 0.0325% AMP + 0.065% SPS) and YPS3 (0.13% APS + 0.0325% AMP+0.0975% SPS). After 14 and 28 days of feeding, the immune responses of hemocytes and intestine were measured. Intestinal microbiota and growth performance were measured after 28 days of feeding, after that, a 7-day challenge test against Vibrio harveyi was conducted. A significant (P < 0.05) increase of the total haemocyte count (THC), phagocytic activity, antibacterial activity and phenoloxidase (PO) activity was observed in shrimp fed YPS diets compared to the control. Also, dietary YPS supplementation particularly YPS3 group significantly increased the expressions of immune-related genes in the hemocytes and intestine. Regarding the intestinal microbiota, the microbial diversity and richness decreased and functional genes associated with short-chain fatty acids metabolism increased in YPS groups. After Vibrio harveyi challenge, the cumulative mortality in YPS groups was significantly lower than that of the control. Besides, dietary YPS had no significant effect on growth performance of shrimp (P > 0.05). The present results suggested that YPS could be considered as potential prebiotics for aquaculture farmed shrimp.
Collapse
Affiliation(s)
- Chen Su
- The Key Laboratory of Mariculture, Ocean University of China, Ministry of Education, Qingdao, Shandong, 266003, China
| | - Depeng Fan
- Bio-Form Biotechnology (Guangdong) Co., LTD, Foshan, Guangdong, 528200, China
| | - Luqing Pan
- The Key Laboratory of Mariculture, Ocean University of China, Ministry of Education, Qingdao, Shandong, 266003, China.
| | - Yusong Lu
- The Key Laboratory of Mariculture, Ocean University of China, Ministry of Education, Qingdao, Shandong, 266003, China
| | - Yuxuan Wang
- The Key Laboratory of Mariculture, Ocean University of China, Ministry of Education, Qingdao, Shandong, 266003, China
| | - Mengyu Zhang
- The Key Laboratory of Mariculture, Ocean University of China, Ministry of Education, Qingdao, Shandong, 266003, China
| |
Collapse
|
49
|
Zamora-Briseño JA, Cerqueda-García D, Hernández-Velázquez IM, Rivera-Bustamante R, Huchín-Mian JP, Briones-Fourzán P, Lozano-Álvarez E, Rodríguez-Canul R. Alterations in the gut-associated microbiota of juvenile Caribbean spiny lobsters Panulirus argus (Latreille, 1804) infected with PaV1. J Invertebr Pathol 2020; 176:107457. [PMID: 32882233 DOI: 10.1016/j.jip.2020.107457] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 02/03/2020] [Accepted: 08/21/2020] [Indexed: 12/20/2022]
Abstract
The spiny lobster Panulirus argus (Latreille, 1804) is currently affected by an unenveloped, icosahedral, DNA virus termed Panulirus argus virus 1 (PaV1), a virulent and pathogenic virus that produces a long-lasting infection that alters the physiology and behaviour of heavily infected lobsters. Gut-associated microbiota is crucial for lobster homeostasis and well-being, but pathogens could change microbiota composition affecting its function. In PaV1 infection, the changes of gut-associated microbiota are yet to be elucidated. In the present study, we used high-throughput 16S rRNA sequencing technology to compare the bacterial microbiota in intestines of healthy and heavily PaV1-infected male and female juveniles of spiny lobsters P. argus captured in Puerto Morelos Reef lagoon, Quintana Roo, Mexico. We found that basal gut-associated microbiota composition showed a sex-dependent bias, with females being enriched in amplicon sequence variants (ASVs) assigned to Sphingomonas, while males were enriched in the genus Candidatus Hepatoplasma and Aliiroseovarius genera. Moreover, the alpha diversity of microbiota decreased in PaV1-infected lobsters. A significant increase of the genus Candidatus Bacilloplasma was observed in infected lobsters, as well as a significant decrease in Nesterenkonia, Caldalkalibacillus, Pseudomonas, Cetobacterium and Phyllobacterium. We also observed an alteration in the abundances of Vibrio species. Results from this study suggest that PaV1 infection impacts intestinal microbiota composition in Panulirus argus in a sex-dependent manner.
Collapse
Affiliation(s)
- Jesús Alejandro Zamora-Briseño
- Departamento de Recursos del Mar, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional-unidad Mérida, Km. 6 Antigua Carretera a Progreso, CORDEMEX, Mérida, Yucatán CP. 97310, Mexico
| | - Daniel Cerqueda-García
- Departamento de Recursos del Mar, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional-unidad Mérida, Km. 6 Antigua Carretera a Progreso, CORDEMEX, Mérida, Yucatán CP. 97310, Mexico
| | - Ioreni Margarita Hernández-Velázquez
- Departamento de Recursos del Mar, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional-unidad Mérida, Km. 6 Antigua Carretera a Progreso, CORDEMEX, Mérida, Yucatán CP. 97310, Mexico
| | - Rafael Rivera-Bustamante
- Dirección, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional-unidad Mérida, Km. 6 Antigua Carretera a Progreso, CORDEMEX, Mérida, Yucatán CP. 97310, Mexico
| | - Juan Pablo Huchín-Mian
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Noria Alta S/N, Guanajuato 36050, Mexico
| | - Patricia Briones-Fourzán
- Universidad Nacional Autónoma de México, Instituto de Ciencias del Mar y Limnología, Unidad Académica de Sistemas Arrecifales, Puerto Morelos, Quintana Roo 77580, Mexico
| | - Enrique Lozano-Álvarez
- Universidad Nacional Autónoma de México, Instituto de Ciencias del Mar y Limnología, Unidad Académica de Sistemas Arrecifales, Puerto Morelos, Quintana Roo 77580, Mexico
| | - Rossanna Rodríguez-Canul
- Departamento de Recursos del Mar, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional-unidad Mérida, Km. 6 Antigua Carretera a Progreso, CORDEMEX, Mérida, Yucatán CP. 97310, Mexico.
| |
Collapse
|
50
|
Uengwetwanit T, Uawisetwathana U, Arayamethakorn S, Khudet J, Chaiyapechara S, Karoonuthaisiri N, Rungrassamee W. Multi-omics analysis to examine microbiota, host gene expression and metabolites in the intestine of black tiger shrimp ( Penaeus monodon) with different growth performance. PeerJ 2020; 8:e9646. [PMID: 32864208 PMCID: PMC7430268 DOI: 10.7717/peerj.9646] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 07/12/2020] [Indexed: 12/20/2022] Open
Abstract
Understanding the correlation between shrimp growth and their intestinal bacteria would be necessary to optimize animal's growth performance. Here, we compared the bacterial profiles along with the shrimp's gene expression responses and metabolites in the intestines between the Top and the Bottom weight groups. Black tiger shrimp (Penaeus monodon) were collected from the same population and rearing environments. The two weight groups, the Top-weight group with an average weight of 36.82 ± 0.41 g and the Bottom-weight group with an average weight of 17.80 ± 11.81 g, were selected. Intestines were aseptically collected and subjected to microbiota, transcriptomic and metabolomic profile analyses. The weighted-principal coordinates analysis (PCoA) based on UniFrac distances showed similar bacterial profiles between the two groups, suggesting similar relative composition of the overall bacterial community structures. This observed similarity was likely due to the fact that shrimp were from the same genetic background and reared under the same habitat and diets. On the other hand, the unweighted-distance matrix revealed that the bacterial profiles associated in intestines of the Top-weight group were clustered distinctly from those of the Bottom-weight shrimp, suggesting that some unique non-dominant bacterial genera were found associated with either group. The key bacterial members associated to the Top-weight shrimp were mostly from Firmicutes (Brevibacillus and Fusibacter) and Bacteroidetes (Spongiimonas), both of which were found in significantly higher abundance than those of the Bottom-weight shrimp. Transcriptomic profile of shrimp intestines found significant upregulation of genes mostly involved in nutrient metabolisms and energy storage in the Top-weight shrimp. In addition to significantly expressed metabolic-related genes, the Bottom-weight shrimp also showed significant upregulation of stress and immune-related genes, suggesting that these pathways might contribute to different degrees of shrimp growth performance. A non-targeted metabolome analysis from shrimp intestines revealed different metabolic responsive patterns, in which the Top-weight shrimp contained significantly higher levels of short chain fatty acids, lipids and organic compounds than the Bottom-weight shrimp. The identified metabolites included those that were known to be produced by intestinal bacteria such as butyric acid, 4-indolecarbaldehyde and L-3-phenyllactic acid as well as those produced by shrimp such as acyl-carnitines and lysophosphatidylcholine. The functions of these metabolites were related to nutrient absorption and metabolisms. Our findings provide the first report utilizing multi-omics integration approach to investigate microbiota, metabolic and transcriptomics profiles of the host shrimp and their potential roles and relationship to shrimp growth performance.
Collapse
Affiliation(s)
- Tanaporn Uengwetwanit
- Microarray Research Team, National Center for Genetic Engineering and Biotechnology, Pathum Thani, Thailand
| | - Umaporn Uawisetwathana
- Microarray Research Team, National Center for Genetic Engineering and Biotechnology, Pathum Thani, Thailand
| | - Sopacha Arayamethakorn
- Microarray Research Team, National Center for Genetic Engineering and Biotechnology, Pathum Thani, Thailand
| | - Juthatip Khudet
- Shrimp Genetic Improvement Center, National Center for Genetic Engineering and Biotechnology, Pathum Thani, Thailand
| | - Sage Chaiyapechara
- Aquaculture Service Development Research Team, National Center for Genetic Engineering and Biotechnology, Pathum Thani, Thailand
| | - Nitsara Karoonuthaisiri
- Microarray Research Team, National Center for Genetic Engineering and Biotechnology, Pathum Thani, Thailand
| | - Wanilada Rungrassamee
- Microarray Research Team, National Center for Genetic Engineering and Biotechnology, Pathum Thani, Thailand
| |
Collapse
|