1
|
Berrabah F, Benaceur F, Yin C, Xin D, Magne K, Garmier M, Gruber V, Ratet P. Defense and senescence interplay in legume nodules. PLANT COMMUNICATIONS 2024; 5:100888. [PMID: 38532645 PMCID: PMC11009364 DOI: 10.1016/j.xplc.2024.100888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 02/05/2024] [Accepted: 03/23/2024] [Indexed: 03/28/2024]
Abstract
Immunity and senescence play a crucial role in the functioning of the legume symbiotic nodules. The miss-regulation of one of these processes compromises the symbiosis leading to death of the endosymbiont and the arrest of the nodule functioning. The relationship between immunity and senescence has been extensively studied in plant organs where a synergistic response can be observed. However, the interplay between immunity and senescence in the symbiotic organ is poorly discussed in the literature and these phenomena are often mixed up. Recent studies revealed that the cooperation between immunity and senescence is not always observed in the nodule, suggesting complex interactions between these two processes within the symbiotic organ. Here, we discuss recent results on the interplay between immunity and senescence in the nodule and the specificities of this relationship during legume-rhizobium symbiosis.
Collapse
Affiliation(s)
- Fathi Berrabah
- Faculty of Sciences, University Amar Telidji, 03000 Laghouat, Algeria; Research Unit of Medicinal Plants (RUMP), National Center of Biotechnology Research, CRBt, 25000 Constantine, Algeria.
| | - Farouk Benaceur
- Faculty of Sciences, University Amar Telidji, 03000 Laghouat, Algeria; Research Unit of Medicinal Plants (RUMP), National Center of Biotechnology Research, CRBt, 25000 Constantine, Algeria
| | - Chaoyan Yin
- Université Paris-Saclay, CNRS, INRAE, University of Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif-sur-Yvette, France; Université Paris Cité, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif-sur-Yvette, France
| | - Dawei Xin
- Key Laboratory of Soybean Biology in the Chinese Ministry of Education, College of Agriculture, Northeast Agricultural University, Harbin 150030, China
| | - Kévin Magne
- Université Paris-Saclay, CNRS, INRAE, University of Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif-sur-Yvette, France; Université Paris Cité, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif-sur-Yvette, France
| | - Marie Garmier
- Université Paris-Saclay, CNRS, INRAE, University of Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif-sur-Yvette, France; Université Paris Cité, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif-sur-Yvette, France
| | - Véronique Gruber
- Université Paris-Saclay, CNRS, INRAE, University of Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif-sur-Yvette, France; Université Paris Cité, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif-sur-Yvette, France.
| | - Pascal Ratet
- Université Paris-Saclay, CNRS, INRAE, University of Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif-sur-Yvette, France; Université Paris Cité, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif-sur-Yvette, France
| |
Collapse
|
2
|
Zhang H. Plant latent defense response against compatibility. THE ISME JOURNAL 2023; 17:787-791. [PMID: 36991179 PMCID: PMC10203107 DOI: 10.1038/s41396-023-01399-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 03/14/2023] [Accepted: 03/17/2023] [Indexed: 03/31/2023]
Abstract
Managing the association with microbes is crucial for plants. Evidence is emerging for the plant latent defense response, which is conditionally elicited by certain microbial nonpathogenic factors and thereby guards against potential risks from beneficial or commensal microbes. Latent defense response is an exciting new research area with a number of key issues immediately awaiting exploration. A detailed understanding of latent defense response will underpin the applications of beneficial microbes.
Collapse
Affiliation(s)
- Huiming Zhang
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China.
| |
Collapse
|
3
|
Nguyen CX, Dohnalkova A, Hancock CN, Kirk KR, Stacey G, Stacey MG. Critical role for uricase and xanthine dehydrogenase in soybean nitrogen fixation and nodule development. THE PLANT GENOME 2023; 16:e20171. [PMID: 34904377 DOI: 10.1002/tpg2.20172] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 09/22/2021] [Indexed: 06/14/2023]
Abstract
De novo purine biosynthesis is required for the incorporation of fixed nitrogen in ureide exporting nodules, as formed on soybean [Glycine max (L.) Merr.] roots. However, in many cases, the enzymes involved in this pathway have been deduced strictly from genome annotations with little direct genetic evidence, such as mutant studies, to confirm their biochemical function or importance to nodule development. While efforts to develop large mutant collections of soybean are underway, research on this plant is still hampered by the inability to obtain mutations in any specific gene of interest. Using a forward genetic approach, as well as CRISPR/Cas9 gene editing via Agrobacterium rhizogenes-mediated hairy root transformation, we identified and characterized the role of GmUOX (Uricase) and GmXDH (Xanthine Dehydrogenase) in nitrogen fixation and nodule development in soybean. The gmuox knockout soybean mutants displayed nitrogen deficiency chlorosis and early nodule senescence, as exemplified by the reduced nitrogenase (acetylene reduction) activity in nodules, the internal greenish-white internal appearance of nodules, and diminished leghemoglobin production. In addition, gmuox1 nodules showed collapsed infected cells with degraded cytoplasm, aggregated bacteroids with no discernable symbiosome membranes, and increased formation of poly-β-hydroxybutyrate granules. Similarly, knockout gmxdh mutant nodules, generated with the CRISPR/Cas9 system, also exhibited early nodule senescence. These genetic studies confirm the critical role of the de novo purine metabolisms pathway not only in the incorporation of fixed nitrogen but also in the successful development of a functional, nitrogen-fixing nodule. Furthermore, these studies demonstrate the great utility of the CRISPR/Cas9 system for studying root-associated gene traits when coupled with hairy root transformation.
Collapse
Affiliation(s)
- Cuong X Nguyen
- Division of Plant Sciences, Univ. of Missouri, Columbia, MO, 65211, USA
| | - Alice Dohnalkova
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - C Nathan Hancock
- Dep. of Biology & Geology, Univ. of South Carolina, Aiken, SC, 29801, USA
| | - Kendall R Kirk
- Edisto Research & Education Center, Clemson Univ., Blackville, SC, 29817, USA
| | - Gary Stacey
- Division of Plant Sciences, Univ. of Missouri, Columbia, MO, 65211, USA
- Division of Biochemistry, Univ. of Missouri, Columbia, MO, 65211, USA
| | - Minviluz G Stacey
- Division of Plant Sciences, Univ. of Missouri, Columbia, MO, 65211, USA
| |
Collapse
|
4
|
Kantsurova (Rudaya) ES, Ivanova AN, Kozyulina PY, Dolgikh EA. Exogenously Applied Cytokinin Altered the Bacterial Release and Subsequent Stages of Nodule Development in Pea Ipd3/Cyclops Mutant. PLANTS (BASEL, SWITZERLAND) 2023; 12:657. [PMID: 36771742 PMCID: PMC9921755 DOI: 10.3390/plants12030657] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/25/2022] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
Regulation of plant hormonal status is one of the major targets of symbiotic signaling during nodule formation in legume plants. However, the genetic and hormonal networks that regulate transition to differentiation of nodules are not well-characterized in legume plants. Analysis of plant mutants forming nodules impaired in rhizobial infection allowed us to identify some regulators involved in the control of the later stages of nodule development. In the current work, we extend our earlier studies on the influence of exogenously applied cytokinin on the later stages of nodule morphogenesis using pea sym33 (ipd3/cyclops) mutants impaired in the gene encoding IPD3/CYCLOPS transcription factor. One of the noticeable effects of the influence of exogenously applied cytokinin on nodules in the sym33-3 mutant was an increasing size of these structures. Cytokinin treatment was shown to stimulate bacterial release and increase the percentage of infected cells in nodules. To explore the role of possible regulators of nodule differentiation, we performed searching in pea transcriptome. The transcriptome study in pea P. sativum revealed the importance of the CCS52 regulator, EFD transcription factor, SYMREM regulator, RSD, the MADS-domain/AGL, and SHORT INTERNODE/STYLISH gene families encoding transcription factors in the control of nodule differentiation. Analysis of the expression patterns was verified by real-time PCR in response to exogenously applied cytokinin treatment.
Collapse
Affiliation(s)
| | - Alexandra N. Ivanova
- Komarov Botanical Institute RAS, Prof. Popov St., 2, 197376 St. Petersburg, Russia
- Research Park, St. Petersburg State University, Universitetskaya Emb. 7-9, 199034 St. Petersburg, Russia
| | - Polina Y. Kozyulina
- All-Russia Research Institute for Agricultural Microbiology, Podbelsky Chausse 3, Pushkin, 196608 St. Petersburg, Russia
| | - Elena A. Dolgikh
- All-Russia Research Institute for Agricultural Microbiology, Podbelsky Chausse 3, Pushkin, 196608 St. Petersburg, Russia
| |
Collapse
|
5
|
Legumes Regulate Symbiosis with Rhizobia via Their Innate Immune System. Int J Mol Sci 2023; 24:ijms24032800. [PMID: 36769110 PMCID: PMC9917363 DOI: 10.3390/ijms24032800] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/18/2023] [Accepted: 01/18/2023] [Indexed: 02/05/2023] Open
Abstract
Plant roots are constantly exposed to a diverse microbiota of pathogens and mutualistic partners. The host's immune system is an essential component for its survival, enabling it to monitor nearby microbes for potential threats and respond with a defence response when required. Current research suggests that the plant immune system has also been employed in the legume-rhizobia symbiosis as a means of monitoring different rhizobia strains and that successful rhizobia have evolved to overcome this system to infect the roots and initiate nodulation. With clear implications for host-specificity, the immune system has the potential to be an important target for engineering versatile crops for effective nodulation in the field. However, current knowledge of the interacting components governing this pathway is limited, and further research is required to build on what is currently known to improve our understanding. This review provides a general overview of the plant immune system's role in nodulation. With a focus on the cycles of microbe-associated molecular pattern-triggered immunity (MTI) and effector-triggered immunity (ETI), we highlight key molecular players and recent findings while addressing the current knowledge gaps in this area.
Collapse
|
6
|
Berrabah F, Bernal G, Elhosseyn AS, El Kassis C, L’Horset R, Benaceur F, Wen J, Mysore KS, Garmier M, Gourion B, Ratet P, Gruber V. Insight into the control of nodule immunity and senescence during Medicago truncatula symbiosis. PLANT PHYSIOLOGY 2023; 191:729-746. [PMID: 36305683 PMCID: PMC9806560 DOI: 10.1093/plphys/kiac505] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 09/25/2022] [Indexed: 06/16/2023]
Abstract
Medicago (Medicago truncatula) establishes a symbiosis with the rhizobia Sinorhizobium sp, resulting in the formation of nodules where the bacteria fix atmospheric nitrogen. The loss of immunity repression or early senescence activation compromises symbiont survival and leads to the formation of nonfunctional nodules (fix-). Despite many studies exploring an overlap between immunity and senescence responses outside the nodule context, the relationship between these processes in the nodule remains poorly understood. To investigate this phenomenon, we selected and characterized three Medicago mutants developing fix- nodules and showing senescence responses. Analysis of specific defense (PATHOGENESIS-RELATED PROTEIN) or senescence (CYSTEINE PROTEASE) marker expression demonstrated that senescence and immunity seem to be antagonistic in fix- nodules. The growth of senescence mutants on non-sterile (sand/perlite) substrate instead of sterile in vitro conditions decreased nodule senescence and enhanced defense, indicating that environment can affect the immunity/senescence balance. The application of wounding stress on wild-type (WT) fix+ nodules led to the death of intracellular rhizobia and associated with co-stimulation of defense and senescence markers, indicating that in fix+ nodules the relationship between the two processes switches from opposite to synergistic to control symbiont survival during response to the stress. Our data show that the immune response in stressed WT nodules is linked to the repression of DEFECTIVE IN NITROGEN FIXATION 2 (DNF2), Symbiotic CYSTEINE-RICH RECEPTOR-LIKE KINASE (SymCRK), and REGULATOR OF SYMBIOSOME DIFFERENTIATION (RSD), key genes involved in symbiotic immunity suppression. This study provides insight to understand the links between senescence and immunity in Medicago nodules.
Collapse
Affiliation(s)
- Fathi Berrabah
- Faculty of Sciences, Department of Biology, Amar Telidji University, 03000 Laghouat, Algeria
- Research Unit of Medicinal Plants (RUMP), National Center of Biotechnology Research, CRBt, 25000 Constantine, Algeria
| | - Gautier Bernal
- Université Paris-Saclay, CNRS, INRAE, Université d’Évry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif-sur-Yvette, France
- Université Paris Cité, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif-sur-Yvette, France
| | - Ait-Salem Elhosseyn
- Université Paris-Saclay, CNRS, INRAE, Université d’Évry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif-sur-Yvette, France
- Université Paris Cité, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif-sur-Yvette, France
| | - Cyrille El Kassis
- Université Paris-Saclay, CNRS, INRAE, Université d’Évry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif-sur-Yvette, France
- Université Paris Cité, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif-sur-Yvette, France
| | - Roxane L’Horset
- Pôle de Protection des Plantes, UMR PVBMT, 97410 Saint-Pierre, Réunion, France
| | - Farouk Benaceur
- Faculty of Sciences, Department of Biology, Amar Telidji University, 03000 Laghouat, Algeria
- Research Unit of Medicinal Plants (RUMP), National Center of Biotechnology Research, CRBt, 25000 Constantine, Algeria
| | - Jiangqi Wen
- The Institute of Agricultural Biosciences, Oklahoma State University, Ardmore, Oklahoma 73401, USA
| | - Kirankumar S Mysore
- The Institute of Agricultural Biosciences, Oklahoma State University, Ardmore, Oklahoma 73401, USA
| | - Marie Garmier
- Université Paris-Saclay, CNRS, INRAE, Université d’Évry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif-sur-Yvette, France
- Université Paris Cité, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif-sur-Yvette, France
| | - Benjamin Gourion
- LIPME, Université de Toulouse, INRAE, CNRS, 31320 Castanet-Tolosan, France
| | - Pascal Ratet
- Université Paris-Saclay, CNRS, INRAE, Université d’Évry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif-sur-Yvette, France
- Université Paris Cité, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif-sur-Yvette, France
| | - Véronique Gruber
- Université Paris-Saclay, CNRS, INRAE, Université d’Évry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif-sur-Yvette, France
- Université Paris Cité, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif-sur-Yvette, France
| |
Collapse
|
7
|
Liu J, Rasing M, Zeng T, Klein J, Kulikova O, Bisseling T. NIN is essential for development of symbiosomes, suppression of defence and premature senescence in Medicago truncatula nodules. THE NEW PHYTOLOGIST 2021; 230:290-303. [PMID: 33471433 PMCID: PMC7986424 DOI: 10.1111/nph.17215] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 11/30/2020] [Indexed: 05/29/2023]
Abstract
NIN (NODULE INCEPTION) is a transcription factor that plays a key role during root nodule initiation. However, its role in later nodule developmental stages is unclear. Both NIN mRNA and protein accumulated at the highest level in the proximal part of the infection zone in Medicago truncatula nodules. Two nin weak allele mutants, nin-13/16, form a rather normal nodule infection zone, whereas a fixation zone is not formed. Instead, a zone with defence responses and premature senescence occurred and symbiosome development gets arrested. Mutations in nin-13/16 resulted in a truncated NIN lacking the conserved PB1 domain. However, this did not cause the nodule phenotype as nin mutants expressing NINΔPB1 formed wild-type-like nodule. The phenotype is likely to be caused by reduced NIN mRNA levels in the cytoplasm. Transcriptome analyses of nin-16 nodules showed that expression levels of defence/senescence-related genes are markedly increased, whereas the levels of defence suppressing genes are reduced. Although defence/senescence seems well suppressed in the infection zone, the transcriptome is already markedly changed in the proximal part of infection zone. In addition to its function in infection and nodule organogenesis, NIN also plays a major role at the transition from infection to fixation zone in establishing a functional symbiosis.
Collapse
Affiliation(s)
- Jieyu Liu
- Laboratory of Molecular BiologyDepartment of Plant SciencesGraduate School Experimental Plant SciencesWageningen University & ResearchWageningen6708 PBthe Netherlands
| | - Menno Rasing
- Laboratory of Molecular BiologyDepartment of Plant SciencesGraduate School Experimental Plant SciencesWageningen University & ResearchWageningen6708 PBthe Netherlands
| | - Tian Zeng
- Laboratory of Molecular BiologyDepartment of Plant SciencesGraduate School Experimental Plant SciencesWageningen University & ResearchWageningen6708 PBthe Netherlands
| | - Joël Klein
- Laboratory of Molecular BiologyDepartment of Plant SciencesGraduate School Experimental Plant SciencesWageningen University & ResearchWageningen6708 PBthe Netherlands
| | - Olga Kulikova
- Laboratory of Molecular BiologyDepartment of Plant SciencesGraduate School Experimental Plant SciencesWageningen University & ResearchWageningen6708 PBthe Netherlands
| | - Ton Bisseling
- Laboratory of Molecular BiologyDepartment of Plant SciencesGraduate School Experimental Plant SciencesWageningen University & ResearchWageningen6708 PBthe Netherlands
- Beijing Advanced Innovation Center for Tree Breeding by Molecular DesignBeijing University of AgricultureBeijing102206China
| |
Collapse
|
8
|
Ohr and OhrR Are Critical for Organic Peroxide Resistance and Symbiosis in Azorhizobium caulinodans ORS571. Genes (Basel) 2020; 11:genes11030335. [PMID: 32245101 PMCID: PMC7141136 DOI: 10.3390/genes11030335] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 03/16/2020] [Accepted: 03/20/2020] [Indexed: 12/12/2022] Open
Abstract
Azorhizobium caulinodans is a symbiotic nitrogen-fixing bacterium that forms both root and stem nodules on Sesbania rostrata. During nodule formation, bacteria have to withstand organic peroxides that are produced by plant. Previous studies have elaborated on resistance to these oxygen radicals in several bacteria; however, to the best of our knowledge, none have investigated this process in A. caulinodans. In this study, we identified and characterised the organic hydroperoxide resistance gene ohr (AZC_2977) and its regulator ohrR (AZC_3555) in A. caulinodans ORS571. Hypersensitivity to organic hydroperoxide was observed in an ohr mutant. While using a lacZ-based reporter system, we revealed that OhrR repressed the expression of ohr. Moreover, electrophoretic mobility shift assays demonstrated that OhrR regulated ohr by direct binding to its promoter region. We showed that this binding was prevented by OhrR oxidation under aerobic conditions, which promoted OhrR dimerization and the activation of ohr. Furthermore, we showed that one of the two conserved cysteine residues in OhrR, Cys11, was critical for the sensitivity to organic hydroperoxides. Plant assays revealed that the inactivation of Ohr decreased the number of stem nodules and nitrogenase activity. Our data demonstrated that Ohr and OhrR are required for protecting A. caulinodans from organic hydroperoxide stress and play an important role in the interaction of the bacterium with plants. The results that were obtained in our study suggested that a thiol-based switch in A. caulinodans might sense host organic peroxide signals and enhance symbiosis.
Collapse
|
9
|
Medicago-Sinorhizobium-Ralstonia Co-infection Reveals Legume Nodules as Pathogen Confined Infection Sites Developing Weak Defenses. Curr Biol 2020; 30:351-358.e4. [DOI: 10.1016/j.cub.2019.11.066] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 08/02/2019] [Accepted: 11/21/2019] [Indexed: 11/20/2022]
|
10
|
Benezech C, Doudement M, Gourion B. Legumes tolerance to rhizobia is not always observed and not always deserved. Cell Microbiol 2019; 22:e13124. [DOI: 10.1111/cmi.13124] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 09/03/2019] [Accepted: 09/05/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Claire Benezech
- LIPM, Université de Toulouse, INRA, CNRS Castanet‐Tolosan France
| | - Maëva Doudement
- LIPM, Université de Toulouse, INRA, CNRS Castanet‐Tolosan France
| | - Benjamin Gourion
- LIPM, Université de Toulouse, INRA, CNRS Castanet‐Tolosan France
| |
Collapse
|
11
|
Jiang G, Yang J, Li X, Cao Y, Liu X, Ling J, Wang H, Zhong Z, Zhu J. Alkyl hydroperoxide reductase is important for oxidative stress resistance and symbiosis in Azorhizobium caulinodans. FEMS Microbiol Lett 2019; 366:5290313. [PMID: 30657885 DOI: 10.1093/femsle/fnz014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 01/15/2019] [Indexed: 11/13/2022] Open
Abstract
Reactive oxygen species (ROS) are not only toxic products of oxygen from aerobic metabolism or stress but also signalling molecules involved in the development of the legume-Rhizobium symbiosis. To assess the importance of alkyl hydroperoxide reductase (AhpCD) in the nitrogen-fixating bacterium Azorhizobium caulinodans, we investigated the phenotypes of the ∆ahpCD strain with regards to ROS resistance and symbiotic interactions with Sesbania rostrata. The ∆ahpCD strain was notably more sensitive than its parent strain to hydrogen peroxide (H2O2) but not to two organic peroxides, in the early log phase. The expression of ahpCD was not controlled by a LysR-type transcriptional activator either in vitro or in vivo. The catalase activity of the ∆ahpCD strain was affected at a relatively low level of H2O2 stress. Furthermore, the ∆ahpCD strain induced a reduced number of stem nodules in S. rostrata with lowering of nitrogenase activity. These data suggest that A. caulinodans AhpCD is not only important for H2O2 detoxification in vitro but also critical for symbiosis with S. rostrata. Functional analysis of AhpCD is worth investigating in other rhizobia to gain a comprehensive view of its contributions to ROS defence and symbiotic association with legumes.
Collapse
Affiliation(s)
- Gaofei Jiang
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Centre for Solid Organic Waste Resource Utilization, National Engineering Research Centre for Organic-based Fertilizers, Postdoctoral Station of Agricultural Resources and Environment, Nanjing Agricultural University, 210095, Nanjing, PR China
| | - Juan Yang
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, 210095, Nanjing, PR China
| | - Xingjuan Li
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, 210095, Nanjing, PR China
| | - Yajun Cao
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, 210095, Nanjing, PR China
| | - Xiaomeng Liu
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, 210095, Nanjing, PR China
| | - Jun Ling
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, 210095, Nanjing, PR China
| | - Hui Wang
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, 210095, Nanjing, PR China
| | - Zengtao Zhong
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, 210095, Nanjing, PR China
| | - Jun Zhu
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, 210095, Nanjing, PR China
| |
Collapse
|
12
|
Pislariu CI, Sinharoy S, Torres-Jerez I, Nakashima J, Blancaflor EB, Udvardi MK. The Nodule-Specific PLAT Domain Protein NPD1 Is Required for Nitrogen-Fixing Symbiosis. PLANT PHYSIOLOGY 2019; 180:1480-1497. [PMID: 31061106 PMCID: PMC6752919 DOI: 10.1104/pp.18.01613] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 04/22/2019] [Indexed: 05/06/2023]
Abstract
Symbiotic nitrogen fixation by rhizobia in legume root nodules is a key source of nitrogen for sustainable agriculture. Genetic approaches have revealed important roles for only a few of the thousands of plant genes expressed during nodule development and symbiotic nitrogen fixation. Previously, we isolated >100 nodulation and nitrogen fixation mutants from a population of Tnt1-insertion mutants of Medigaco truncatula Using Tnt1 as a tag to identify genetic lesions in these mutants, we discovered that insertions in a M. truncatula nodule-specific polycystin-1, lipoxygenase, α-toxin (PLAT) domain-encoding gene, MtNPD1, resulted in development of ineffective nodules. Early stages of nodule development and colonization by the nitrogen-fixing bacterium Sinorhizobium meliloti appeared to be normal in the npd1 mutant. However, npd1 nodules ceased to grow after a few days, resulting in abnormally small, ineffective nodules. Rhizobia that colonized developing npd1 nodules did not differentiate completely into nitrogen-fixing bacteroids and quickly degraded. MtNPD1 expression was low in roots but increased significantly in developing nodules 4 d postinoculation, and expression accompanied invading rhizobia in the nodule infection zone and into the distal nitrogen fixation zone. A functional MtNPD1:GFP fusion protein localized in the space surrounding symbiosomes in infected cells. When ectopically expressed in tobacco (Nicotiana tabacum) leaves, MtNPD1 colocalized with vacuoles and the endoplasmic reticulum. MtNPD1 belongs to a cluster of five nodule-specific single PLAT domain-encoding genes, with apparent nonredundant functions.
Collapse
Affiliation(s)
- Catalina I Pislariu
- Plant Biology Division, Noble Research Institute, Ardmore, Oklahoma 73401
- Department of Biology, Texas Woman's University, Denton, Texas 76204
| | - Senjuti Sinharoy
- Plant Biology Division, Noble Research Institute, Ardmore, Oklahoma 73401
| | - Ivone Torres-Jerez
- Plant Biology Division, Noble Research Institute, Ardmore, Oklahoma 73401
| | - Jin Nakashima
- Plant Biology Division, Noble Research Institute, Ardmore, Oklahoma 73401
| | | | - Michael K Udvardi
- Plant Biology Division, Noble Research Institute, Ardmore, Oklahoma 73401
| |
Collapse
|
13
|
Liu X, Qiu W, Rao B, Cao Y, Fang X, Yang J, Jiang G, Zhong Z, Zhu J. Bacterioferritin comigratory protein is important in hydrogen peroxide resistance, nodulation, and nitrogen fixation in Azorhizobium caulinodans. Arch Microbiol 2019; 201:823-831. [PMID: 30953092 DOI: 10.1007/s00203-019-01654-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 01/16/2019] [Accepted: 03/22/2019] [Indexed: 12/01/2022]
Abstract
Reactive oxygen species are not only harmful for rhizobia but also required for the establishment of symbiotic interactions between rhizobia and their legume hosts. In this work, we first investigated the preliminary role of the bacterioferritin comigratory protein (BCP), a member of the peroxiredoxin family, in the nitrogen-fixing bacterium Azorhizobium caulinodans. Our data revealed that the bcp-deficient strain of A. caulinodans displayed an increased sensitivity to inorganic hydrogen peroxide (H2O2) but not to two organic peroxides in a growth-phase-dependent manner. Meanwhile, BCP was found to be involved in catalase activity under relatively low H2O2 conditions. Furthermore, nodulation and N2 fixation were significantly impaired by mutation of the bcp gene in A. caulinodans. Our work initially documented the importance of BCP in the bacterial defence against H2O2 in the free-living stage of rhizobia and during their symbiotic interactions with legumes. Molecular signalling in vivo is required to decipher the holistic functions of BCP in A. caulinodans as well as in other rhizobia.
Collapse
Affiliation(s)
- Xiaomeng Liu
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, 210095, Nanjing, People's Republic of China
| | - Wei Qiu
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, 210095, Nanjing, People's Republic of China
| | - Bei Rao
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, 210095, Nanjing, People's Republic of China
| | - Yajun Cao
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, 210095, Nanjing, People's Republic of China
| | - Xingxing Fang
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, 210095, Nanjing, People's Republic of China
| | - Juan Yang
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, 210095, Nanjing, People's Republic of China
| | - Gaofei Jiang
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, National Engineering Research Center for Organic-based Fertilizers, Postdoctoral Station of Agricultural Resources and Environment, Nanjing Agricultural University, 210095, Nanjing, People's Republic of China.
| | - Zengtao Zhong
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, 210095, Nanjing, People's Republic of China.
| | - Jun Zhu
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, 210095, Nanjing, People's Republic of China
| |
Collapse
|
14
|
Yu H, Bao H, Zhang Z, Cao Y. Immune Signaling Pathway during Terminal Bacteroid Differentiation in Nodules. TRENDS IN PLANT SCIENCE 2019; 24:299-302. [PMID: 30772172 DOI: 10.1016/j.tplants.2019.01.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 01/21/2019] [Accepted: 01/22/2019] [Indexed: 06/09/2023]
Abstract
Plant innate immunity plays an important role in regulating symbiotic associations with rhizobia, including during rhizobial infection, rhizobial colonization, and bacteroid differentiation in leguminous plants. Here we propose that an immune signaling pathway similar to plant pattern-triggered immunity (PTI) is required for the regulation of bacteroid differentiation in Medicago truncatula nodules.
Collapse
Affiliation(s)
- Haixiang Yu
- State Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Hanbin Bao
- State Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhongming Zhang
- State Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yangrong Cao
- State Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
15
|
Berrabah F, Ratet P, Gourion B. Legume Nodules: Massive Infection in the Absence of Defense Induction. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2019; 32:35-44. [PMID: 30252618 DOI: 10.1094/mpmi-07-18-0205-fi] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Plants of the legume family host massive intracellular bacterial populations in the tissues of specialized organs, the nodules. In these organs, the bacteria, named rhizobia, can fix atmospheric nitrogen and transfer it to the plant. This special metabolic skill provides to the legumes an advantage when they grow on nitrogen-scarce substrates. While packed with rhizobia, the nodule cells remain alive, metabolically active, and do not develop defense reactions. Here, we review our knowledge on the control of plant immunity during the rhizobia-legume symbiosis. We present the results of an evolutionary process that selected both divergence of microbial-associated molecular motifs and active suppressors of immunity on the rhizobial side and, on the legume side, active mechanisms that contribute to suppression of immunity.
Collapse
Affiliation(s)
- Fathi Berrabah
- 1 Laboratory of Exploration and Valorization of Steppic Ecosystems, Faculty of Nature and Life Sciences, University of Ziane Achour, 17000 Djelfa, Algeria
| | - Pascal Ratet
- 2 Institute of Plant Sciences Paris-Saclay IPS2, CNRS, INRA, Université Paris-Sud, Université Evry, Université Paris-Saclay, Bâtiment 630, 91405 Orsay, France
- 3 Institute of Plant Sciences Paris-Saclay IPS2, Paris Diderot, Sorbonne Paris-Cité, Bâtiment 630, 91405, Orsay, France; and
| | - Benjamin Gourion
- 4 LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
| |
Collapse
|
16
|
Magne K, Couzigou JM, Schiessl K, Liu S, George J, Zhukov V, Sahl L, Boyer F, Iantcheva A, Mysore KS, Wen J, Citerne S, Oldroyd GED, Ratet P. MtNODULE ROOT1 and MtNODULE ROOT2 Are Essential for Indeterminate Nodule Identity. PLANT PHYSIOLOGY 2018; 178:295-316. [PMID: 30026291 PMCID: PMC6130032 DOI: 10.1104/pp.18.00610] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 07/06/2018] [Indexed: 05/22/2023]
Abstract
Symbiotic interactions between legume plants and rhizobia result in the formation of nitrogen-fixing nodules, but the molecular actors and the mechanisms allowing for the maintenance of nodule identity are poorly understood. Medicago truncatula NODULE ROOT1 (MtNOOT1), Pisum sativum COCHLEATA1 (PsCOCH1), and Lotus japonicus NOOT-BOP-COCH-LIKE1 (LjNBCL1) are orthologs of Arabidopsis (Arabidopsis thaliana) AtBLADE-ON-PETIOLE1/2 and are members of the NBCL gene family, which has conserved roles in plant development and is essential for indeterminate and determinate nodule identity in legumes. The loss of function of MtNOOT1, PsCOCH1, and LjNBCL1 triggers a partial loss of nodule identity characterized by the development of ectopic roots arising from nodule vascular meristems. Here, we report the identification and characterization of a second gene involved in regulating indeterminate nodule identity in M. truncatula, MtNOOT2MtNOOT2 is the paralog of MtNOOT1 and belongs to a second legume-specific NBCL subclade, the NBCL2 clade. MtNOOT2 expression was induced during early nodule formation, and it was expressed primarily in the nodule central meristem. Mtnoot2 mutants did not present any particular symbiotic phenotype; however, the loss of function of both MtNOOT1 and MtNOOT2 resulted in the complete loss of nodule identity and was accompanied by drastic changes in the expression of symbiotic, defense, and root apical meristem marker genes. Mtnoot1 noot2 double mutants developed only nonfixing root-like structures that were no longer able to host symbiotic rhizobia. This study provides original insights into the molecular basis underlying nodule identity in legumes forming indeterminate nodules.
Collapse
Affiliation(s)
- Kevin Magne
- Institute of Plant Sciences Paris-Saclay IPS2, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Paris-Sud, Université Evry, Université Paris-Saclay, Bâtiment 630, 91405 Orsay, France
- Institute of Plant Sciences Paris-Saclay IPS2, Paris Diderot, Sorbonne Paris-Cité, Bâtiment 630, 91405 Orsay, France
| | - Jean-Malo Couzigou
- Institute of Plant Sciences Paris-Saclay IPS2, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Paris-Sud, Université Evry, Université Paris-Saclay, Bâtiment 630, 91405 Orsay, France
- Institute of Plant Sciences Paris-Saclay IPS2, Paris Diderot, Sorbonne Paris-Cité, Bâtiment 630, 91405 Orsay, France
| | - Katharina Schiessl
- Department of Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | - Shengbin Liu
- Institute of Plant Sciences Paris-Saclay IPS2, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Paris-Sud, Université Evry, Université Paris-Saclay, Bâtiment 630, 91405 Orsay, France
- Institute of Plant Sciences Paris-Saclay IPS2, Paris Diderot, Sorbonne Paris-Cité, Bâtiment 630, 91405 Orsay, France
| | - Jeoffrey George
- Institute of Plant Sciences Paris-Saclay IPS2, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Paris-Sud, Université Evry, Université Paris-Saclay, Bâtiment 630, 91405 Orsay, France
- Institute of Plant Sciences Paris-Saclay IPS2, Paris Diderot, Sorbonne Paris-Cité, Bâtiment 630, 91405 Orsay, France
| | - Vladimir Zhukov
- ARRIAM, Laboratory of Genetics of Plant-Microbe Interactions, Podbelsky chaussée 3, 196608 Pushkin, St. Petersburg, Russia
| | - Lucien Sahl
- Institute of Plant Sciences Paris-Saclay IPS2, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Paris-Sud, Université Evry, Université Paris-Saclay, Bâtiment 630, 91405 Orsay, France
- Institute of Plant Sciences Paris-Saclay IPS2, Paris Diderot, Sorbonne Paris-Cité, Bâtiment 630, 91405 Orsay, France
| | - Frederic Boyer
- Institute of Plant Sciences Paris-Saclay IPS2, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Paris-Sud, Université Evry, Université Paris-Saclay, Bâtiment 630, 91405 Orsay, France
- Institute of Plant Sciences Paris-Saclay IPS2, Paris Diderot, Sorbonne Paris-Cité, Bâtiment 630, 91405 Orsay, France
| | | | - Kirankumar S Mysore
- Plant Biology Division, Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401
| | - Jiangqi Wen
- Plant Biology Division, Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401
| | - Sylvie Citerne
- Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique, AgroParisTech, Centre National de la Recherche Scientifique, Université Paris-Saclay, 78000 Versailles, France
| | - Giles E D Oldroyd
- Department of Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | - Pascal Ratet
- Institute of Plant Sciences Paris-Saclay IPS2, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Paris-Sud, Université Evry, Université Paris-Saclay, Bâtiment 630, 91405 Orsay, France
- Institute of Plant Sciences Paris-Saclay IPS2, Paris Diderot, Sorbonne Paris-Cité, Bâtiment 630, 91405 Orsay, France
| |
Collapse
|
17
|
Roberts MF, Khan HM, Goldstein R, Reuter N, Gershenson A. Search and Subvert: Minimalist Bacterial Phosphatidylinositol-Specific Phospholipase C Enzymes. Chem Rev 2018; 118:8435-8473. [DOI: 10.1021/acs.chemrev.8b00208] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Mary F. Roberts
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | | | - Rebecca Goldstein
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | | | - Anne Gershenson
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| |
Collapse
|
18
|
Berrabah F, Balliau T, Aït-Salem EH, George J, Zivy M, Ratet P, Gourion B. Control of the ethylene signaling pathway prevents plant defenses during intracellular accommodation of the rhizobia. THE NEW PHYTOLOGIST 2018; 219:310-323. [PMID: 29668080 DOI: 10.1111/nph.15142] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 02/28/2018] [Indexed: 05/11/2023]
Abstract
Massive intracellular populations of symbiotic bacteria, referred to as rhizobia, are housed in legume root nodules. Little is known about the mechanisms preventing the development of defense in these organs although genes such as SymCRK and DNF2 of the model legume Medicago truncatula are required for this control after rhizobial internalization in host nodule cells. Here we investigated the molecular basis of the symbiotic control of immunity. Proteomic analysis was performed to compare functional (wild-type) and defending nodules (symCRK). Based on the results, the control of plant immunity during the functional step of the symbiosis was further investigated by biochemical and pharmacological approaches as well as by transcript and histology analysis. Ethylene was identified as a potential signal inducing plant defenses in symCRK nodules. Involvement of this phytohormone in symCRK and dnf2-developed defenses and in the death of intracellular rhizobia was confirmed. This negative effect of ethylene depended on the M. truncatula sickle gene and was also observed in the legume Lotus japonicus. Together, these data indicate that prevention of ethylene-triggered defenses is crucial for the persistence of endosymbiosis and that the DNF2 and SymCRK genes are required for this process.
Collapse
Affiliation(s)
- Fathi Berrabah
- Institute of Plant Sciences Paris Saclay IPS2, CNRS, INRA, Université Paris-Sud, Université Evry, Université Paris-Saclay, Batiment 630, Orsay, 91405, France
- Institute of Plant Sciences Paris-Saclay IPS2, Paris Diderot, Sorbonne Paris-Cité, Bâtiment 630, Orsay, 91405, France
| | - Thierry Balliau
- INRA, PAPPSO, UMR Génétique Quantitative et Évolution - Le Moulon, INRA/Université Paris-Sud/CNRS/AgroParisTech, Université Paris-Saclay, Gif-sur-Yvette, F-91190, France
| | - El Hosseyn Aït-Salem
- Institute of Plant Sciences Paris Saclay IPS2, CNRS, INRA, Université Paris-Sud, Université Evry, Université Paris-Saclay, Batiment 630, Orsay, 91405, France
- Institute of Plant Sciences Paris-Saclay IPS2, Paris Diderot, Sorbonne Paris-Cité, Bâtiment 630, Orsay, 91405, France
| | - Jeoffrey George
- Institute of Plant Sciences Paris Saclay IPS2, CNRS, INRA, Université Paris-Sud, Université Evry, Université Paris-Saclay, Batiment 630, Orsay, 91405, France
- Institute of Plant Sciences Paris-Saclay IPS2, Paris Diderot, Sorbonne Paris-Cité, Bâtiment 630, Orsay, 91405, France
| | - Michel Zivy
- CNRS, PAPPSO, UMR Génétique Quantitative et Évolution - Le Moulon, INRA/Université Paris-Sud/CNRS/AgroParisTech, Université Paris-Saclay, Gif-sur-Yvette, F-91190, France
| | - Pascal Ratet
- Institute of Plant Sciences Paris Saclay IPS2, CNRS, INRA, Université Paris-Sud, Université Evry, Université Paris-Saclay, Batiment 630, Orsay, 91405, France
- Institute of Plant Sciences Paris-Saclay IPS2, Paris Diderot, Sorbonne Paris-Cité, Bâtiment 630, Orsay, 91405, France
| | - Benjamin Gourion
- Institute of Plant Sciences Paris Saclay IPS2, CNRS, INRA, Université Paris-Sud, Université Evry, Université Paris-Saclay, Batiment 630, Orsay, 91405, France
- Institute of Plant Sciences Paris-Saclay IPS2, Paris Diderot, Sorbonne Paris-Cité, Bâtiment 630, Orsay, 91405, France
| |
Collapse
|
19
|
Robert G, Muñoz N, Alvarado-Affantranger X, Saavedra L, Davidenco V, Rodríguez-Kessler M, Estrada-Navarrete G, Sánchez F, Lascano R. Phosphatidylinositol 3-kinase function at very early symbiont perception: a local nodulation control under stress conditions? JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:2037-2048. [PMID: 29394394 DOI: 10.1093/jxb/ery030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 01/24/2018] [Indexed: 05/12/2023]
Abstract
Root hair curling is an early and essential morphological change required for the success of the symbiotic interaction between legumes and rhizobia. At this stage rhizobia grow as an infection thread within root hairs and are internalized into the plant cells by endocytosis, where the PI3K enzyme plays important roles. Previous observations show that stress conditions affect early stages of the symbiotic interaction, from 2 to 30 min post-inoculation, which we term as very early host responses, and affect symbiosis establishment. Herein, we demonstrated the relevance of the very early host responses for the symbiotic interaction. PI3K and the NADPH oxidase complex are found to have key roles in the microsymbiont recognition response, modulating the apoplastic and intracellular/endosomal ROS induction in root hairs. Interestingly, compared with soybean mutant plants that do not perceive the symbiont, we demonstrated that the very early symbiont perception under sublethal saline stress conditions induced root hair death. Together, these results highlight not only the importance of the very early host-responses on later stages of the symbiont interaction, but also suggest that they act as a mechanism for local control of nodulation capacity, prior to the abortion of the infection thread, preventing the allocation of resources/energy for nodule formation under unfavorable environmental conditions.
Collapse
Affiliation(s)
- Germán Robert
- Instituto de Fisiología y Recursos Genéticos Vegetales, Centro de Investigaciones Agropecuarias-INTA, de Septiembre, X5020ICA, Córdoba, Argentina
- Cátedra de Fisiología Vegetal, Facultad de Ciencias Exactas Físicas y Naturales, Universidad Nacional de Córdoba, Av. Vélez Sarsfield, Córdoba, Argentina
| | - Nacira Muñoz
- Instituto de Fisiología y Recursos Genéticos Vegetales, Centro de Investigaciones Agropecuarias-INTA, de Septiembre, X5020ICA, Córdoba, Argentina
- Cátedra de Fisiología Vegetal, Facultad de Ciencias Exactas Físicas y Naturales, Universidad Nacional de Córdoba, Av. Vélez Sarsfield, Córdoba, Argentina
| | - Xochitl Alvarado-Affantranger
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Laura Saavedra
- Cátedra de Fisiología Vegetal, Facultad de Ciencias Exactas Físicas y Naturales, Universidad Nacional de Córdoba, Av. Vélez Sarsfield, Córdoba, Argentina
| | - Vanina Davidenco
- Instituto de Fisiología y Recursos Genéticos Vegetales, Centro de Investigaciones Agropecuarias-INTA, de Septiembre, X5020ICA, Córdoba, Argentina
- Cátedra de Fisiología Vegetal, Facultad de Ciencias Agropecuarias, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Margarita Rodríguez-Kessler
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Georgina Estrada-Navarrete
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Federico Sánchez
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Ramiro Lascano
- Cátedra de Fisiología Vegetal, Facultad de Ciencias Exactas Físicas y Naturales, Universidad Nacional de Córdoba, Av. Vélez Sarsfield, Córdoba, Argentina
| |
Collapse
|
20
|
Abstract
Medicago truncatula is able to perform a symbiotic association with Sinorhizobium spp. This interaction leads to the formation of a new root organ, the nodule, in which bacteria infect the host cells and fix atmospheric nitrogen for the plant benefit. Multiple and complex processes are essential for the success of this interaction from the recognition phase to nodule formation and functioning, and a wide range of plant host genes is required to orchestrate this phenomenon. Thanks to direct and reverse genetic as well as transcriptomic approaches, numerous genes involved in this symbiosis have been described and improve our understanding of this fantastic association. Herein we propose to update the recent molecular knowledge of how M. truncatula associates to its symbiotic partner Sinorhizobium spp.
Collapse
|
21
|
Cao Y, Halane MK, Gassmann W, Stacey G. The Role of Plant Innate Immunity in the Legume-Rhizobium Symbiosis. ANNUAL REVIEW OF PLANT BIOLOGY 2017; 68:535-561. [PMID: 28142283 DOI: 10.1146/annurev-arplant-042916-041030] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
A classic view of the evolution of mutualism is that it derives from a pathogenic relationship that attenuated over time to a situation in which both partners can benefit. If this is the case for rhizobia, then one might uncover features of the symbiosis that reflect this earlier pathogenic state. For example, as with plant pathogens, it is now generally assumed that rhizobia actively suppress the host immune response to allow infection and symbiosis establishment. Likewise, the host has retained mechanisms to control the nutrient supply to the symbionts and the number of nodules so that they do not become too burdensome. The open question is whether such events are strictly ancillary to the central symbiotic nodulation factor signaling pathway or are essential for rhizobial host infection. Subsequent to these early infection events, plant immune responses can also be induced inside nodules and likely play a role in, for example, nodule senescence. Thus, a balanced regulation of innate immunity is likely required throughout rhizobial infection, symbiotic establishment, and maintenance. In this review, we discuss the significance of plant immune responses in the regulation of symbiotic associations with rhizobia, as well as rhizobial evasion of the host immune system.
Collapse
Affiliation(s)
- Yangrong Cao
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Morgan K Halane
- Division of Plant Sciences, C.S. Bond Life Sciences Center, and Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri 65211
| | - Walter Gassmann
- Division of Plant Sciences, C.S. Bond Life Sciences Center, and Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri 65211
| | - Gary Stacey
- Division of Plant Sciences, C.S. Bond Life Sciences Center, and Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri 65211
- Division of Biochemistry, University of Missouri, Columbia, Missouri 65211;
| |
Collapse
|
22
|
Brusamarello-Santos LC, Gilard F, Brulé L, Quilleré I, Gourion B, Ratet P, Maltempi de Souza E, Lea PJ, Hirel B. Metabolic profiling of two maize (Zea mays L.) inbred lines inoculated with the nitrogen fixing plant-interacting bacteria Herbaspirillum seropedicae and Azospirillum brasilense. PLoS One 2017; 12:e0174576. [PMID: 28362815 PMCID: PMC5375134 DOI: 10.1371/journal.pone.0174576] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 03/10/2017] [Indexed: 11/19/2022] Open
Abstract
Maize roots can be colonized by free-living atmospheric nitrogen (N2)-fixing bacteria (diazotrophs). However, the agronomic potential of non-symbiotic N2-fixation in such an economically important species as maize, has still not been fully exploited. A preliminary approach to improve our understanding of the mechanisms controlling the establishment of such N2-fixing associations has been developed, using two maize inbred lines exhibiting different physiological characteristics. The bacterial-plant interaction has been characterized by means of a metabolomic approach. Two established model strains of Nif+ diazotrophic bacteria, Herbaspirillum seropedicae and Azospirillum brasilense and their Nif- couterparts defficient in nitrogenase activity, were used to evaluate the impact of the bacterial inoculation and of N2 fixation on the root and leaf metabolic profiles. The two N2-fixing bacteria have been used to inoculate two genetically distant maize lines (FV252 and FV2), already characterized for their contrasting physiological properties. Using a well-controlled gnotobiotic experimental system that allows inoculation of maize plants with the two diazotrophs in a N-free medium, we demonstrated that both maize lines were efficiently colonized by the two bacterial species. We also showed that in the early stages of plant development, both bacterial strains were able to reduce acetylene, suggesting that they contain functional nitrogenase activity and are able to efficiently fix atmospheric N2 (Fix+). The metabolomic approach allowed the identification of metabolites in the two maize lines that were representative of the N2 fixing plant-bacterial interaction, these included mannitol and to a lesser extend trehalose and isocitrate. Whilst other metabolites such as asparagine, although only exhibiting a small increase in maize roots following bacterial infection, were specific for the two Fix+ bacterial strains, in comparison to their Fix- counterparts. Moreover, a number of metabolites exhibited a maize-genotype specific pattern of accumulation, suggesting that the highly diverse maize genetic resources could be further exploited in terms of beneficial plant-bacterial interactions for optimizing maize growth, with reduced N fertilization inputs.
Collapse
Affiliation(s)
- Liziane Cristina Brusamarello-Santos
- Department of Biochemistry and Molecular Biology, Federal University of Paraná, Centro Politécnico, Curutiba, Paraná, Brazil
- Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique, Centre de Versailles-Grignon, Unité Mixte de Recherche 1318 INRA-Agro-ParisTech, Equipe de Recherche Labellisée 3559, Centre National de la Recherche Scientifique, Versailles, France
| | - Françoise Gilard
- Plateforme Métabolisme-Métabolome, Institute of Plant Sciences Paris-Saclay, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Paris-Sud, Université Evry, Université Paris-Diderot, Université Paris-Saclay, Orsay, France
| | - Lenaïg Brulé
- Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique, Centre de Versailles-Grignon, Unité Mixte de Recherche 1318 INRA-Agro-ParisTech, Equipe de Recherche Labellisée 3559, Centre National de la Recherche Scientifique, Versailles, France
| | - Isabelle Quilleré
- Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique, Centre de Versailles-Grignon, Unité Mixte de Recherche 1318 INRA-Agro-ParisTech, Equipe de Recherche Labellisée 3559, Centre National de la Recherche Scientifique, Versailles, France
| | - Benjamin Gourion
- Institute of Plant Sciences Paris-Saclay, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Paris-Sud, Université Evry, Université Paris-Diderot, Université Paris-Saclay, Orsay, France
| | - Pascal Ratet
- Institute of Plant Sciences Paris-Saclay, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Paris-Sud, Université Evry, Université Paris-Diderot, Université Paris-Saclay, Orsay, France
| | - Emanuel Maltempi de Souza
- Department of Biochemistry and Molecular Biology, Federal University of Paraná, Centro Politécnico, Curutiba, Paraná, Brazil
| | - Peter J. Lea
- Lancaster Environment Centre, Lancaster University, Lancaster, United Kingdom
| | - Bertrand Hirel
- Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique, Centre de Versailles-Grignon, Unité Mixte de Recherche 1318 INRA-Agro-ParisTech, Equipe de Recherche Labellisée 3559, Centre National de la Recherche Scientifique, Versailles, France
| |
Collapse
|
23
|
Dupuy P, Gourion B, Sauviac L, Bruand C. DNA double-strand break repair is involved in desiccation resistance of Sinorhizobium meliloti, but is not essential for its symbiotic interaction with Medicago truncatula. MICROBIOLOGY-SGM 2017; 163:333-342. [PMID: 27902438 DOI: 10.1099/mic.0.000400] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The soil bacterium Sinorhizobium meliloti, a nitrogen-fixing symbiont of legume plants, is exposed to numerous stress conditions in nature, some of which cause the formation of harmful DNA double-strand breaks (DSBs). In particular, the reactive oxygen species (ROS) and the reactive nitrogen species (RNS) produced during symbiosis, and the desiccation occurring in dry soils, are conditions which induce DSBs. Two major systems of DSB repair are known in S. meliloti: homologous recombination (HR) and non-homologous end-joining (NHEJ). However, their role in the resistance to ROS, RNS and desiccation has never been examined in this bacterial species, and the importance of DSB repair in the symbiotic interaction has not been properly evaluated. Here, we constructed S. meliloti strains deficient in HR (by deleting the recA gene) or in NHEJ (by deleting the four ku genes) or both. Interestingly, we observed that ku and/or recA genes are involved in S. meliloti resistance to ROS and RNS. Nevertheless, an S. meliloti strain deficient in both HR and NHEJ was not altered in its ability to establish and maintain an efficient nitrogen-fixing symbiosis with Medicago truncatula, showing that rhizobial DSB repair is not essential for this process. This result suggests either that DSB formation in S. meliloti is efficiently prevented during symbiosis or that DSBs are not detrimental for symbiosis efficiency. In contrast, we found for the first time that both recA and ku genes are involved in S. meliloti resistance to desiccation, suggesting that DSB repair could be important for rhizobium persistence in the soil.
Collapse
Affiliation(s)
- Pierre Dupuy
- Laboratoire des Interactions Plantes-Microorganismes, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
| | - Benjamin Gourion
- Laboratoire des Interactions Plantes-Microorganismes, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
| | - Laurent Sauviac
- Laboratoire des Interactions Plantes-Microorganismes, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
| | - Claude Bruand
- Laboratoire des Interactions Plantes-Microorganismes, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
| |
Collapse
|
24
|
Wang C, Yu H, Luo L, Duan L, Cai L, He X, Wen J, Mysore KS, Li G, Xiao A, Duanmu D, Cao Y, Hong Z, Zhang Z. NODULES WITH ACTIVATED DEFENSE 1 is required for maintenance of rhizobial endosymbiosis in Medicago truncatula. THE NEW PHYTOLOGIST 2016; 212:176-91. [PMID: 27245091 DOI: 10.1111/nph.14017] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 04/13/2016] [Indexed: 05/27/2023]
Abstract
The symbiotic interaction between legume plants and rhizobia results in the formation of root nodules, in which symbiotic plant cells host and harbor thousands of nitrogen-fixing rhizobia. Here, a Medicago truncatula nodules with activated defense 1 (nad1) mutant was identified using reverse genetics methods. The mutant phenotype was characterized using cell and molecular biology approaches. An RNA-sequencing technique was used to analyze the transcriptomic reprogramming of nad1 mutant nodules. In the nad1 mutant plants, rhizobial infection and propagation in infection threads are normal, whereas rhizobia and their symbiotic plant cells become necrotic immediately after rhizobia are released from infection threads into symbiotic cells of nodules. Defense-associated responses were detected in nad1 nodules. NAD1 is specifically present in root nodule symbiosis plants with the exception of Morus notabilis, and the transcript is highly induced in nodules. NAD1 encodes a small uncharacterized protein with two predicted transmembrane helices and is localized at the endoplasmic reticulum. Our data demonstrate a positive role for NAD1 in the maintenance of rhizobial endosymbiosis during nodulation.
Collapse
Affiliation(s)
- Chao Wang
- State Key Laboratory of Agricultural Microbiology, College of Life Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Haixiang Yu
- State Key Laboratory of Agricultural Microbiology, College of Life Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Li Luo
- Shanghai Key Lab of Bio-energy Crops, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Liujian Duan
- State Key Laboratory of Agricultural Microbiology, College of Life Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Liuyang Cai
- National Key Laboratory of Crop Genetic Improvement, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xinxing He
- State Key Laboratory of Agricultural Microbiology, College of Life Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jiangqi Wen
- Plant Biology Division, The Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, Ardmore, OK, 73401, USA
| | - Kirankumar S Mysore
- Plant Biology Division, The Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, Ardmore, OK, 73401, USA
| | - Guoliang Li
- National Key Laboratory of Crop Genetic Improvement, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China
| | - Aifang Xiao
- State Key Laboratory of Agricultural Microbiology, College of Life Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Deqiang Duanmu
- State Key Laboratory of Agricultural Microbiology, College of Life Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yangrong Cao
- State Key Laboratory of Agricultural Microbiology, College of Life Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zonglie Hong
- Department of Plant, Soil and Entomological Sciences and Program of Microbiology, Molecular Biology and Biochemistry, University of Idaho, Moscow, ID, 83844, USA
| | - Zhongming Zhang
- State Key Laboratory of Agricultural Microbiology, College of Life Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
25
|
Veerappan V, Jani M, Kadel K, Troiani T, Gale R, Mayes T, Shulaev E, Wen J, Mysore KS, Azad RK, Dickstein R. Rapid identification of causative insertions underlying Medicago truncatula Tnt1 mutants defective in symbiotic nitrogen fixation from a forward genetic screen by whole genome sequencing. BMC Genomics 2016; 17:141. [PMID: 26920390 PMCID: PMC4769575 DOI: 10.1186/s12864-016-2452-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 02/09/2016] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND In the model legume Medicago truncatula, the near saturation genome-wide Tnt1 insertion mutant population in ecotype R108 is a valuable tool in functional genomics studies. Forward genetic screens have identified many Tnt1 mutants defective in nodule development and symbiotic nitrogen fixation (SNF). However, progress toward identifying the causative mutations of these symbiotic mutants has been slow because of the high copy number of Tnt1 insertions in some mutant plants and inefficient recovery of flanking sequence tags (FSTs) by thermal asymmetric interlaced PCR (TAIL-PCR) and other techniques. RESULTS Two Tnt1 symbiotic mutants, NF11217 and NF10547, with defects in nodulation and SNF were isolated during a forward genetic screen. Both TAIL-PCR and whole genome sequencing (WGS) approaches were used in attempts to find the relevant mutant genes in NF11217 and NF10547. Illumina paired-end WGS generated ~16 Gb of sequence data from a 500 bp insert library for each mutant, yielding ~40X genome coverage. Bioinformatics analysis of the sequence data identified 97 and 65 high confidence independent Tnt1 insertion loci in NF11217 and NF10547, respectively. In comparison to TAIL-PCR, WGS recovered more Tnt1 insertions. From the WGS data, we found Tnt1 insertions in the exons of the previously described PHOSPHOLIPASE C (PLC)-like and NODULE INCEPTION (NIN) genes in NF11217 and NF10547 mutants, respectively. Co-segregation analyses confirmed that the symbiotic phenotypes of NF11217 and NF10547 are tightly linked to the Tnt1 insertions in PLC-like and NIN genes, respectively. CONCLUSIONS In this work, we demonstrate that WGS is an efficient approach for identification of causative genes underlying SNF defective phenotypes in M. truncatula Tnt1 insertion mutants obtained via forward genetic screens.
Collapse
Affiliation(s)
- Vijaykumar Veerappan
- Department of Biological Sciences, University of North Texas, 1155 Union Circle #305220, Denton, TX, 76203, USA.
| | - Mehul Jani
- Department of Biological Sciences, University of North Texas, 1155 Union Circle #305220, Denton, TX, 76203, USA.
| | - Khem Kadel
- Department of Biological Sciences, University of North Texas, 1155 Union Circle #305220, Denton, TX, 76203, USA.
| | - Taylor Troiani
- Department of Biological Sciences, University of North Texas, 1155 Union Circle #305220, Denton, TX, 76203, USA.
| | - Ronny Gale
- Department of Biological Sciences, University of North Texas, 1155 Union Circle #305220, Denton, TX, 76203, USA.
| | - Tyler Mayes
- Department of Biological Sciences, University of North Texas, 1155 Union Circle #305220, Denton, TX, 76203, USA.
| | - Elena Shulaev
- Department of Biological Sciences, University of North Texas, 1155 Union Circle #305220, Denton, TX, 76203, USA.
| | - Jiangqi Wen
- Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, OK, 73401, USA.
| | - Kirankumar S Mysore
- Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, OK, 73401, USA.
| | - Rajeev K Azad
- Department of Biological Sciences, University of North Texas, 1155 Union Circle #305220, Denton, TX, 76203, USA. .,Department of Mathematics, University of North Texas, Denton, TX, 76203, USA.
| | - Rebecca Dickstein
- Department of Biological Sciences, University of North Texas, 1155 Union Circle #305220, Denton, TX, 76203, USA.
| |
Collapse
|
26
|
Veerappan V, Jani M, Kadel K, Troiani T, Gale R, Mayes T, Shulaev E, Wen J, Mysore KS, Azad RK, Dickstein R. Rapid identification of causative insertions underlying Medicago truncatula Tnt1 mutants defective in symbiotic nitrogen fixation from a forward genetic screen by whole genome sequencing. BMC Genomics 2016. [PMID: 26920390 DOI: 10.1186/s12864-12016-12452-12865] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023] Open
Abstract
BACKGROUND In the model legume Medicago truncatula, the near saturation genome-wide Tnt1 insertion mutant population in ecotype R108 is a valuable tool in functional genomics studies. Forward genetic screens have identified many Tnt1 mutants defective in nodule development and symbiotic nitrogen fixation (SNF). However, progress toward identifying the causative mutations of these symbiotic mutants has been slow because of the high copy number of Tnt1 insertions in some mutant plants and inefficient recovery of flanking sequence tags (FSTs) by thermal asymmetric interlaced PCR (TAIL-PCR) and other techniques. RESULTS Two Tnt1 symbiotic mutants, NF11217 and NF10547, with defects in nodulation and SNF were isolated during a forward genetic screen. Both TAIL-PCR and whole genome sequencing (WGS) approaches were used in attempts to find the relevant mutant genes in NF11217 and NF10547. Illumina paired-end WGS generated ~16 Gb of sequence data from a 500 bp insert library for each mutant, yielding ~40X genome coverage. Bioinformatics analysis of the sequence data identified 97 and 65 high confidence independent Tnt1 insertion loci in NF11217 and NF10547, respectively. In comparison to TAIL-PCR, WGS recovered more Tnt1 insertions. From the WGS data, we found Tnt1 insertions in the exons of the previously described PHOSPHOLIPASE C (PLC)-like and NODULE INCEPTION (NIN) genes in NF11217 and NF10547 mutants, respectively. Co-segregation analyses confirmed that the symbiotic phenotypes of NF11217 and NF10547 are tightly linked to the Tnt1 insertions in PLC-like and NIN genes, respectively. CONCLUSIONS In this work, we demonstrate that WGS is an efficient approach for identification of causative genes underlying SNF defective phenotypes in M. truncatula Tnt1 insertion mutants obtained via forward genetic screens.
Collapse
Affiliation(s)
- Vijaykumar Veerappan
- Department of Biological Sciences, University of North Texas, 1155 Union Circle #305220, Denton, TX, 76203, USA.
| | - Mehul Jani
- Department of Biological Sciences, University of North Texas, 1155 Union Circle #305220, Denton, TX, 76203, USA.
| | - Khem Kadel
- Department of Biological Sciences, University of North Texas, 1155 Union Circle #305220, Denton, TX, 76203, USA.
| | - Taylor Troiani
- Department of Biological Sciences, University of North Texas, 1155 Union Circle #305220, Denton, TX, 76203, USA.
| | - Ronny Gale
- Department of Biological Sciences, University of North Texas, 1155 Union Circle #305220, Denton, TX, 76203, USA.
| | - Tyler Mayes
- Department of Biological Sciences, University of North Texas, 1155 Union Circle #305220, Denton, TX, 76203, USA.
| | - Elena Shulaev
- Department of Biological Sciences, University of North Texas, 1155 Union Circle #305220, Denton, TX, 76203, USA.
| | - Jiangqi Wen
- Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, OK, 73401, USA.
| | - Kirankumar S Mysore
- Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, OK, 73401, USA.
| | - Rajeev K Azad
- Department of Biological Sciences, University of North Texas, 1155 Union Circle #305220, Denton, TX, 76203, USA. .,Department of Mathematics, University of North Texas, Denton, TX, 76203, USA.
| | - Rebecca Dickstein
- Department of Biological Sciences, University of North Texas, 1155 Union Circle #305220, Denton, TX, 76203, USA.
| |
Collapse
|
27
|
van Zeijl A, Op den Camp RHM, Deinum EE, Charnikhova T, Franssen H, Op den Camp HJM, Bouwmeester H, Kohlen W, Bisseling T, Geurts R. Rhizobium Lipo-chitooligosaccharide Signaling Triggers Accumulation of Cytokinins in Medicago truncatula Roots. MOLECULAR PLANT 2015; 8:1213-26. [PMID: 25804975 DOI: 10.1016/j.molp.2015.03.010] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 03/12/2015] [Accepted: 03/15/2015] [Indexed: 05/20/2023]
Abstract
Legume rhizobium symbiosis is initiated upon perception of bacterial secreted lipo-chitooligosaccharides (LCOs). Perception of these signals by the plant initiates a signaling cascade that leads to nodule formation. Several studies have implicated a function for cytokinin in this process. However, whether cytokinin accumulation and subsequent signaling are an integral part of rhizobium LCO signaling remains elusive. Here, we show that cytokinin signaling is required for the majority of transcriptional changes induced by rhizobium LCOs. In addition, we demonstrate that several cytokinins accumulate in the root susceptible zone 3 h after rhizobium LCO application, including the biologically most active cytokinins, trans-zeatin and isopentenyl adenine. These responses are dependent on calcium- and calmodulin-dependent protein kinase (CCaMK), a key protein in rhizobial LCO-induced signaling. Analysis of the ethylene-insensitive Mtein2/Mtsickle mutant showed that LCO-induced cytokinin accumulation is negatively regulated by ethylene. Together with transcriptional induction of ethylene biosynthesis genes, it suggests a feedback loop negatively regulating LCO signaling and subsequent cytokinin accumulation. We argue that cytokinin accumulation is a key step in the pathway leading to nodule organogenesis and that this is tightly controlled by feedback loops.
Collapse
Affiliation(s)
- Arjan van Zeijl
- Department of Plant Sciences, Laboratory of Molecular Biology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Rik H M Op den Camp
- Department of Plant Sciences, Laboratory of Molecular Biology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Eva E Deinum
- Department of Plant Sciences, Laboratory of Molecular Biology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands; Department of Systems Biophysics, FOM institute AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands
| | - Tatsiana Charnikhova
- Department of Plant Sciences, Laboratory of Plant Physiology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Henk Franssen
- Department of Plant Sciences, Laboratory of Molecular Biology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Huub J M Op den Camp
- Department of Microbiology, IWWR, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Harro Bouwmeester
- Department of Plant Sciences, Laboratory of Plant Physiology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Wouter Kohlen
- Department of Plant Sciences, Laboratory of Molecular Biology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Ton Bisseling
- Department of Plant Sciences, Laboratory of Molecular Biology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands; College of Science, King Saud University, Post Office Box 2455, Riyadh 11451, Saudi Arabia
| | - René Geurts
- Department of Plant Sciences, Laboratory of Molecular Biology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands.
| |
Collapse
|
28
|
Berrabah F, Ratet P, Gourion B. Multiple steps control immunity during the intracellular accommodation of rhizobia. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:1977-85. [PMID: 25682610 PMCID: PMC4378630 DOI: 10.1093/jxb/eru545] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 12/15/2014] [Accepted: 12/16/2014] [Indexed: 05/20/2023]
Abstract
Medicago truncatula belongs to the legume family and forms symbiotic associations with nitrogen fixing bacteria, the rhizobia. During these interactions, the plants develop root nodules in which bacteria invade the plant cells and fix nitrogen for the benefit of the plant. Despite massive infection, legume nodules do not develop visible defence reactions, suggesting a special immune status of these organs. Some factors influencing rhizobium maintenance within the plant cells have been previously identified, such as the M. truncatula NCR peptides whose toxic effects are reduced by the bacterial protein BacA. In addition, DNF2, SymCRK, and RSD are M. truncatula genes required to avoid rhizobial death within the symbiotic cells. DNF2 and SymCRK are essential to prevent defence-like reactions in nodules after bacteria internalization into the symbiotic cells. Herein, we used a combination of genetics, histology and molecular biology approaches to investigate the relationship between the factors preventing bacterial death in the nodule cells. We show that the RSD gene is also required to repress plant defences in nodules. Upon inoculation with the bacA mutant, defence responses are observed only in the dnf2 mutant and not in the symCRK and rsd mutants. In addition, our data suggest that lack of nitrogen fixation by the bacterial partner triggers bacterial death in nodule cells after bacteroid differentiation. Together our data indicate that, after internalization, at least four independent mechanisms prevent bacterial death in the plant cell. These mechanisms involve successively: DNF2, BacA, SymCRK/RSD and bacterial ability to fix nitrogen.
Collapse
Affiliation(s)
- Fathi Berrabah
- Institut des Sciences du Végétal, CNRS, Saclay Plant Sciences, Avenue de la Terrasse, 91198 Gif sur Yvette, France
| | - Pascal Ratet
- Institut des Sciences du Végétal, CNRS, Saclay Plant Sciences, Avenue de la Terrasse, 91198 Gif sur Yvette, France
| | - Benjamin Gourion
- Institut des Sciences du Végétal, CNRS, Saclay Plant Sciences, Avenue de la Terrasse, 91198 Gif sur Yvette, France
| |
Collapse
|
29
|
Gourion B, Berrabah F, Ratet P, Stacey G. Rhizobium-legume symbioses: the crucial role of plant immunity. TRENDS IN PLANT SCIENCE 2015; 20:186-94. [PMID: 25543258 DOI: 10.1016/j.tplants.2014.11.008] [Citation(s) in RCA: 166] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Revised: 11/16/2014] [Accepted: 11/21/2014] [Indexed: 05/03/2023]
Abstract
New research results have significantly revised our understanding of the rhizobium-legume infection process. For example, Nod factors (NFs), previously thought to be absolutely essential for this symbiosis, were shown to be dispensable under particular conditions. Similarly, an NF receptor, previously considered to be solely involved in symbiosis, was shown to function during plant pathogen infections. Indeed, there is a growing realization that plant innate immunity is a crucial component in the establishment and maintenance of symbiosis. We review here the factors involved in the suppression of plant immunity during rhizobium-legume symbiosis, and we attempt to place this information into context with the most recent and sometimes surprising research results.
Collapse
Affiliation(s)
- Benjamin Gourion
- Institut des Sciences du Végétal, Centre National de la Recherche Scientifique (CNRS), Saclay Plant Sciences, Avenue de la terrasse, 91198 Gif-sur-Yvette CEDEX, France.
| | - Fathi Berrabah
- Institut des Sciences du Végétal, Centre National de la Recherche Scientifique (CNRS), Saclay Plant Sciences, Avenue de la terrasse, 91198 Gif-sur-Yvette CEDEX, France
| | - Pascal Ratet
- Institut des Sciences du Végétal, Centre National de la Recherche Scientifique (CNRS), Saclay Plant Sciences, Avenue de la terrasse, 91198 Gif-sur-Yvette CEDEX, France
| | - Gary Stacey
- Divisions of Plant Science and Biochemistry, National Center for Soybean Biotechnology, C.S. Bond Life Science Center, University of Missouri, Columbia, MO 65203, USA
| |
Collapse
|
30
|
Berrabah F, Bourcy M, Eschstruth A, Cayrel A, Guefrachi I, Mergaert P, Wen J, Jean V, Mysore KS, Gourion B, Ratet P. A nonRD receptor-like kinase prevents nodule early senescence and defense-like reactions during symbiosis. THE NEW PHYTOLOGIST 2014; 203:1305-1314. [PMID: 24916161 DOI: 10.1111/nph.12881] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 04/30/2014] [Indexed: 05/11/2023]
Abstract
Rhizobia and legumes establish symbiotic interactions leading to the production of root nodules, in which bacteria fix atmospheric nitrogen for the plant's benefit. This symbiosis is efficient because of the high rhizobia population within nodules. Here, we investigated how legumes accommodate such bacterial colonization. We used a reverse genetic approach to identify a Medicago truncatula gene, SymCRK, which encodes a cysteine-rich receptor-like kinase that is required for rhizobia maintenance within the plant cells, and performed detailed phenotypic analyses of the corresponding mutant. The Medicago truncatula symCRK mutant developed nonfunctional and necrotic nodules. A nonarginine asparate (nonRD) motif, typical of receptors involved in innate immunity, is present in the SymCRK kinase domain. Similar to the dnf2 mutant, bacteroid differentiation defect, defense-like reactions and early senescence were observed in the symCRK nodules. However, the dnf2 and symCRK nodules differ by their degree of colonization, which is higher in symCRK. Furthermore, in contrast to dnf2, symCRK is not a conditional mutant. These results suggest that in M. truncatula at least two genes are involved in the symbiotic control of immunity. Furthermore, phenotype differences between the two mutants suggest that two distinct molecular mechanisms control suppression of plant immunity during nodulation.
Collapse
Affiliation(s)
- Fathi Berrabah
- Institut des sciences du végétal, CNRS, Saclay Plant Sciences, Avenue de la terrasse, 91198, Gif Sur Yvette, France
| | - Marie Bourcy
- Institut des sciences du végétal, CNRS, Saclay Plant Sciences, Avenue de la terrasse, 91198, Gif Sur Yvette, France
| | - Alexis Eschstruth
- Institut des sciences du végétal, CNRS, Saclay Plant Sciences, Avenue de la terrasse, 91198, Gif Sur Yvette, France
| | - Anne Cayrel
- Institut des sciences du végétal, CNRS, Saclay Plant Sciences, Avenue de la terrasse, 91198, Gif Sur Yvette, France
| | - Ibtissem Guefrachi
- Institut des sciences du végétal, CNRS, Saclay Plant Sciences, Avenue de la terrasse, 91198, Gif Sur Yvette, France
| | - Peter Mergaert
- Institut des sciences du végétal, CNRS, Saclay Plant Sciences, Avenue de la terrasse, 91198, Gif Sur Yvette, France
| | - Jiangqi Wen
- Plant Biology Division, The Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, Ardmore, OK, 73401, USA
| | - Viviane Jean
- Institut des sciences du végétal, CNRS, Saclay Plant Sciences, Avenue de la terrasse, 91198, Gif Sur Yvette, France
| | - Kirankumar S Mysore
- Plant Biology Division, The Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, Ardmore, OK, 73401, USA
| | - Benjamin Gourion
- Institut des sciences du végétal, CNRS, Saclay Plant Sciences, Avenue de la terrasse, 91198, Gif Sur Yvette, France
| | - Pascal Ratet
- Institut des sciences du végétal, CNRS, Saclay Plant Sciences, Avenue de la terrasse, 91198, Gif Sur Yvette, France
| |
Collapse
|