1
|
Suthi S, Mounika A, Potukuchi VGKS. Elevated acetate kinase (ackA) gene expression, activity, and biofilm formation observed in methicillin-resistant strains of Staphylococcus aureus (MRSA). J Genet Eng Biotechnol 2023; 21:100. [PMID: 37831271 PMCID: PMC10575836 DOI: 10.1186/s43141-023-00555-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 09/20/2023] [Indexed: 10/14/2023]
Abstract
BACKGROUND Staphylococcus aureus spreads its infections through biofilms. This usually happens in the stationary phase of S. aureus growth where it utilizes accumulated acetate as a carbon source via the phosphotrans-acetylase-acetate kinase (Pta-Ack) pathway. In which acetate kinase (ackA) catalyzes the substrate-level phosphorylation, a vital secondary energy-yielding pathway that promotes biofilms formation aids bacterium survival in hostile environments. In this study, we describe the cloning, sequencing, and expression of S. aureus ackA gene. The expression analysis of ackA gene in methicillin-resistant strains of S. aureus (MRSA) correlates with ackA activity and biofilm units. The uniqueness of ackA was analyzed by using in silico methods. RESULTS Elevated ackA gene expression was observed in MRSA strains, which correlates with increased ackA activity and biofilm units, explaining ackA role in MRSA growth and pathogenicity. The pure recombinant acetate kinase showed a molecular weight of 44 kDa, with enzyme activity of 3.35 ± 0.05 μM/ml/min. The presence of ACKA-1, ACKA-2 sites, one ATP, and five serine/threonine-protein kinase sites in the ackA gene (KC954623.1) indicated that acetyl phosphate production is strongly controlled. The comparative structural analysis of S. aureus ackA with ackA structures of Mycobacterium avium (3P4I) and Salmonella typhimurium (3SLC) exhibited variations as indicated by the RMSD values 1.877 Å and 2.141 Å respectively, explaining why ackA functions are differently placed in bacteria, concurring its involvement in S. aureus pathogenesis. CONCLUSIONS Overall findings of this study highlight the correlation of ackA expression profoundly increases survival capacity through biofilm formation, which is a pathogenic factor in MRSA and plays a pivotal role in infection spreading.
Collapse
Affiliation(s)
- Subbarayudu Suthi
- Microbial Genetics Laboratory, Department of Biotechnology, Sri Venkateswara Institute of Medical Sciences, Alipiri Road, Tirupati, 517501, Andhra Pradesh, India
| | - A Mounika
- Microbial Genetics Laboratory, Department of Biotechnology, Sri Venkateswara Institute of Medical Sciences, Alipiri Road, Tirupati, 517501, Andhra Pradesh, India
| | | |
Collapse
|
2
|
Improvement of the Gut Microbiota In Vivo by a Short-Chain Fatty Acids-Producing Strain Lactococcus garvieae CF11. Processes (Basel) 2022. [DOI: 10.3390/pr10030604] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Gut microbiota has strong connections with health. Regulating and enhancing gut microbiota and increasing the population of beneficial microorganisms constitutes a new approach to increasing the efficiency of health status. Although it has been shown that Lactococcus can adjust gut microbiota and be beneficial for the host, little is known about whether strains of Lactococcus petauri can improve the gut microbiota. This study focused on the influence of Lactococcus petauri CF11 on the gut microbiome composition and the levels of short-chain fatty acids (SCFAs) in vivo in healthy Sprague Dawley rats. The present results showed that strain CF11 was able to induce a higher amount of fecal acetic acid and propionic acid and enhance species richness. Moreover, strain CF11 improved the gut microbiota community structure. In the experimental group, the genera Oscillospira, Coprococcus, and Ruminococcus, which are reported to be able to produce SCFAs, are significantly increased when compared with the control group (p < 0.05). Finally, the functions of genes revealed that 180 pathways were upregulated or downregulated in comparison with the control group. Among them, the top-five clearly enriched pathways regarding metabolism included porphyrin and chlorophyll metabolism; C5-Branched dibasic acid metabolism; valine, leucine, and isoleucine biosynthesis; phenylalanine, tyrosine, and tryptophan biosynthesis; and ascorbate and aldarate metabolism. Our data suggest that the SCFAs-producing strain CF11 is a potential probiotic.
Collapse
|
3
|
Song Y, Wang X, Cui H, Ji C, Xue J, Jia X, Ma R, Li R. Enhancing growth and oil accumulation of a palmitoleic acid-rich Scenedesmus obliquus in mixotrophic cultivation with acetate and its potential for ammonium-containing wastewater purification and biodiesel production. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 297:113273. [PMID: 34311253 DOI: 10.1016/j.jenvman.2021.113273] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 06/21/2021] [Accepted: 07/09/2021] [Indexed: 06/13/2023]
Abstract
A palmitoleic acid-rich Scenedesmus obliquus strain SXND-02 was isolated from ammonium-containing wastewater. Biomass and lipid production were examined for this microalgal strain in photoautotrophic, heterotrophic, and mixotrophic cultivations, respectively, in order to extend its application in wastewater purification coupled with production of valued bio-products. Among the tested conditions, the microalga had better growth and higher lipid accumulation in mixotrophy. NH4Cl inhibited the microalgal growth in photoautotrophic cultivation. However, NaAc alleviated this inhibition in both heterotrophy and mixotrophy. Using 7 g L-1 NaAc and 0.5 g L-1 NH4Cl as carbon and nitrogen sources significantly increased the algal biomass and lipid yields under mixotrophic cultivation, with the highest levels up to 1.0 g L-1 and 59.88%, respectively. Fatty acid profiling indicated that palmitoleic acid was 23% in the S. obliquus SXND-02 under mixotrophic condition, which was about 21-fold higher than that in the control S. obliquus. Furthermore, this microalgal strain was tested in the chicken farm wastewater (CFW) containing high ammonium. Compared with other treatments, the S. obliquus SXND-02 cultivated in the 1/2 CFW + NaAc medium produced larger amounts of biomass (2.18 g L-1) and lipids (50.22%), and simultaneously higher removal rates of total nitrogen (TN) (80%), total ammonium nitrogen (TAN) (68%), total phosphate (TP) (82%), biological oxygen demand (BOD) (86%) and chemical oxygen demand (COD) (89%) from wastewater. The present data indicate that this excellent microalga can be used in mixotrophic cultivation for wastewater purification coupled with commercial production of valued biomass and high-quality algal oils.
Collapse
Affiliation(s)
- Yanan Song
- College of Agriculture, Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Taigu, 030801, China
| | - Xiaodan Wang
- College of Agriculture, Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Taigu, 030801, China
| | - Hongli Cui
- College of Agriculture, Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Taigu, 030801, China
| | - Chunli Ji
- College of Agriculture, Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Taigu, 030801, China
| | - Jinai Xue
- College of Agriculture, Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Taigu, 030801, China
| | - Xiaoyun Jia
- College of Agriculture, Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Taigu, 030801, China.
| | - Ruiyan Ma
- College of Plant Protection, Shanxi Agricultural University, Taigu, 030801, China.
| | - Runzhi Li
- College of Agriculture, Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Taigu, 030801, China.
| |
Collapse
|
4
|
Multifaceted Changes in Synaptic Composition and Astrocytic Involvement in a Mouse Model of Fragile X Syndrome. Sci Rep 2019; 9:13855. [PMID: 31554841 PMCID: PMC6761194 DOI: 10.1038/s41598-019-50240-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 09/09/2019] [Indexed: 12/20/2022] Open
Abstract
Fragile X Syndrome (FXS), a common inheritable form of intellectual disability, is known to alter neocortical circuits. However, its impact on the diverse synapse types comprising these circuits, or on the involvement of astrocytes, is not well known. We used immunofluorescent array tomography to quantify different synaptic populations and their association with astrocytes in layers 1 through 4 of the adult somatosensory cortex of a FXS mouse model, the FMR1 knockout mouse. The collected multi-channel data contained approximately 1.6 million synapses which were analyzed using a probabilistic synapse detector. Our study reveals complex, synapse-type and layer specific changes in the neocortical circuitry of FMR1 knockout mice. We report an increase of small glutamatergic VGluT1 synapses in layer 4 accompanied by a decrease in large VGluT1 synapses in layers 1 and 4. VGluT2 synapses show a rather consistent decrease in density in layers 1 and 2/3. In all layers, we observe the loss of large inhibitory synapses. Lastly, astrocytic association of excitatory synapses decreases. The ability to dissect the circuit deficits by synapse type and astrocytic involvement will be crucial for understanding how these changes affect circuit function, and ultimately defining targets for therapeutic intervention.
Collapse
|
5
|
Yoshida Y, Sato M, Nonaka T, Hasegawa Y, Kezuka Y. Characterization of the phosphotransacetylase-acetate kinase pathway for ATP production in Porphyromonas gingivalis. J Oral Microbiol 2019; 11:1588086. [PMID: 31007866 PMCID: PMC6461089 DOI: 10.1080/20002297.2019.1588086] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 02/18/2019] [Accepted: 02/25/2019] [Indexed: 12/19/2022] Open
Abstract
Acetyl phosphate (AcP) is generally produced from acetyl coenzyme A by phosphotransacetylase (Pta), and subsequent reaction with ADP, catalyzed by acetate kinase (Ack), produces ATP. The mechanism of ATP production in Porphyromonas gingivalis is poorly understood. The aim of this study was to explore the molecular basis of the Pta-Ack pathway in this microorganism. Pta and Ack from P. gingivalis ATCC 33277 were enzymatically and structurally characterized. Structural and mutational analyses suggest that Pta is a dimer with two substrate-binding sites in each subunit. Ack is also dimeric, with a catalytic cleft in each subunit, and structural analysis indicates a dramatic domain motion that opens and closes the cleft during catalysis. ATP formation by Ack proceeds via a sequential mechanism. Reverse transcription-PCR analysis demonstrated that the pta (PGN_1179) and ack (PGN_1178) genes, tandemly located in the genome, are cotranscribed as an operon. Inactivation of pta or ack in P. gingivalis by homologous recombination was successful only when the inactivated gene was expressed in trans. Therefore, both pta and ack genes are essential for this microorganism. Insights into the Pta-Ack pathway reported herein would be helpful to understand the energy acquisition in P. gingivalis.
Collapse
Affiliation(s)
- Yasuo Yoshida
- Department of Microbiology, School of Dentistry, Aichi Gakuin University, Nagoya, Japan
| | - Mitsunari Sato
- Department of Microbiology, School of Dentistry, Aichi Gakuin University, Nagoya, Japan
| | - Takamasa Nonaka
- Division of Structural Biology, Department of Pharmaceutical Sciences, School of Pharmacy, Iwate Medical University, Yahaba, Japan
| | - Yoshiaki Hasegawa
- Department of Microbiology, School of Dentistry, Aichi Gakuin University, Nagoya, Japan
| | - Yuichiro Kezuka
- Division of Structural Biology, Department of Pharmaceutical Sciences, School of Pharmacy, Iwate Medical University, Yahaba, Japan
| |
Collapse
|
6
|
Sasaki D, Sasaki K, Tsuge Y, Kondo A. Less biomass and intracellular glutamate in anodic biofilms lead to efficient electricity generation by microbial fuel cells. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:72. [PMID: 30976322 PMCID: PMC6442422 DOI: 10.1186/s13068-019-1414-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 03/19/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Using a microbial fuel cell (MFC), we observed that a complex microbial community decomposed starch and transferred electrons to a graphite felt anode to generate current. In spite of the same reactor configuration, inoculum, substrate, temperature, and pH, MFCs produced different current and power density. To understand which factor(s) affected electricity generation, here, we analyzed a complex microbial community in an anodic biofilm and fermentation broth using Illumina MiSeq sequencing and metabolomics. RESULTS Microbial biomass on the anode was lower in MFCs generating more electricity (0.09-0.16 mg cm-2-anode) than in those generating less electricity (0.60-2.80 mg cm-2-anode), while being equal (3890-4196 mg L-1-broth) in the fermentation broth over the same operational period. Chemical oxygen demand removal and acetate concentration were also similar in fermentation broths. MFCs generating more electricity had relatively more exoelectrogenic bacteria, such as Geobacter sp., but fewer acetate-utilizing Methanosarcina sp. and/or Lactococcus sp. in anodic biofilms. Accordingly, anodic biofilms generating more electricity presented higher levels of most intracellular metabolites related to the tricarboxylic acid cycle and a higher intracellular ATP/ADP ratio, but a lower intracellular NADH/NAD+ ratio. Moreover, the level of intracellular glutamate, an essential metabolite for microbial anabolic reactions, correlated negatively with current density. CONCLUSION Microbial growth on the anode and intracellular glutamate levels negatively affect electricity generation by MFCs. Reduced formation of anodic biofilm, in which intracellular glutamate concentration is 33.9 μmol g-cell-1 or less, favors the growth of acetate-utilizing Geobacter sp. on the anode and improves current generation.
Collapse
Affiliation(s)
- Daisuke Sasaki
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe, Hyogo 657-8501 Japan
| | - Kengo Sasaki
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe, Hyogo 657-8501 Japan
| | - Yota Tsuge
- Institute for Frontier Science Initiative, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192 Japan
| | - Akihiko Kondo
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe, Hyogo 657-8501 Japan
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045 Japan
| |
Collapse
|
7
|
Task Distribution between Acetate and Acetoin Pathways To Prolong Growth in Lactococcus lactis under Respiration Conditions. Appl Environ Microbiol 2018; 84:AEM.01005-18. [PMID: 30030222 DOI: 10.1128/aem.01005-18] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 07/06/2018] [Indexed: 11/20/2022] Open
Abstract
Lactococcus lactis is the main bacterium used for food fermentation and is a candidate for probiotic development. In addition to fermentation growth, supplementation with heme under aerobic conditions activates a cytochrome oxidase, which promotes respiration metabolism. In contrast to fermentation, in which cells consume energy to produce mainly lactic acid, respiration metabolism dramatically changes energy metabolism, such that massive amounts of acetic acid and acetoin are produced at the expense of lactic acid. Our goal was to investigate the metabolic changes that correlate with significantly improved growth and survival during respiration growth. Using transcriptional time course analyses, mutational analyses, and promoter-reporter fusions, we uncover two main pathways that can explain the robust growth and stability of respiration cultures. First, the acetate pathway contributes to biomass yield in respiration without affecting medium pH. Second, the acetoin pathway allows cells to cope with internal acidification, which directly affects cell density and survival in stationary phase. Our results suggest that manipulation of these pathways will lead to fine-tuning respiration growth, with improved yield and stability.IMPORTANCE Lactococcus lactis is used in food and biotechnology industries for its capacity to produce lactic acid, aroma, and proteins. This species grows by fermentation or by an aerobic respiration metabolism when heme is added. Whereas fermentation leads mostly to lactic acid production, respiration produces acetate and acetoin. Respiration growth leads to greatly improved bacterial growth and survival. Our study aims at deciphering mechanisms of respiration metabolism that have a major impact on bacterial physiology. Our results showed that two metabolic pathways (acetate and acetoin) are key elements of respiration. The acetate pathway contributes to biomass yield. The acetoin pathway is needed for pH homeostasis, which affects metabolic activities and bacterial viability in stationary phase. This study clarifies key metabolic elements that are required to maintain the growth advantage conferred by respiration metabolism and has potential uses in strain optimization for industrial and biomedical applications.
Collapse
|
8
|
Wang Z, Liu J, Chen L, Zeng AP, Solem C, Jensen PR. Alterations in the transcription factors GntR1 and RamA enhance the growth and central metabolism of Corynebacterium glutamicum. Metab Eng 2018; 48:1-12. [DOI: 10.1016/j.ymben.2018.05.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 05/07/2018] [Indexed: 12/30/2022]
|
9
|
Genetics and Physiology of Acetate Metabolism by the Pta-Ack Pathway of Streptococcus mutans. Appl Environ Microbiol 2015; 81:5015-25. [PMID: 25979891 DOI: 10.1128/aem.01160-15] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 05/12/2015] [Indexed: 12/24/2022] Open
Abstract
In the dental caries pathogen Streptococcus mutans, phosphotransacetylase (Pta) catalyzes the conversion of acetyl coenzyme A (acetyl-CoA) to acetyl phosphate (AcP), which can be converted to acetate by acetate kinase (Ack), with the concomitant generation of ATP. A ΔackA mutant displayed enhanced accumulation of AcP under aerobic conditions, whereas little or no AcP was observed in the Δpta or Δpta ΔackA mutant. The Δpta and Δpta ΔackA mutants also had diminished ATP pools compared to the size of the ATP pool for the parental or ΔackA strain. Surprisingly, when exposed to oxidative stress, the Δpta ΔackA strain appeared to regain the capacity to produce AcP, with a concurrent increase in the size of the ATP pool compared to that for the parental strain. The ΔackA and Δpta ΔackA mutants exhibited enhanced (p)ppGpp accumulation, whereas the strain lacking Pta produced less (p)ppGpp than the wild-type strain. The ΔackA and Δpta ΔackA mutants displayed global changes in gene expression, as assessed by microarrays. All strains lacking Pta, which had defects in AcP production under aerobic conditions, were impaired in their abilities to form biofilms when glucose was the growth carbohydrate. Collectively, these data demonstrate the complex regulation of the Pta-Ack pathway and critical roles for these enzymes in processes that appear to be essential for the persistence and pathogenesis of S. mutans.
Collapse
|
10
|
Goel A, Eckhardt TH, Puri P, de Jong A, Branco Dos Santos F, Giera M, Fusetti F, de Vos WM, Kok J, Poolman B, Molenaar D, Kuipers OP, Teusink B. Protein costs do not explain evolution of metabolic strategies and regulation of ribosomal content: does protein investment explain an anaerobic bacterial Crabtree effect? Mol Microbiol 2015; 97:77-92. [PMID: 25828364 DOI: 10.1111/mmi.13012] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2015] [Indexed: 01/21/2023]
Abstract
Protein investment costs are considered a major driver for the choice of alternative metabolic strategies. We tested this premise in Lactococcus lactis, a bacterium that exhibits a distinct, anaerobic version of the bacterial Crabtree/Warburg effect; with increasing growth rates it shifts from a high yield metabolic mode [mixed-acid fermentation; 3 adenosine triphosphate (ATP) per glucose] to a low yield metabolic mode (homolactic fermentation; 2 ATP per glucose). We studied growth rate-dependent relative transcription and protein ratios, enzyme activities, and fluxes of L. lactis in glucose-limited chemostats, providing a high-quality and comprehensive data set. A three- to fourfold higher growth rate rerouted metabolism from acetate to lactate as the main fermentation product. However, we observed hardly any changes in transcription, protein levels and enzyme activities. Even levels of ribosomal proteins, constituting a major investment in cellular machinery, changed only slightly. Thus, contrary to the original hypothesis, central metabolism in this organism appears to be hardly regulated at the level of gene expression, but rather at the metabolic level. We conclude that L. lactis is either poorly adapted to growth at low and constant glucose concentrations, or that protein costs play a less important role in fitness than hitherto assumed.
Collapse
Affiliation(s)
- Anisha Goel
- Systems Bioinformatics IBIVU, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands.,Laboratory of Microbiology, Wageningen University, Dreijenplein 10, 6703 HB, Wageningen, The Netherlands.,Kluyver Centre for Genomics of Industrial Fermentation/Netherlands consortium for Systems Biology (NCSB), P.O. Box 5057, 2600 GA, Delft, The Netherlands
| | - Thomas H Eckhardt
- Department of Genetics, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), Netherlands Proteomics Centre and Zernike Institute for Advanced Materials (ZIAM), University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Pranav Puri
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), Netherlands Proteomics Centre and Zernike Institute for Advanced Materials (ZIAM), University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Anne de Jong
- Department of Genetics, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), Netherlands Proteomics Centre and Zernike Institute for Advanced Materials (ZIAM), University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Filipe Branco Dos Santos
- Systems Bioinformatics IBIVU, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands.,Kluyver Centre for Genomics of Industrial Fermentation/Netherlands consortium for Systems Biology (NCSB), P.O. Box 5057, 2600 GA, Delft, The Netherlands
| | - Martin Giera
- Systems Bioinformatics IBIVU, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands
| | - Fabrizia Fusetti
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), Netherlands Proteomics Centre and Zernike Institute for Advanced Materials (ZIAM), University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Willem M de Vos
- Laboratory of Microbiology, Wageningen University, Dreijenplein 10, 6703 HB, Wageningen, The Netherlands
| | - Jan Kok
- Kluyver Centre for Genomics of Industrial Fermentation/Netherlands consortium for Systems Biology (NCSB), P.O. Box 5057, 2600 GA, Delft, The Netherlands.,Department of Genetics, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), Netherlands Proteomics Centre and Zernike Institute for Advanced Materials (ZIAM), University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Bert Poolman
- Kluyver Centre for Genomics of Industrial Fermentation/Netherlands consortium for Systems Biology (NCSB), P.O. Box 5057, 2600 GA, Delft, The Netherlands.,Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), Netherlands Proteomics Centre and Zernike Institute for Advanced Materials (ZIAM), University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Douwe Molenaar
- Systems Bioinformatics IBIVU, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands.,Kluyver Centre for Genomics of Industrial Fermentation/Netherlands consortium for Systems Biology (NCSB), P.O. Box 5057, 2600 GA, Delft, The Netherlands
| | - Oscar P Kuipers
- Kluyver Centre for Genomics of Industrial Fermentation/Netherlands consortium for Systems Biology (NCSB), P.O. Box 5057, 2600 GA, Delft, The Netherlands.,Department of Genetics, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), Netherlands Proteomics Centre and Zernike Institute for Advanced Materials (ZIAM), University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Bas Teusink
- Systems Bioinformatics IBIVU, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands.,Kluyver Centre for Genomics of Industrial Fermentation/Netherlands consortium for Systems Biology (NCSB), P.O. Box 5057, 2600 GA, Delft, The Netherlands
| |
Collapse
|
11
|
Marx P, Meiers M, Brückner R. Activity of the response regulator CiaR in mutants of Streptococcus pneumoniae R6 altered in acetyl phosphate production. Front Microbiol 2015; 5:772. [PMID: 25642214 PMCID: PMC4295557 DOI: 10.3389/fmicb.2014.00772] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2014] [Accepted: 12/17/2014] [Indexed: 11/25/2022] Open
Abstract
The two-component regulatory system (TCS) CiaRH of Streptococcus pneumoniae is implicated in competence, ß-lactam resistance, maintenance of cell integrity, bacteriocin production, host colonization, and virulence. Depending on the growth conditions, CiaR can be highly active in the absence of its cognate kinase CiaH, although phosphorylation of CiaR is required for DNA binding and gene regulation. To test the possibility that acetyl phosphate (AcP) could be the alternative phosphodonor, genes involved in pyruvate metabolism were disrupted to alter cellular levels of acetyl phosphate. Inactivating the genes of pyruvate oxidase SpxB, phosphotransacetylase Pta, and acetate kinase AckA, resulted in very low AcP levels and in strongly reduced CiaR-mediated gene expression in CiaH-deficient strains. Therefore, alternative phosphorylation of CiaR appears to proceed via AcP. The AcP effect on CiaR is not detected in strains with CiaH. Attempts to obtain elevated AcP by preventing its degradation by acetate kinase AckA, were not successful in CiaH-deficient strains with a functional SpxB, the most important enzyme for AcP production in S. pneumoniae. The ciaH-spxB-ackA mutant producing intermediate amounts of AcP could be constructed and showed a promoter activation, which was much higher than expected. Since activation was dependent on AcP, it can apparently be used more efficiently for CiaR phosphorylation in the absence of AckA. Therefore, high AcP levels in the absence of CiaH and AckA may cause extreme overexpression of the CiaR regulon leading to synthetic lethality. AckA is also involved in a regulatory response, which is mediated by CiaH. Addition of acetate to the growth medium switch CiaH from kinase to phosphatase. This switch is lost in the absence of AckA indicating metabolism of acetate is required, which starts with the production of AcP by AckA. Therefore, AckA plays a special regulatory role in the control of the CiaRH TCS.
Collapse
Affiliation(s)
- Patrick Marx
- Department of Microbiology, University of Kaiserslautern Kaiserslautern, Germany
| | - Marina Meiers
- Department of Microbiology, University of Kaiserslautern Kaiserslautern, Germany
| | - Reinhold Brückner
- Department of Microbiology, University of Kaiserslautern Kaiserslautern, Germany
| |
Collapse
|
12
|
Ricciardi A, Castiglione Morelli MA, Ianniello RG, Parente E, Zotta T. Metabolic profiling and stress response of anaerobic and respiratory cultures of Lactobacillus plantarum C17 grown in a chemically defined medium. ANN MICROBIOL 2014. [DOI: 10.1007/s13213-014-1003-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|