1
|
Busquets O, Parcerisas A, Verdaguer E, Ettcheto M, Camins A, Beas-Zarate C, Castro-Torres RD, Auladell C. c-Jun N-Terminal Kinases in Alzheimer's Disease: A Possible Target for the Modulation of the Earliest Alterations. J Alzheimers Dis 2021; 82:S127-S139. [PMID: 33216036 DOI: 10.3233/jad-201053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Given the highly multifactorial origin of Alzheimer's disease (AD) neuropathology, disentangling and orderly knowing mechanisms involved in sporadic onset are arduous. Nevertheless, when the elements involved are dissected into smaller pieces, the task becomes more accessible. This review aimed to describe the link between c-Jun N-terminal Kinases (JNKs), master regulators of many cellular functions, and the early alterations of AD: synaptic loss and dysregulation of neuronal transport. Both processes have a role in the posterior cognitive decline observed in AD. The manuscript focuses on the molecular mechanisms of glutamatergic, GABA, and cholinergic synapses altered by the presence of amyloid-β aggregates and hyperphosphorylated tau, as well as on several consequences of the disruption of cellular processes linked to neuronal transport that is controlled by the JNK-JIP (c-jun NH2-terminal kinase (JNK)-interacting proteins (JIPs) complex, including the transport of AβPP or autophagosomes.
Collapse
Affiliation(s)
- Oriol Busquets
- Department of Pharmacology, Toxicology and Therapeutic Chemistry; Pharmacy and Food Sciences Faculty, Universitat de Barcelona, Barcelona, Spain.,Department of Biochemistry and Biotechnology, Medicine and Health Sciences Faculty, Universitat Rovira i Virgili, Reus, Spain.,Centre for Biomedical Research of Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain.,Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain.,Dominick P. Purpura Department of Neurosciences, Albert Einstein College of Medicine, New York City, NY, USA
| | - Antoni Parcerisas
- Centre for Biomedical Research of Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain.,Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain.,Department of Cell Biology, Physiology and Immunology, Biology Faculty, Universitat de Barcelona, Barcelona, Spain
| | - Ester Verdaguer
- Centre for Biomedical Research of Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain.,Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain.,Department of Cell Biology, Physiology and Immunology, Biology Faculty, Universitat de Barcelona, Barcelona, Spain
| | - Miren Ettcheto
- Department of Pharmacology, Toxicology and Therapeutic Chemistry; Pharmacy and Food Sciences Faculty, Universitat de Barcelona, Barcelona, Spain.,Centre for Biomedical Research of Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain.,Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
| | - Antoni Camins
- Department of Pharmacology, Toxicology and Therapeutic Chemistry; Pharmacy and Food Sciences Faculty, Universitat de Barcelona, Barcelona, Spain.,Centre for Biomedical Research of Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain.,Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
| | - Carlos Beas-Zarate
- Department of Cell and Molecular Biology, Laboratory of Neural Regeneration, C.U.C.B.A., Universidad de Guadalajara, Jalisco, Mexico
| | - Rubén Darío Castro-Torres
- Department of Cell and Molecular Biology, Laboratory of Biology of Neurotransmission, C.U.C.B.A., Universidad de Guadalajara, Jalisco, Mexico
| | - Carme Auladell
- Centre for Biomedical Research of Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain.,Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain.,Department of Cell Biology, Physiology and Immunology, Biology Faculty, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
2
|
Lloret‐Villas A, Varusai TM, Juty N, Laibe C, Le NovÈre N, Hermjakob H, Chelliah V. The Impact of Mathematical Modeling in Understanding the Mechanisms Underlying Neurodegeneration: Evolving Dimensions and Future Directions. CPT Pharmacometrics Syst Pharmacol 2017; 6:73-86. [PMID: 28063254 PMCID: PMC5321808 DOI: 10.1002/psp4.12155] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 10/14/2016] [Accepted: 10/30/2016] [Indexed: 12/14/2022] Open
Abstract
Neurodegenerative diseases are a heterogeneous group of disorders that are characterized by the progressive dysfunction and loss of neurons. Here, we distil and discuss the current state of modeling in the area of neurodegeneration, and objectively compare the gaps between existing clinical knowledge and the mechanistic understanding of the major pathological processes implicated in neurodegenerative disorders. We also discuss new directions in the field of neurodegeneration that hold potential for furthering therapeutic interventions and strategies.
Collapse
Affiliation(s)
- A Lloret‐Villas
- European Bioinformatics Institute (EMBL‐EBI), European Molecular Biology LaboratoryWellcome Trust Genome Campus, HinxtonCambridgeUK
| | - TM Varusai
- European Bioinformatics Institute (EMBL‐EBI), European Molecular Biology LaboratoryWellcome Trust Genome Campus, HinxtonCambridgeUK
| | - N Juty
- European Bioinformatics Institute (EMBL‐EBI), European Molecular Biology LaboratoryWellcome Trust Genome Campus, HinxtonCambridgeUK
| | - C Laibe
- European Bioinformatics Institute (EMBL‐EBI), European Molecular Biology LaboratoryWellcome Trust Genome Campus, HinxtonCambridgeUK
| | - N Le NovÈre
- Babraham Institute, Babraham Research CampusCambridgeUK
| | - H Hermjakob
- European Bioinformatics Institute (EMBL‐EBI), European Molecular Biology LaboratoryWellcome Trust Genome Campus, HinxtonCambridgeUK
| | - V Chelliah
- European Bioinformatics Institute (EMBL‐EBI), European Molecular Biology LaboratoryWellcome Trust Genome Campus, HinxtonCambridgeUK
| |
Collapse
|
3
|
Chahibi Y, Akyildiz IF, Balasingham I. Propagation Modeling and Analysis of Molecular Motors in Molecular Communication. IEEE Trans Nanobioscience 2017; 15:917-927. [PMID: 28092503 DOI: 10.1109/tnb.2016.2620439] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Molecular motor networks (MMNs) are networks constructed from molecular motors to enable nanomachines to perform coordinated tasks of sensing, computing, and actuation at the nano- and micro- scales. Living cells are naturally enabled with this same mechanism to establish point-to-point communication between different locations inside the cell. Similar to a railway system, the cytoplasm contains an intricate infrastructure of tracks, named microtubules, interconnecting different internal components of the cell. Motor proteins, such as kinesin and dynein, are able to travel along these tracks directionally, carrying with them large molecules that would otherwise be unreliably transported across the cytoplasm using free diffusion. Molecular communication has been previously proposed for the design and study of MMNs. However, the topological aspects of MMNs, including the effects of branches, have been ignored in the existing studies. In this paper, a physical end-to-end model for MMNs is developed, considering the location of the transmitter node, the network topology, and the receiver nodes. The end-to-end gain and group delay are considered as the performance measures, and analytical expressions for them are derived. The analytical model is validated by Monte-Carlo simulations and the performance of MMNs is analyzed numerically. It is shown that, depending on their nature and position, MMN nodes create impedance effects that are critical for the overall performance. This model could be applied to assist the design of artificial MMNs and to study cargo transport in neurofilaments to elucidate brain diseases related to microtubule jamming.
Collapse
|
4
|
Kalkur RS, Ballast AC, Triplett AR, Spendier K. Effects of deuterium oxide on cell growth and vesicle speed in RBL-2H3 cells. PeerJ 2014; 2:e553. [PMID: 25237603 PMCID: PMC4157235 DOI: 10.7717/peerj.553] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 08/10/2014] [Indexed: 12/31/2022] Open
Abstract
For the first time we show the effects of deuterium oxide on cell growth and vesicle transport in rat basophilic leukemia (RBL-2H3) cells. RBL-2H3 cells cultured with 15 moles/L deuterium showed decreased cell growth which was attributed to cells not doubling their DNA content. Experimental observations also showed an increase in vesicle speed for cells cultured in deuterium oxide. This increase in vesicle speed was not observed in deuterium oxide cultures treated with a microtubule-destabilizing drug, suggesting that deuterium oxide affects microtubule-dependent vesicle transport.
Collapse
Affiliation(s)
- Roshni S Kalkur
- BioFrontiers Center, University of Colorado at Colorado Springs, Colorado Springs, CO, USA
| | - Andrew C Ballast
- BioFrontiers Center, University of Colorado at Colorado Springs, Colorado Springs, CO, USA.,Department of Physics and Energy Science, University of Colorado at Colorado Springs, Colorado Springs, CO, USA
| | - Ashley R Triplett
- BioFrontiers Center, University of Colorado at Colorado Springs, Colorado Springs, CO, USA
| | - Kathrin Spendier
- BioFrontiers Center, University of Colorado at Colorado Springs, Colorado Springs, CO, USA.,Department of Physics and Energy Science, University of Colorado at Colorado Springs, Colorado Springs, CO, USA
| |
Collapse
|