1
|
Comparative Analysis of the Transcriptome and Distribution of Putative SNPs in Two Rainbow Trout ( Oncorhynchus mykiss) Breeding Strains by Using Next-Generation Sequencing. Genes (Basel) 2020; 11:genes11080841. [PMID: 32722051 PMCID: PMC7464081 DOI: 10.3390/genes11080841] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/22/2020] [Accepted: 07/23/2020] [Indexed: 11/24/2022] Open
Abstract
Selective breeding can significantly improve the establishment of sustainable and profitable aquaculture fish farming. For rainbow trout (Oncorhynchus mykiss), one of the main aquaculture coldwater species in Europe, a variety of selected hatchery strains are commercially available. In this study, we investigated the genetic variation between the local Born strain, selected for survival, and the commercially available Silver Steelhead strain, selected for growth. We sequenced the transcriptome of six tissues (gills, head kidney, heart, liver, spleen, and white muscle) from eight healthy individuals per strain, using RNA-seq technology to identify strain-specific gene-expression patterns and single nucleotide polymorphisms (SNPs). In total, 1760 annotated genes were differentially expressed across all tissues. Pathway analysis assigned them to different gene networks. We also identified a set of SNPs, which are heterozygous for one of the two breeding strains: 1229 of which represent polymorphisms over all tissues and individuals. Our data indicate a strong genetic differentiation between Born and Silver Steelhead trout, despite the relatively short time of evolutionary separation of the two breeding strains. The results most likely reflect their specifically adapted genotypes and might contribute to the understanding of differences regarding their robustness toward high stress and pathogenic challenge described in former studies.
Collapse
|
2
|
Wang Z, Cui J, Song J, Gou M, Wang H, Gao K, Qiu X, Wang X, Chang Y. Integration of small RNAs and mRNAs by high-throughput sequencing reveals a complex regulatory network in Chinese sea cucumber, Russian sea cucumber and their hybrids. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2019; 29:1-13. [DOI: 10.1016/j.cbd.2018.10.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Accepted: 10/13/2018] [Indexed: 11/30/2022]
|
3
|
Zhang Y, Miao G, Fazhan H, Waiho K, Zheng H, Li S, Ikhwanuddin M, Ma H. Transcriptome-seq provides insights into sex-preference pattern of gene expression between testis and ovary of the crucifix crab (Charybdis feriatus). Physiol Genomics 2018; 50:393-405. [DOI: 10.1152/physiolgenomics.00016.2018] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The crucifix crab, Charybdis feriatus, which mainly inhabits Indo-Pacific region, is regarded as one of the most high-potential species for domestication and incorporation into the aquaculture sector. However, the regulatory mechanisms of sex determination and differentiation of this species remain unclear. To identify candidate genes involved in sex determination and differentiation, high throughput sequencing of transcriptome from the testis and ovary of C. feriatus was performed by the Illumina platform. After removing adaptor primers, low-quality sequences and very short (<50 nt) reads, we obtained 80.9 million and 66.2 million clean reads from testis and ovary, respectively. A total of 86,433 unigenes were assembled, and ~43% (37,500 unigenes) were successfully annotated to the NR, NT, Swiss-Prot, KEGG, COG, GO databases. By comparing the testis and ovary libraries, we obtained 27,636 differentially expressed genes. Some candidate genes involved in the sex determination and differentiation of C. feriatus were identified, such as vasa, pgds, vgr, hsp90, dsx-f, fem-1, and gpr. In addition, 88,608 simple sequence repeats were obtained, and 61,929 and 77,473 single nucleotide polymorphisms from testis and ovary were detected, respectively. The transcriptome profiling was validated by quantitative real-time PCR in 30 selected genes, which showed a good consistency. The present study is the first high-throughput transcriptome sequencing of C. feriatus. These findings will be useful for future functional analysis of sex-associated genes and molecular marker-assisted selections in C. feriatus.
Collapse
Affiliation(s)
- Yin Zhang
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, China
| | - Guidong Miao
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, China
| | - Hanafiah Fazhan
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, China
| | - Khor Waiho
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, China
| | - Huaiping Zheng
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, China
| | - Shengkang Li
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, China
| | - Mhd Ikhwanuddin
- Institute of Tropical Aquaculture, Universiti Malaysia Terengganu, Kuala Terengganu, Malaysia
| | - Hongyu Ma
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, China
| |
Collapse
|
4
|
Liao Z, Wan Q, Shang X, Su J. Large-scale SNP screenings identify markers linked with GCRV resistant traits through transcriptomes of individuals and cell lines in Ctenopharyngodon idella. Sci Rep 2017; 7:1184. [PMID: 28446772 PMCID: PMC5430748 DOI: 10.1038/s41598-017-01338-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 03/28/2017] [Indexed: 02/02/2023] Open
Abstract
Grass carp (Ctenopharyngodon idella) is an important economic species in freshwater aquaculture and its industry has been confined due to variety degeneration and frequent diseases. Marker-assisted selection is a feasible method for selective breeding of new varieties. Transcriptome data have greatly facilitated high-throughput single nucleotide polymorphism (SNP) marker discovery and phenotype association study. In this study, we gained a total of 25,981 and 5,775 high quality SNPs in two transcriptomes from individuals and cell lines, respectively. Comparative transcriptome analysis identified 413 and 832 grass carp reovirus (GCRV)-resistant-association SNPs as well as 1,381 and 1,606 GCRV-susceptible-association SNPs in individuals and cell lines, respectively. Integrated analysis indicated 22 genes with single SNP share common resistant/susceptible traits in two transcriptomes. Furthermore, we infected grass carp with GCRV, genotyping and association analyses were performed, and 9 in 22 SNPs were confirmed by PCR-RFLP. Meanwhile, mRNA expression profiles of 6 genes containing confirmed SNPs were examined by qRT-PCR. The results demonstrated that mRNA expressions were significant differences in resistant/susceptible individuals and cell lines. The present study develops an important strategy for high throughput screening of phenotype association genetic markers and the results will serve in grass carp breeding for GCRV resistance.
Collapse
Affiliation(s)
- Zhiwei Liao
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Quanyuan Wan
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xueying Shang
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jianguo Su
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
5
|
Transcriptome assembly and identification of genes and SNPs associated with growth traits in largemouth bass (Micropterus salmoides). Genetica 2017; 145:175-187. [PMID: 28204905 DOI: 10.1007/s10709-017-9956-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Accepted: 01/31/2017] [Indexed: 12/25/2022]
Abstract
Growth is one of the most crucial economic traits of all aquaculture species, but the molecular mechanisms involved in growth of largemouth bass (Micropterus salmoides) are poorly understood. The objective of this study was to screen growth-related genes of M. salmoides by RNA sequencing and identify growth-related single-nucleotide polymorphism (SNP) markers through a growth association study. The muscle transcriptomes of fast- and slow-growing largemouth bass were obtained using the RNA-Seq technique. A total of 54,058,178 and 54,742,444 qualified Illumina read pairs were obtained for the fast-growing and slow-growing groups, respectively, giving rise to 4,865,236,020 and 4,926,819,960 total clean bases, respectively. Gene expression profiling showed that 3,530 unigenes were differentially expressed between the fast-growing and slow-growing phenotypes (false discovery rate ≤0.001, the absolute value of log2 (fold change) ≥1), including 1,441 up-regulated and 2,889 down-regulated unigenes in the fast-growing largemouth bass. Analysis of these genes revealed that several signalling pathways, including the growth hormone-insulin-like growth factor 1 axis and signalling pathway, the glycolysis pathway, and the myostatin/transforming growth factor beta signalling pathway, as well as heat shock protein, cytoskeleton, and myofibril component genes might be associated with muscle growth. From these genes, 10 genes with putative SNPs were selected, and 17 SNPs were genotyped successfully. Marker-trait analysis in 340 individuals of Youlu No. 1 largemouth bass revealed three SNPs associated with growth in key genes (phosphoenolpyruvate carboxykinase 1, FOXO3b, and heat shock protein beta-1). This research provides information about key genes and SNPs related to growth, providing new clues to understanding the molecular basis of largemouth bass growth.
Collapse
|
6
|
Waiho K, Fazhan H, Shahreza MS, Moh JHZ, Noorbaiduri S, Wong LL, Sinnasamy S, Ikhwanuddin M. Transcriptome Analysis and Differential Gene Expression on the Testis of Orange Mud Crab, Scylla olivacea, during Sexual Maturation. PLoS One 2017; 12:e0171095. [PMID: 28135340 PMCID: PMC5279790 DOI: 10.1371/journal.pone.0171095] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 01/15/2017] [Indexed: 01/04/2023] Open
Abstract
Adequate genetic information is essential for sustainable crustacean fisheries and aquaculture management. The commercially important orange mud crab, Scylla olivacea, is prevalent in Southeast Asia region and is highly sought after. Although it is a suitable aquaculture candidate, full domestication of this species is hampered by the lack of knowledge about the sexual maturation process and the molecular mechanisms behind it, especially in males. To date, data on its whole genome is yet to be reported for S. olivacea. The available transcriptome data published previously on this species focus primarily on females and the role of central nervous system in reproductive development. De novo transcriptome sequencing for the testes of S. olivacea from immature, maturing and mature stages were performed. A total of approximately 144 million high-quality reads were generated and de novo assembled into 160,569 transcripts with a total length of 142.2 Mb. Approximately 15–23% of the total assembled transcripts were annotated when compared to public protein sequence databases (i.e. UniProt database, Interpro database, Pfam database and Drosophila melanogaster protein database), and GO-categorised with GO Ontology terms. A total of 156,181 high-quality Single-Nucleotide Polymorphisms (SNPs) were mined from the transcriptome data of present study. Transcriptome comparison among the testes of different maturation stages revealed one gene (beta crystallin like gene) with the most significant differential expression—up-regulated in immature stage and down-regulated in maturing and mature stages. This was further validated by qRT-PCR. In conclusion, a comprehensive transcriptome of the testis of orange mud crabs from different maturation stages were obtained. This report provides an invaluable resource for enhancing our understanding of this species’ genome structure and biology, as expressed and controlled by their gonads.
Collapse
Affiliation(s)
- Khor Waiho
- Institute of Tropical Aquaculture, Universiti Malaysia Terengganu, Kuala Terengganu, Terengganu, Malaysia
- * E-mail: (KW); (MI)
| | - Hanafiah Fazhan
- Institute of Tropical Aquaculture, Universiti Malaysia Terengganu, Kuala Terengganu, Terengganu, Malaysia
| | - Md Sheriff Shahreza
- Institute of Tropical Aquaculture, Universiti Malaysia Terengganu, Kuala Terengganu, Terengganu, Malaysia
- School of Fisheries and Aquaculture Sciences, Universiti Malaysia Terengganu, Kuala Terengganu, Terengganu, Malaysia
| | - Julia Hwei Zhong Moh
- Institute of Tropical Aquaculture, Universiti Malaysia Terengganu, Kuala Terengganu, Terengganu, Malaysia
| | - Shaibani Noorbaiduri
- Institute of Tropical Aquaculture, Universiti Malaysia Terengganu, Kuala Terengganu, Terengganu, Malaysia
| | - Li Lian Wong
- Institute of Tropical Aquaculture, Universiti Malaysia Terengganu, Kuala Terengganu, Terengganu, Malaysia
| | - Saranya Sinnasamy
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Terengganu, Terengganu, Malaysia
| | - Mhd Ikhwanuddin
- Institute of Tropical Aquaculture, Universiti Malaysia Terengganu, Kuala Terengganu, Terengganu, Malaysia
- * E-mail: (KW); (MI)
| |
Collapse
|
7
|
Liang M, Yang W, Su S, Fu L, Yi H, Chen C, Deng X, Chai L. Genome-wide identification and functional analysis of S-RNase involved in the self-incompatibility of citrus. Mol Genet Genomics 2016; 292:325-341. [PMID: 27933381 DOI: 10.1007/s00438-016-1279-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 12/03/2016] [Indexed: 11/25/2022]
Abstract
S-RNase-based self-incompatibility is found in Solanaceae, Rosaceae, and Scrophulariaceae, and is the most widespread mechanism that prevents self-fertilization in plants. Although 'Shatian' pummelo (Citrus grandis), a traditional cultivated variety, possesses the self-incompatible trait, the role of S-RNases in the self-incompatibility of 'Shatian' pummelo is poorly understood. To identify genes associated with self-incompatibility in citrus, we identified 16 genes encoding homologs of ribonucleases in the genomes of sweet orange (Citrus sinensis) and clementine mandarin (Citrus clementine). We preliminarily distinguished S-RNases from S-like RNases with a phylogenetic analysis that classified these homologs into three groups, which is consistent with the previous reports. Expression analysis provided evidence that CsRNS1 and CsRNS6 are S-like RNase genes. The expression level of CsRNS1 was increased during fruit development. The expression of CsRNS6 was increased during the formation of embryogenic callus. In contrast, we found that CsRNS3 possessed several common characteristics of the pistil determinant of self-incompatibility: it has an alkaline isoelectric point (pI), harbors only one intron, and is specifically expressed in style. We obtained a cDNA encoding CgRNS3 from 'Shatian' pummelo and found that it is homolog to CsRNS3 and that CgRNS3 exhibited the same expression pattern as CsRNS3. In an in vitro culture system, the CgRNS3 protein significantly inhibited the growth of self-pollen tubes from 'Shatian' pummelo, but after a heat treatment, this protein did not significantly inhibit the elongation of self- or non-self-pollen tubes. In conclusion, an S-RNase gene, CgRNS3, was obtained by searching the genomes of sweet orange and clementine for genes exhibiting sequence similarity to ribonucleases followed by expression analyses. Using this approach, we identified a protein that significantly inhibited the growth of self-pollen tubes, which is the defining property of an S-RNase.
Collapse
Affiliation(s)
- Mei Liang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region), MOA, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Wei Yang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region), MOA, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Shiying Su
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region), MOA, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Lili Fu
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region), MOA, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Hualin Yi
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region), MOA, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Chuanwu Chen
- Guangxi Academy of Specialty Crops, Guangxi Key Laboratory of Citrus Biology, Guangxi Academy of Specialty Crops, Guilin, 541004, China
| | - Xiuxin Deng
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region), MOA, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Lijun Chai
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region), MOA, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| |
Collapse
|
8
|
Luo H, Xiao S, Ye H, Zhang Z, Lv C, Zheng S, Wang Z, Wang X. Identification of Immune-Related Genes and Development of SSR/SNP Markers from the Spleen Transcriptome of Schizothorax prenanti. PLoS One 2016; 11:e0152572. [PMID: 27019203 PMCID: PMC4809619 DOI: 10.1371/journal.pone.0152572] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 03/16/2016] [Indexed: 12/21/2022] Open
Abstract
Schizothorax prenanti (S. prenanti) is mainly distributed in the upstream regions of the Yangtze River and its tributaries in China. This species is indigenous and commercially important. However, in recent years, wild populations and aquacultures have faced the serious challenges of germplasm variation loss and an increased susceptibility to a range of pathogens. Currently, the genetics and immune mechanisms of S. prenanti are unknown, partly due to a lack of genome and transcriptome information. Here, we sought to identify genes related to immune functions and to identify molecular markers to study the function of these genes and for trait mapping. To this end, the transcriptome from spleen tissues of S. prenanti was analyzed and sequenced. Using paired-end reads from the Illumina Hiseq2500 platform, 48,517 transcripts were isolated from the spleen transcriptome. These transcripts could be clustered into 37,785 unigenes with an N50 length of 2,539 bp. The majority of the unigenes (35,653, 94.4%) were successfully annotated using non-redundant nucleotide sequence analysis (nt), and the non-redundant protein (nr), Swiss-Prot, Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. KEGG pathway assignment identified more than 500 immune-related genes. Furthermore, 7,545 putative simple sequence repeats (SSRs), 857,535 single nucleotide polymorphisms (SNPs), and 53,481 insertion/deletion (InDels) were detected from the transcriptome. This is the first reported high-throughput transcriptome analysis of S. prenanti, and it provides valuable genetic resources for the investigation of immune mechanisms, conservation of germplasm, and molecular marker-assisted breeding of S. prenanti.
Collapse
Affiliation(s)
- Hui Luo
- College of Animal Science & Technology, Hunan Agricultural University, Changsha, Hunan, China
- Fisheries Breeding and Healthy Cultivation Research Centre, Southwest University, Chongqing, China
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, P.R. China, Fisheries College, Jimei University, Xiamen, Fujian, China
- Collaborative Innovation Center for Efficient and Health Production of Fisheries in Hunan Province, Changde, Hunan, China
| | - Shijun Xiao
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, P.R. China, Fisheries College, Jimei University, Xiamen, Fujian, China
| | - Hua Ye
- Fisheries Breeding and Healthy Cultivation Research Centre, Southwest University, Chongqing, China
| | - Zhengshi Zhang
- Fisheries Breeding and Healthy Cultivation Research Centre, Southwest University, Chongqing, China
| | - Changhuan Lv
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, P.R. China, Fisheries College, Jimei University, Xiamen, Fujian, China
| | - Shuming Zheng
- Fisheries Breeding and Healthy Cultivation Research Centre, Southwest University, Chongqing, China
| | - Zhiyong Wang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, P.R. China, Fisheries College, Jimei University, Xiamen, Fujian, China
| | - Xiaoqing Wang
- College of Animal Science & Technology, Hunan Agricultural University, Changsha, Hunan, China
- Collaborative Innovation Center for Efficient and Health Production of Fisheries in Hunan Province, Changde, Hunan, China
| |
Collapse
|
9
|
Transcriptional Profiling Reveals Differential Gene Expression of Amur Ide (Leuciscus waleckii) during Spawning Migration. Int J Mol Sci 2015; 16:13959-72. [PMID: 26096003 PMCID: PMC4490533 DOI: 10.3390/ijms160613959] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 05/20/2015] [Accepted: 05/20/2015] [Indexed: 02/06/2023] Open
Abstract
Amur ide (Leuciscus waleckii), an important aquaculture species, inhabits neutral freshwater but can tolerate high salinity or alkalinity. As an extreme example, the population in Dali Nor lake inhabits alkalized soda water permanently, and migrates from alkaline water to neutral freshwater to spawn. In this study, we performed comparative transcriptome profiling study on the livers of Amur ide to interrogate the expression differences between the population that permanently inhabit freshwater in Ganggeng Nor lake (FW) and the spawning population that recently migrated from alkaline water into freshwater (SM). A total of 637,234,880 reads were generated, resulting in 53,440 assembled contigs that were used as reference sequences. Comparisons of these transcriptome files revealed 444 unigenes with significant differential expression (p-value ≤ 0.01, fold-change ≥ 2), including 246 genes that were up-regulated in SM and 198 genes that were up-regulated in FW. The gene ontology (GO) enrichment analysis and KEGG pathway analysis indicated that the mTOR signaling pathway, Janus kinase-signal transducer and activator of transcription (JAK-STAT) signaling pathway, and oxidative phosphorylation were highly likely to affect physiological changes during spawning migration. Overall, this study demonstrates that transcriptome changes played a role in Amur ide spawning migration. These results provide a foundation for further analyses on the physiological and molecular mechanisms underlying Amur ide spawning migration.
Collapse
|
10
|
Ulloa PE, Rincón G, Islas-Trejo A, Araneda C, Iturra P, Neira R, Medrano JF. RNA sequencing to study gene expression and SNP variations associated with growth in zebrafish fed a plant protein-based diet. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2015; 17:353-63. [PMID: 25702041 DOI: 10.1007/s10126-015-9624-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 01/16/2015] [Indexed: 05/16/2023]
Abstract
The objectives of this study were to measure gene expression in zebrafish and then identify SNP to be used as potential markers in a growth association study. We developed an approach where muscle samples collected from low- and high-growth fish were analyzed using RNA-Sequencing (RNA-seq), and SNP were chosen from the genes that were differentially expressed between the low and high groups. A population of 24 families was fed a plant protein-based diet from the larval to adult stages. From a total of 440 males, 5 % of the fish from both tails of the weight gain distribution were selected. Total RNA was extracted from individual muscle of 8 low-growth and 8 high-growth fish. Two pooled RNA-Seq libraries were prepared for each phenotype using 4 fish per library. Libraries were sequenced using the Illumina GAII Sequencer and analyzed using the CLCBio genomic workbench software. One hundred and twenty-four genes were differentially expressed between phenotypes (p value < 0.05 and FDR < 0.2). From these genes, 164 SNP were selected and genotyped in 240 fish samples. Marker-trait analysis revealed 5 SNP associated with growth in key genes (Nars, Lmod2b, Cuzd1, Acta1b, and Plac8l1). These genes are good candidates for further growth studies in fish and to consider for identification of potential SNPs associated with different growth rates in response to a plant protein-based diet.
Collapse
Affiliation(s)
- Pilar E Ulloa
- Programa de Doctorado en Ciencias de Recursos Naturales, Universidad de La Frontera, Casilla 54-D, Temuco, Chile,
| | | | | | | | | | | | | |
Collapse
|
11
|
Xiao S, Han Z, Wang P, Han F, Liu Y, Li J, Wang ZY. Functional marker detection and analysis on a comprehensive transcriptome of large yellow croaker by next generation sequencing. PLoS One 2015; 10:e0124432. [PMID: 25909910 PMCID: PMC4409302 DOI: 10.1371/journal.pone.0124432] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 03/15/2015] [Indexed: 01/08/2023] Open
Abstract
Large yellow croaker (Larimichthys crocea) is an important economic fish in China and Eastern Asia. Because of the exhaustive fishing and overdense aquaculture, the wild population and the mariculture of the species are facing serious challenges on germplasm degeneration and susceptibility to infectious disease agents. However, a comprehensive transcriptome from multi-tissues of the species has not been reported and functional molecular markers have not yet been detected and analyzed. In this work, we applied RNA-seq with the Illumina Hiseq2000 platform for a multi-tissue sample of large yellow croaker and assembled the transcriptome into 88,103 transcripts. Of them, 52,782 transcripts have been successfully annotated by nt/nr, InterPro, GO and KEGG database. Comparing with public fish proteins, we have found that 34,576 protein coding transcripts are shared in large yellow croaker with zebrafish, medaka, pufferfish, and stickleback. For functional markers, we have discovered 1,276 polymorphic SSRs and 261, 000 SNPs. The functional impact analysis of SNPs showed that the majority (~75%) of small variants cause synonymous mutations in proteins, followed by variations in 3' UTR region. The functional enrichment analysis illuminated that transcripts involved in DNA bindings, enzyme activities, and signal pathways prominently exhibit less single-nucleotide variants but genes for the constituent of the muscular tissue, the cytoskeleton, and the immunity system contain more frequent SNP mutations, which may reflect the structural and functional selections of the translated proteins. This is the first work for the high-throughput detection and analysis of functional polymorphic SSR and SNP markers in a comprehensive transcriptome of large yellow croaker. Our study provides valuable transcript sequence and functional marker resources for the quantitative trait locus (QTL) identification and molecular selection of the species in the research community.
Collapse
Affiliation(s)
- Shijun Xiao
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture; Fisheries College, Jimei University, Xiamen, Fujian, China
| | - Zhaofang Han
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture; Fisheries College, Jimei University, Xiamen, Fujian, China
| | - Panpan Wang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture; Fisheries College, Jimei University, Xiamen, Fujian, China
| | - Fang Han
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture; Fisheries College, Jimei University, Xiamen, Fujian, China
| | - Yang Liu
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture; Fisheries College, Jimei University, Xiamen, Fujian, China
| | - Jiongtang Li
- Chinese Academy of Fishery Sciences, Beijing, China
| | - Zhi Yong Wang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture; Fisheries College, Jimei University, Xiamen, Fujian, China
- * E-mail:
| |
Collapse
|
12
|
De Wit P, Pespeni MH, Palumbi SR. SNP genotyping and population genomics from expressed sequences - current advances and future possibilities. Mol Ecol 2015; 24:2310-23. [DOI: 10.1111/mec.13165] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Revised: 03/13/2015] [Accepted: 03/18/2015] [Indexed: 02/01/2023]
Affiliation(s)
- Pierre De Wit
- Department of Biology and Environmental Sciences; University of Gothenburg; Sven Lovén Centre for Marine Science - Tjärnö; Hättebäcksvägen 7 Strömstad SE-452 96 Sweden
| | - Melissa H. Pespeni
- Department of Biology; University of Vermont; Marsh Life Science; Rm 326A 109 Carrigan Drive Burlington VT 05405 USA
| | - Stephen R. Palumbi
- Department of Biology; Stanford University; Hopkins Marine Station 120 Ocean view Blvd. Pacific Grove CA 93950 USA
| |
Collapse
|
13
|
Liang M, Yang X, Li H, Su S, Yi H, Chai L, Deng X. De novo transcriptome assembly of pummelo and molecular marker development. PLoS One 2015; 10:e0120615. [PMID: 25799271 PMCID: PMC4370633 DOI: 10.1371/journal.pone.0120615] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 01/24/2015] [Indexed: 11/19/2022] Open
Abstract
Pummelo (Citrus grandis) is an important fruit crop worldwide because of its nutritional value. To accelerate the pummelo breeding program, it is essential to obtain extensive genetic information and develop relative molecular markers. Here, we obtained a 12-Gb transcriptome dataset of pummelo through a mixture of RNA from seven tissues using Illumina pair-end sequencing, assembled into 57,212 unigenes with an average length of 1010 bp. The annotation and classification results showed that a total of 39,584 unigenes had similar hits to the known proteins of four public databases, and 31,501 were classified into 55 Gene Ontology (GO) functional sub-categories. The search for putative molecular markers among 57,212 unigenes identified 10,276 simple sequence repeats (SSRs) and 64,720 single nucleotide polymorphisms (SNPs). High-quality primers of 1174 SSR loci were designed, of which 88.16% were localized to nine chromosomes of sweet orange. Of 100 SSR primers that were randomly selected for testing, 87 successfully amplified clear banding patterns. Of these primers, 29 with a mean PIC (polymorphic information content) value of 0.52 were effectively applied for phylogenetic analysis. Of the 20 SNP primers, 14 primers, including 54 potential SNPs, yielded target amplifications, and 46 loci were verified via Sanger sequencing. This new dataset will be a valuable resource for molecular biology studies of pummelo and provides reliable information regarding SNP and SSR marker development, thus expediting the breeding program of pummelo.
Collapse
Affiliation(s)
- Mei Liang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Key Laboratory of Horticultural Crop Biology and Genetic improvement (Central Region), MOA, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Xiaoming Yang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Key Laboratory of Horticultural Crop Biology and Genetic improvement (Central Region), MOA, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Hang Li
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Key Laboratory of Horticultural Crop Biology and Genetic improvement (Central Region), MOA, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Shiying Su
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Key Laboratory of Horticultural Crop Biology and Genetic improvement (Central Region), MOA, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Hualin Yi
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Key Laboratory of Horticultural Crop Biology and Genetic improvement (Central Region), MOA, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Lijun Chai
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Key Laboratory of Horticultural Crop Biology and Genetic improvement (Central Region), MOA, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Xiuxin Deng
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Key Laboratory of Horticultural Crop Biology and Genetic improvement (Central Region), MOA, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| |
Collapse
|