1
|
de Oliveira Silva A, Fernando Devasahayam BR, Aliyeva-Schnorr L, Glienke C, Deising HB. The serine-threonine protein kinase Snf1 orchestrates the expression of plant cell wall-degrading enzymes and is required for full virulence of the maize pathogen Colletotrichum graminicola. Fungal Genet Biol 2024; 171:103876. [PMID: 38367799 DOI: 10.1016/j.fgb.2024.103876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/12/2024] [Accepted: 02/14/2024] [Indexed: 02/19/2024]
Abstract
Colletotrichum graminicola, the causal agent of maize leaf anthracnose and stalk rot, differentiates a pressurized infection cell called an appressorium in order to invade the epidermal cell, and subsequently forms biotrophic and necrotrophic hyphae to colonize the host tissue. While the role of force in appressorial penetration is established (Bechinger et al., 1999), the involvement of cell wall-degrading enzymes (CWDEs) in this process and in tissue colonization is poorly understood, due to the enormous number and functional redundancy of these enzymes. The serine/threonine protein kinase gene SNF1 identified in Sucrose Non-Fermenting yeast mutants mediates de-repression of catabolite-repressed genes, including many genes encoding CWDEs. In this study, we identified and functionally characterized the SNF1 homolog of C. graminicola. Δsnf1 mutants showed reduced vegetative growth and asexual sporulation rates on media containing polymeric carbon sources. Microscopy revealed reduced efficacies in appressorial penetration of cuticle and epidermal cell wall, and formation of unusual medusa-like biotrophic hyphae by Δsnf1 mutants. Severe and moderate virulence reductions were observed on intact and wounded leaves, respectively. Employing RNA-sequencing we show for the first time that more than 2,500 genes are directly or indirectly controlled by Snf1 in necrotrophic hyphae of a plant pathogenic fungus, many of which encode xylan- and cellulose-degrading enzymes. The data presented show that Snf1 is a global regulator of gene expression and is required for full virulence.
Collapse
Affiliation(s)
- Alan de Oliveira Silva
- Chair of Phytopathology and Plant Protection, Institute for Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Germany; Department of Genetics, Federal University of Paraná, Curitiba, PR, Brazil
| | - Bennet Rohan Fernando Devasahayam
- Chair of Phytopathology and Plant Protection, Institute for Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Germany; German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Germany
| | - Lala Aliyeva-Schnorr
- Chair of Phytopathology and Plant Protection, Institute for Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Germany
| | - Chirlei Glienke
- Department of Genetics, Federal University of Paraná, Curitiba, PR, Brazil
| | - Holger B Deising
- Chair of Phytopathology and Plant Protection, Institute for Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Germany; German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Germany.
| |
Collapse
|
2
|
Wen H, Meng S, Xie S, Shi H, Qiu J, Jiang N, Kou Y. Sucrose non-fermenting protein kinase gene UvSnf1 is required for virulence in Ustilaginoidea virens. Virulence 2023; 14:2235460. [PMID: 37450576 PMCID: PMC10351473 DOI: 10.1080/21505594.2023.2235460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 07/04/2023] [Accepted: 07/06/2023] [Indexed: 07/18/2023] Open
Abstract
Rice false smut caused by Ustilaginoidea virens is becoming one of the most devastating diseases in rice production areas in the world. Revealing U. virens potential pathogenic mechanisms provides ideas for formulating more effective prevention and control strategies. Sucrose non-fermenting 1 (Snf1) protein kinase plays a critical role in activating transcription and suppressing gene expression, as well as in cellular response to various stresses, such as nutrient limitation. In our study, we identified the Snf1 homolog UvSnf1 and analyzed its biological functions in U. virens. The expression level of UvSnf1 was dramatically up-regulated during invasion, indicating that UvSnf1 may participate in infection. Phenotypic analyses of UvSnf1 deletion mutants revealed that UvSnf1 is necessary for hyphae growth, spore production, and virulence in U. virens. Moreover, UvSnf1 promotes U. virens to use unfavorable carbon sources when the sucrose is insufficient. In addition, deletion of UvSnf1 down-regulates the expression of the cell wall-degrading enzymes (CWDEs) genes under sucrose limitation conditions in U. virens. Further analyses showed that CWDEs (UvCut1 and UvXyp1) are not only involved in growth, spore production, and virulence but are also required for the utilization of carbon sources. In conclusion, this study demonstrates that UvSnf1 plays vital roles in virulence and carbon source utilization in U. virens, and one of the possible mechanisms is playing a role in regulating the expression of CWDE genes.
Collapse
Affiliation(s)
- Hui Wen
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, China
| | - Shuai Meng
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, China
| | - Shuwei Xie
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, China
| | - Huanbin Shi
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, China
| | - Jiehua Qiu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, China
| | - Nan Jiang
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, China
| | - Yanjun Kou
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, China
| |
Collapse
|
3
|
Fu H, Yang Y, Sarkes A, Harding MW, Feindel D, Feng J. Development of a Duplex qPCR System for Detection and Quantification of the Two Canola Blackleg Pathogens Leptosphaeria biglobosa and L. maculans. PLANT DISEASE 2023; 107:2808-2815. [PMID: 36825315 DOI: 10.1094/pdis-10-22-2308-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Two probe-based qPCR systems, namely P-Lb and P-Lm, specific to the canola blackleg pathogens Leptosphaeria biglobosa and L. maculans, respectively, were developed, and their efficiencies were tested. Each of the two systems targets a single-copy gene exclusively present in the corresponding species. The specificities of the two systems on the species level and their ubiquities on the subspecies level were confirmed by in silico sequence analyses and testing on L. biglobosa (17 strains), L. maculans (10 strains), and other plant pathogens (31 species). For sensitivities, the two systems were tested on synthesized DNA fragments (gBlock) of the targeted regions, from which a standard curve was generated for each system. In addition, standard curves were also generated on gBlocks for duplex qPCR in which the two systems were used in the same reaction. The two systems were further tested in both singleplex and duplex qPCR on DNA samples extracted from fungal spores, inoculated canola cotyledons, and naturally infected canola stubble samples collected from commercial fields. Our data indicated that the two systems are specific to L. biglobosa and L. maculans, respectively, and one reaction could detect as few as 200 spores of either species. When used in duplex qPCR on DNA samples with various origins, the two systems generated similar results as in singleplex qPCR. The duplex qPCR system, along with the sample preparation and DNA extraction specified in this study, constituted a first-reported duplex qPCR protocol for detection and quantification of the two blackleg pathogens from field samples.
Collapse
Affiliation(s)
- Heting Fu
- Alberta Plant Health Lab, Crop Diversification Centre North, Alberta Agriculture and Irrigation (AGI), Edmonton, AB T5Y 6H3, Canada
| | - Yalong Yang
- Alberta Plant Health Lab, Crop Diversification Centre North, Alberta Agriculture and Irrigation (AGI), Edmonton, AB T5Y 6H3, Canada
| | - Alian Sarkes
- Alberta Plant Health Lab, Crop Diversification Centre North, Alberta Agriculture and Irrigation (AGI), Edmonton, AB T5Y 6H3, Canada
| | | | - David Feindel
- Alberta Plant Health Lab, Crop Diversification Centre North, Alberta Agriculture and Irrigation (AGI), Edmonton, AB T5Y 6H3, Canada
| | - Jie Feng
- Alberta Plant Health Lab, Crop Diversification Centre North, Alberta Agriculture and Irrigation (AGI), Edmonton, AB T5Y 6H3, Canada
| |
Collapse
|
4
|
Lengyel S, Rascle C, Poussereau N, Bruel C, Sella L, Choquer M, Favaron F. Snf1 Kinase Differentially Regulates Botrytis cinerea Pathogenicity according to the Plant Host. Microorganisms 2022; 10:microorganisms10020444. [PMID: 35208900 PMCID: PMC8877277 DOI: 10.3390/microorganisms10020444] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/04/2022] [Accepted: 02/11/2022] [Indexed: 11/16/2022] Open
Abstract
The Snf1 kinase of the glucose signaling pathway controls the response to nutritional and environmental stresses. In phytopathogenic fungi, Snf1 acts as a global activator of plant cell wall degrading enzymes that are major virulence factors for plant colonization. To characterize its role in the virulence of the necrotrophic fungus Botrytis cinerea, two independent deletion mutants of the Bcsnf1 gene were obtained and analyzed. Virulence of the Δsnf1 mutants was reduced by 59% on a host with acidic pH (apple fruit) and up to 89% on hosts with neutral pH (cucumber cotyledon and French bean leaf). In vitro, Δsnf1 mutants grew slower than the wild type strain at both pH 5 and 7, with a reduction of 20–80% in simple sugars, polysaccharides, and lipidic carbon sources, and these defects were amplified at pH 7. A two-fold reduction in secretion of xylanase activities was observed consequently to the Bcsnf1 gene deletion. Moreover, Δsnf1 mutants were altered in their ability to control ambient pH. Finally, Δsnf1 mutants were impaired in asexual sporulation and did not produce macroconidia. These results confirm the importance of BcSnf1 in pathogenicity, nutrition, and conidiation, and suggest a role in pH regulation for this global regulator in filamentous fungi.
Collapse
Affiliation(s)
- Szabina Lengyel
- Department of Land, Environment, Agriculture and Forestry (TESAF), University of Padova, Viale dell’Università, 16, 35020 Legnaro, Italy; (S.L.); (F.F.)
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Bayer SAS, INSA Lyon, UMR5240, Microbiologie, Adaptation et Pathogénie, 14 Impasse Pierre Baizet, F-69263 Lyon, France; (C.R.); (N.P.); (C.B.)
| | - Christine Rascle
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Bayer SAS, INSA Lyon, UMR5240, Microbiologie, Adaptation et Pathogénie, 14 Impasse Pierre Baizet, F-69263 Lyon, France; (C.R.); (N.P.); (C.B.)
| | - Nathalie Poussereau
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Bayer SAS, INSA Lyon, UMR5240, Microbiologie, Adaptation et Pathogénie, 14 Impasse Pierre Baizet, F-69263 Lyon, France; (C.R.); (N.P.); (C.B.)
| | - Christophe Bruel
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Bayer SAS, INSA Lyon, UMR5240, Microbiologie, Adaptation et Pathogénie, 14 Impasse Pierre Baizet, F-69263 Lyon, France; (C.R.); (N.P.); (C.B.)
| | - Luca Sella
- Department of Land, Environment, Agriculture and Forestry (TESAF), University of Padova, Viale dell’Università, 16, 35020 Legnaro, Italy; (S.L.); (F.F.)
- Correspondence: (L.S.); (M.C.)
| | - Mathias Choquer
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Bayer SAS, INSA Lyon, UMR5240, Microbiologie, Adaptation et Pathogénie, 14 Impasse Pierre Baizet, F-69263 Lyon, France; (C.R.); (N.P.); (C.B.)
- Correspondence: (L.S.); (M.C.)
| | - Francesco Favaron
- Department of Land, Environment, Agriculture and Forestry (TESAF), University of Padova, Viale dell’Università, 16, 35020 Legnaro, Italy; (S.L.); (F.F.)
| |
Collapse
|
5
|
Gay EJ, Soyer JL, Lapalu N, Linglin J, Fudal I, Da Silva C, Wincker P, Aury JM, Cruaud C, Levrel A, Lemoine J, Delourme R, Rouxel T, Balesdent MH. Large-scale transcriptomics to dissect 2 years of the life of a fungal phytopathogen interacting with its host plant. BMC Biol 2021; 19:55. [PMID: 33757516 PMCID: PMC7986464 DOI: 10.1186/s12915-021-00989-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 02/19/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The fungus Leptosphaeria maculans has an exceptionally long and complex relationship with its host plant, Brassica napus, during which it switches between different lifestyles, including asymptomatic, biotrophic, necrotrophic, and saprotrophic stages. The fungus is also exemplary of "two-speed" genome organisms in the genome of which gene-rich and repeat-rich regions alternate. Except for a few stages of plant infection under controlled conditions, nothing is known about the genes mobilized by the fungus throughout its life cycle, which may last several years in the field. RESULTS We performed RNA-seq on samples corresponding to all stages of the interaction of L. maculans with its host plant, either alive or dead (stem residues after harvest) in controlled conditions or in field experiments under natural inoculum pressure, over periods of time ranging from a few days to months or years. A total of 102 biological samples corresponding to 37 sets of conditions were analyzed. We show here that about 9% of the genes of this fungus are highly expressed during its interactions with its host plant. These genes are distributed into eight well-defined expression clusters, corresponding to specific infection lifestyles or to tissue-specific genes. All expression clusters are enriched in effector genes, and one cluster is specific to the saprophytic lifestyle on plant residues. One cluster, including genes known to be involved in the first phase of asymptomatic fungal growth in leaves, is re-used at each asymptomatic growth stage, regardless of the type of organ infected. The expression of the genes of this cluster is repeatedly turned on and off during infection. Whatever their expression profile, the genes of these clusters are enriched in heterochromatin regions associated with H3K9me3 or H3K27me3 repressive marks. These findings provide support for the hypothesis that part of the fungal genes involved in niche adaptation is located in heterochromatic regions of the genome, conferring an extreme plasticity of expression. CONCLUSION This work opens up new avenues for plant disease control, by identifying stage-specific effectors that could be used as targets for the identification of novel durable disease resistance genes, or for the in-depth analysis of chromatin remodeling during plant infection, which could be manipulated to interfere with the global expression of effector genes at crucial stages of plant infection.
Collapse
Affiliation(s)
- Elise J Gay
- Université Paris-Saclay, INRAE, AgroParisTech, UMR BIOGER, 78850, Thiverval-Grignon, France
| | - Jessica L Soyer
- Université Paris-Saclay, INRAE, AgroParisTech, UMR BIOGER, 78850, Thiverval-Grignon, France
| | - Nicolas Lapalu
- Université Paris-Saclay, INRAE, AgroParisTech, UMR BIOGER, 78850, Thiverval-Grignon, France
| | - Juliette Linglin
- Université Paris-Saclay, INRAE, AgroParisTech, UMR BIOGER, 78850, Thiverval-Grignon, France
| | - Isabelle Fudal
- Université Paris-Saclay, INRAE, AgroParisTech, UMR BIOGER, 78850, Thiverval-Grignon, France
| | - Corinne Da Silva
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Université d'Evry, Université Paris-Saclay, 91057, Evry, France
| | - Patrick Wincker
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Université d'Evry, Université Paris-Saclay, 91057, Evry, France
| | - Jean-Marc Aury
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Université d'Evry, Université Paris-Saclay, 91057, Evry, France
| | - Corinne Cruaud
- Genoscope, Institut François Jacob, CEA, Université Paris-Saclay, Evry, France
| | - Anne Levrel
- INRAE, Institut Agro, Univ Rennes, IGEPP, 35653, Le Rheu, France
| | - Jocelyne Lemoine
- INRAE, Institut Agro, Univ Rennes, IGEPP, 35653, Le Rheu, France
| | - Regine Delourme
- INRAE, Institut Agro, Univ Rennes, IGEPP, 35653, Le Rheu, France
| | - Thierry Rouxel
- Université Paris-Saclay, INRAE, AgroParisTech, UMR BIOGER, 78850, Thiverval-Grignon, France
| | - Marie-Hélène Balesdent
- Université Paris-Saclay, INRAE, AgroParisTech, UMR BIOGER, 78850, Thiverval-Grignon, France.
| |
Collapse
|
6
|
Cantila AY, Saad NSM, Amas JC, Edwards D, Batley J. Recent Findings Unravel Genes and Genetic Factors Underlying Leptosphaeria maculans Resistance in Brassica napus and Its Relatives. Int J Mol Sci 2020; 22:E313. [PMID: 33396785 PMCID: PMC7795555 DOI: 10.3390/ijms22010313] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 12/29/2020] [Accepted: 12/29/2020] [Indexed: 11/20/2022] Open
Abstract
Among the Brassica oilseeds, canola (Brassica napus) is the most economically significant globally. However, its production can be limited by blackleg disease, caused by the fungal pathogen Lepstosphaeria maculans. The deployment of resistance genes has been implemented as one of the key strategies to manage the disease. Genetic resistance against blackleg comes in two forms: qualitative resistance, controlled by a single, major resistance gene (R gene), and quantitative resistance (QR), controlled by numerous, small effect loci. R-gene-mediated blackleg resistance has been extensively studied, wherein several genomic regions harbouring R genes against L. maculans have been identified and three of these genes were cloned. These studies advance our understanding of the mechanism of R gene and pathogen avirulence (Avr) gene interaction. Notably, these studies revealed a more complex interaction than originally thought. Advances in genomics help unravel these complexities, providing insights into the genes and genetic factors towards improving blackleg resistance. Here, we aim to discuss the existing R-gene-mediated resistance, make a summary of candidate R genes against the disease, and emphasise the role of players involved in the pathogenicity and resistance. The comprehensive result will allow breeders to improve resistance to L. maculans, thereby increasing yield.
Collapse
Affiliation(s)
| | | | | | | | - Jacqueline Batley
- School of Biological Sciences, University of Western Australia, Perth, WA 6009, Australia; (A.Y.C.); (N.S.M.S.); (J.C.A.); (D.E.)
| |
Collapse
|
7
|
Li Y, Yan P, Lu X, Qiu Y, Liang S, Liu G, Li S, Mou L, Xie N. Involvement of PaSNF1 in Fungal Development, Sterigmatocystin Biosynthesis, and Lignocellulosic Degradation in the Filamentous Fungus Podospora anserina. Front Microbiol 2020; 11:1038. [PMID: 32587577 PMCID: PMC7299030 DOI: 10.3389/fmicb.2020.01038] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Accepted: 04/27/2020] [Indexed: 02/05/2023] Open
Abstract
The sucrose non-fermenting 1/AMP-activated protein kinase (SNF1/AMPK) is a central regulator of carbon metabolism and energy production in the eukaryotes. In this study, the functions of the Podospora anserina SNF1 (PaSNF1) ortholog were investigated. The ΔPaSNF1 mutant displays a delayed development of mycelium and fruiting bodies and fails to form ascospores. The expression of the PaSNF1 gene in the strain providing female organs in a cross is sufficient to ensure fertility, indicating a maternal effect. Results of environmental stress showed that ΔPaSNF1 was hypersensitive to stress, such as osmotic pressure and heat shock, and resistant to fluconazole. Interestingly, the knockout of PaSNF1 significantly promoted sterigmatocystin (ST) synthesis but suppressed cellulase [filter paperase (FPA), endoglucanase (EG), and β-glucosidase (BG)] activity. Further, transcriptome analysis indicated that PaSNF1 made positive regulatory effects on the expression of genes encoding cellulolytic enzymes. These results suggested that PaSNF1 may function in balancing the operation of primary and secondary metabolism. This study suggested that SNF1 was a key regulator concerting vegetative growth, sexual development, and stress tolerance. Our study provided the first genetic evidence that SNF1 was involved in the ST biosynthesis and that it may also be a major actor of lignocellulose degradation in P. anserina.
Collapse
Affiliation(s)
- Yuanjing Li
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Pengfei Yan
- Key Laboratory of Functional Inorganic Material Chemistry (MOE), School of Chemistry and Materials Science, Heilongjiang University, Harbin, China
| | - Xiaojie Lu
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Yanling Qiu
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Shang Liang
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Gang Liu
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Shuangfei Li
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Lin Mou
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Ning Xie
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| |
Collapse
|
8
|
Urquhart AS, Idnurm A. Limitations of transcriptome-based prediction of pathogenicity genes in the plant pathogen Leptosphaeria maculans. FEMS Microbiol Lett 2020; 366:5475121. [PMID: 30998236 DOI: 10.1093/femsle/fnz080] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 04/16/2019] [Indexed: 01/02/2023] Open
Abstract
Identification of pathogenicity determinants in Leptosphaeria maculans, a major cause of disease of oilseed crops, has been a focus of research for many years. A wealth of gene expression information from RNA sequencing promises to illuminate the mechanisms by which the fungus is able to cause blackleg disease. However, to date, no studies have tested the hypothesis that high gene transcript levels during infection correlate with importance to disease progression. In this study, we use CRISPR-Cas9 to disrupt 11 genes that are highly expressed during the early stages of disease and show that none of these genes are crucial for fungal pathogenicity on Brassica napus. This finding suggests that in order to understand the pathogenicity of this fungus more sophisticated techniques than simple expression analysis will need to be employed.
Collapse
Affiliation(s)
- Andrew S Urquhart
- School of BioSciences, 1929 Botany Building, the University of Melbourne, Parkville, VIC 3010, Australia
| | - Alexander Idnurm
- School of BioSciences, 1929 Botany Building, the University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
9
|
Liang Y, Xiong W, Steinkellner S, Feng J. Deficiency of the melanin biosynthesis genes SCD1 and THR1 affects sclerotial development and vegetative growth, but not pathogenicity, in Sclerotinia sclerotiorum. MOLECULAR PLANT PATHOLOGY 2018; 19:1444-1453. [PMID: 29024255 PMCID: PMC6638068 DOI: 10.1111/mpp.12627] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 09/02/2017] [Accepted: 10/08/2017] [Indexed: 05/29/2023]
Abstract
The fungus Sclerotinia sclerotiorum is a necrotrophic plant pathogen causing significant damage on a broad range of crops. This fungus produces sclerotia that serve as the long-term survival structures in the life cycle and the primary inoculum in the disease cycle. Melanin plays an important role in protecting mycelia and sclerotia from ultraviolet radiation and other adverse environmental conditions. In this study, two genes, SCD1 encoding a scytalone dehydratase and THR1 encoding a trihydroxynaphthalene reductase, were disrupted by target gene replacement, and their roles in mycelial growth, sclerotial development and fungal pathogenicity were investigated. Phylogenetic analyses indicated that the deduced amino acid sequences of SCD1 and THR1 were similar to the orthologues of Botrytis cinerea. Expression of SCD1 was at higher levels in sclerotia relative to mycelia. THR1 was expressed at similar levels in mycelia and sclerotia at early stages, but was up-regulated in sclerotia at the maturation stage. Disruption of SCD1 or THR1 did not change the pathogenicity of the fungus, but resulted in slower radial growth, less biomass, wider angled hyphal branches, impaired sclerotial development and decreased resistance to ultraviolet light.
Collapse
Affiliation(s)
- Yue Liang
- College of Plant ProtectionShenyang Agricultural UniversityShenyangLiaoning 110866China
| | - Wei Xiong
- School of Life SciencesChongqing UniversityChongqing 400045China
| | - Siegrid Steinkellner
- Division of Plant Protection, Department of Crop SciencesUniversity of Natural Resources and Life Sciences ViennaVienna 1190Austria
| | - Jie Feng
- Alberta Plant Health Laboratory, Alberta Agriculture and ForestryEdmontonAlberta T5Y 6H3Canada
| |
Collapse
|
10
|
Idnurm A, Urquhart AS, Vummadi DR, Chang S, Van de Wouw AP, López-Ruiz FJ. Spontaneous and CRISPR/Cas9-induced mutation of the osmosensor histidine kinase of the canola pathogen Leptosphaeria maculans. Fungal Biol Biotechnol 2017; 4:12. [PMID: 29270298 PMCID: PMC5732519 DOI: 10.1186/s40694-017-0043-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 12/12/2017] [Indexed: 12/30/2022] Open
Abstract
Background The dicarboximide fungicide iprodione has been used to combat blackleg disease of canola (Brassica napus), caused by the fungus Leptosphaeria maculans. For example, in Australia the fungicide was used in the late 1990s but is no longer registered for use against blackleg disease, and therefore the impact of iprodione on L. maculans has not been investigated. Results Resistance to iprodione emerged spontaneously under in vitro conditions at high frequency. A basis for this resistance was mutations in the hos1 gene that encodes a predicted osmosensing histidine kinase. While loss of the homologous histidine kinase in some fungi has deleterious effects on growth and pathogenicity, the L. maculans strains with the hos1 gene mutated had reduced growth under high salt conditions, but were still capable of causing lesions on B. napus. The relative ease to isolate mutants with resistance to iprodione provided a method to develop and then optimize a CRISPR/Cas9 system for gene disruptions in L. maculans, a species that until now has been particularly difficult to manipulate by targeted gene disruptions. Conclusions While iprodione is initially effective against L. maculans in vitro, resistance emerges easily and these strains are able to cause lesions on canola. This may explain the limited efficacy of iprodione in field conditions. Iprodione resistance, such as through mutations of genes like hos1, provides an effective direction for the optimization of gene disruption techniques.
Collapse
Affiliation(s)
- Alexander Idnurm
- School of BioSciences, University of Melbourne, Building 122, Parkville, VIC 3010 Australia
| | - Andrew S Urquhart
- School of BioSciences, University of Melbourne, Building 122, Parkville, VIC 3010 Australia
| | - Dinesh R Vummadi
- School of BioSciences, University of Melbourne, Building 122, Parkville, VIC 3010 Australia
| | - Steven Chang
- Department of Environment and Agriculture, Centre for Crop and Disease Management, Curtin University, Bentley, WA 6102 Australia
| | - Angela P Van de Wouw
- School of BioSciences, University of Melbourne, Building 122, Parkville, VIC 3010 Australia
| | - Francisco J López-Ruiz
- Department of Environment and Agriculture, Centre for Crop and Disease Management, Curtin University, Bentley, WA 6102 Australia
| |
Collapse
|
11
|
Zhai N, Jia H, Liu D, Liu S, Ma M, Guo X, Li H. GhMAP3K65, a Cotton Raf-Like MAP3K Gene, Enhances Susceptibility to Pathogen Infection and Heat Stress by Negatively Modulating Growth and Development in Transgenic Nicotiana benthamiana. Int J Mol Sci 2017; 18:E2462. [PMID: 29160794 PMCID: PMC5713428 DOI: 10.3390/ijms18112462] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 11/17/2017] [Accepted: 11/17/2017] [Indexed: 11/21/2022] Open
Abstract
Mitogen-activated protein kinase kinase kinases (MAP3Ks), the top components of MAPK cascades, modulate many biological processes, such as growth, development and various environmental stresses. Nevertheless, the roles of MAP3Ks remain poorly understood in cotton. In this study, GhMAP3K65 was identified in cotton, and its transcription was inducible by pathogen infection, heat stress, and multiple signalling molecules. Silencing of GhMAP3K65 enhanced resistance to pathogen infection and heat stress in cotton. In contrast, overexpression of GhMAP3K65 enhanced susceptibility to pathogen infection and heat stress in transgenic Nicotiana benthamiana. The expression of defence-associated genes was activated in transgenic N. benthamiana plants after pathogen infection and heat stress, indicating that GhMAP3K65 positively regulates plant defence responses. Nevertheless, transgenic N. benthamiana plants impaired lignin biosynthesis and stomatal immunity in their leaves and repressed vitality of their root systems. In addition, the expression of lignin biosynthesis genes and lignin content were inhibited after pathogen infection and heat stress. Collectively, these results demonstrate that GhMAP3K65 enhances susceptibility to pathogen infection and heat stress by negatively modulating growth and development in transgenic N. benthamiana plants.
Collapse
Affiliation(s)
- Na Zhai
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China.
| | - Haihong Jia
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China.
| | - Dongdong Liu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China.
| | - Shuchang Liu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China.
| | - Manli Ma
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China.
| | - Xingqi Guo
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China.
| | - Han Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China.
| |
Collapse
|
12
|
Urquhart AS, Idnurm A. Sit4-Associated Protein is Required for Pathogenicity of Leptosphaeria maculans on Brassica napus. Curr Microbiol 2017; 74:1438-1446. [PMID: 28840344 DOI: 10.1007/s00284-017-1338-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Accepted: 08/16/2017] [Indexed: 11/28/2022]
Abstract
An insertional mutant with reduced pathogenicity on Brassica napus was identified in the plant pathogenic fungus Leptosphaeria maculans. The transfer-DNA molecule from Agrobacterium tumefaciens inserted into a gene encoding a protein with similarity to Sit4-associated proteins (SAPs). In contrast to Saccharomyces cerevisiae which has four members of the SAP family, there is a single copy of the gene in L. maculans. The mutant had normal spore production and spore germination, but altered hyphal branching, suggesting that nutrient signaling is impaired in the strain. This is the first time that a SAP gene has been mutated in a filamentous fungus and links the function of SAP proteins to plant pathogenesis and hyphal branching.
Collapse
Affiliation(s)
- Andrew S Urquhart
- School of BioSciences, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Alexander Idnurm
- School of BioSciences, University of Melbourne, Parkville, VIC, 3010, Australia.
| |
Collapse
|
13
|
Hilton A, Zhang H, Yu W, Shim WB. Identification and Characterization of Pathogenic and Endophytic Fungal Species Associated with Pokkah Boeng Disease of Sugarcane. THE PLANT PATHOLOGY JOURNAL 2017; 33:238-248. [PMID: 28592943 PMCID: PMC5461043 DOI: 10.5423/ppj.oa.02.2017.0029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 03/13/2017] [Accepted: 03/20/2017] [Indexed: 05/21/2023]
Abstract
Pokkah Boeng is a serious disease of sugarcane, which can lead to devastating yield losses in crop-producing regions, including southern China. However, there is still uncertainty about the causal agent of the disease. Our aim was to isolate and characterize the pathogen through morphological, physiological, and molecular analyses. We isolated sugarcane-colonizing fungi in Fujian, China. Isolated fungi were first assessed for their cell wall degrading enzyme capabilities, and five isolates were identified for further analysis. Internal transcribed spacer sequencing revealed that these five strains are Fusarium, Alternaria, Phoma, Phomopsis, and Epicoccum. The Fusarium isolate was further identified as F. verticillioides after Calmodulin and EF-1α gene sequencing and microscopic morphology study. Pathogenicity assay confirmed that F. verticillioides was directly responsible for disease on sugarcane. Co-inoculation of F. verticillioides with other isolated fungi did not lead to a significant difference in disease severity, refuting the idea that other cellulolytic fungi can increase disease severity as an endophyte. This is the first report characterizing pathogenic F. verticillioides on sugarcane in southern China.
Collapse
Affiliation(s)
- Angelyn Hilton
- Department of Plant Pathology & Microbiology, Texas A&M University, College Station, TX 77843-2132,
USA
| | - Huanming Zhang
- Bioenvironmental Science, Texas A&M University, College Station, TX 77843-2132,
USA
| | - Wenying Yu
- College of Life Sciences, Fujian Agricultural and Forestry University, Fuzhou 350002, People’s Republic of
China
| | - Won-Bo Shim
- Department of Plant Pathology & Microbiology, Texas A&M University, College Station, TX 77843-2132,
USA
- Bioenvironmental Science, Texas A&M University, College Station, TX 77843-2132,
USA
- Corresponding author: Phone) +1-979-458-2190, FAX) +1-979-845-6483, E-mail)
| |
Collapse
|
14
|
Selin C, de Kievit TR, Belmonte MF, Fernando WGD. Elucidating the Role of Effectors in Plant-Fungal Interactions: Progress and Challenges. Front Microbiol 2016; 7:600. [PMID: 27199930 PMCID: PMC4846801 DOI: 10.3389/fmicb.2016.00600] [Citation(s) in RCA: 127] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Accepted: 04/11/2016] [Indexed: 11/13/2022] Open
Abstract
Pathogenic fungi have diverse growth lifestyles that support fungal colonization on plants. Successful colonization and infection for all lifestyles depends upon the ability to modify living host plants to sequester the necessary nutrients required for growth and reproduction. Secretion of virulence determinants referred to as “effectors” is assumed to be the key governing factor that determines host infection and colonization. Effector proteins are capable of suppressing plant defense responses and alter plant physiology to accommodate fungal invaders. This review focuses on effector molecules of biotrophic and hemibiotrophic plant pathogenic fungi, and the mechanism required for the release and uptake of effector molecules by the fungi and plant cells, respectively. We also place emphasis on the discovery of effectors, difficulties associated with predicting the effector repertoire, and fungal genomic features that have helped promote effector diversity leading to fungal evolution. We discuss the role of specific effectors found in biotrophic and hemibiotrophic fungi and examine how CRISPR/Cas9 technology may provide a new avenue for accelerating our ability in the discovery of fungal effector function.
Collapse
Affiliation(s)
- Carrie Selin
- Department of Plant Science, University of Manitoba Winnipeg, MB, Canada
| | | | - Mark F Belmonte
- Department of Biological Sciences, University of Manitoba Winnipeg, MB, Canada
| | | |
Collapse
|
15
|
He PH, Wang XX, Chu XL, Feng MG, Ying SH. RNA sequencing analysis identifies the metabolic and developmental genes regulated by BbSNF1 during conidiation of the entomopathogenic fungus Beauveria bassiana. Curr Genet 2014; 61:143-52. [DOI: 10.1007/s00294-014-0462-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 11/13/2014] [Accepted: 11/14/2014] [Indexed: 10/24/2022]
|
16
|
Lowe RGT, Cassin A, Grandaubert J, Clark BL, Van de Wouw AP, Rouxel T, Howlett BJ. Genomes and transcriptomes of partners in plant-fungal-interactions between canola (Brassica napus) and two Leptosphaeria species. PLoS One 2014; 9:e103098. [PMID: 25068644 PMCID: PMC4113356 DOI: 10.1371/journal.pone.0103098] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 06/26/2014] [Indexed: 11/18/2022] Open
Abstract
Leptosphaeria maculans ‘brassicae’ is a damaging fungal pathogen of canola (Brassica napus), causing lesions on cotyledons and leaves, and cankers on the lower stem. A related species, L. biglobosa ‘canadensis’, colonises cotyledons but causes few stem cankers. We describe the complement of genes encoding carbohydrate-active enzymes (CAZys) and peptidases of these fungi, as well as of four related plant pathogens. We also report dual-organism RNA-seq transcriptomes of these two Leptosphaeria species and B. napus during disease. During the first seven days of infection L. biglobosa ‘canadensis’, a necrotroph, expressed more cell wall degrading genes than L. maculans ‘brassicae’, a hemi-biotroph. L. maculans ‘brassicae’ expressed many genes in the Carbohydrate Binding Module class of CAZy, particularly CBM50 genes, with potential roles in the evasion of basal innate immunity in the host plant. At this time, three avirulence genes were amongst the top 20 most highly upregulated L. maculans ‘brassicae’ genes in planta. The two fungi had a similar number of peptidase genes, and trypsin was transcribed at high levels by both fungi early in infection. L. biglobosa ‘canadensis’ infection activated the jasmonic acid and salicylic acid defence pathways in B. napus, consistent with defence against necrotrophs. L. maculans ‘brassicae’ triggered a high level of expression of isochorismate synthase 1, a reporter for salicylic acid signalling. L. biglobosa ‘canadensis’ infection triggered coordinated shutdown of photosynthesis genes, and a concomitant increase in transcription of cell wall remodelling genes of the host plant. Expression of particular classes of CAZy genes and the triggering of host defence and particular metabolic pathways are consistent with the necrotrophic lifestyle of L. biglobosa ‘canadensis’, and the hemibiotrophic life style of L. maculans ‘brassicae’.
Collapse
Affiliation(s)
- Rohan G. T. Lowe
- School of Botany, The University of Melbourne, Parkville, Victoria, Australia
| | - Andrew Cassin
- ARC Centre of Excellence in Plant Cell Walls, School of Botany, The University of Melbourne, Parkville, Victoria, Australia
| | | | - Bethany L. Clark
- School of Botany, The University of Melbourne, Parkville, Victoria, Australia
| | | | | | - Barbara J. Howlett
- School of Botany, The University of Melbourne, Parkville, Victoria, Australia
- * E-mail:
| |
Collapse
|